This page is part of the website

Mathematics Goes to the Movies

by Burkard Polster and Marty Ross

 

Bianca (1984)

8:02
PRINCIPLE: Dimmi la radice quadrata di 38.651.089.
EDO (an idiot savante): 6217…..
PRINCIPLE: Ha un cervello elettronico. Pensare che non sa ne leggere ne scrivere. A suo modo e un genio. Fa un po’ di tutto, anche se cio chef a e bello ma inutile. Un po’ come la matematica pure: forse non serve, ma e sublime.

16:21
STUDENT: Volevamo parlare del quadrato magico reffigurato nel quadro di Durer.
MICHELE: Si, mella “Melancolia”, me lo rocordo.
STUDENT: Pare che nel Rinascimento fossero convinti che il quadrato magico di ordine quattro potesse scacciare (sentimenti comme) malinconia e tristezza.
MICHELE: Interessante. Quindi…
STUDENT: Posso? Vede, il professore ci ha detto che Durer ha firmato con la data del quadro, dipinto infatti nel 1514. Mi segue? (get blackboard)
MICHELE: Si.
STUDENT: Come fa a dare sempre 34 sommando ogni riga, colonna e diagonale?
MICHELE: Da sempre 34?
STUDENT: Si, se lei ce lo puo far vedere.
MICHELE: Mi sembra fuori del programma, magari non tutti interessa.
ALL: Si, si, ci interessa. Lo spieghi!

Translation from M. Emmer's book (A little bit off, as far as I can tell. Refers to wrong picture. First picture not even in this scene.):
TEACHER: I hope you like math and I hope we’ll be able to work together solving a host of problems. . OK, let’s get to know one another…if anyone would like to ask a question, now’s the time.
STUDENT: Yes, me, on behalf of an interdisciplinary working group set up to study the relationship between science, art and literature. We’d like to ask something about the magic square depicted in Albrecht Durer’s work Melancholia I.
TEACHER: Yes, I know Melancholia well.
STUDENT: During the Renaissance, it seems people thought that a magic square of the fourth order could keep away feelings like melancholy and sadness.
TEACHER: Ah yes! Interesting. S….
STUDENT: You see, our professor told us that Durer put the date in the lower part of the engraving-in fact, it was made in 1514. Do you follow me?
TEACHER: Yes.
STUDENT: Well, we’d like to know why every row, every column and every diagonal always gives the sum of 34.
TEACHER: Yes, always 34…
STUDENT: Can you show us why this happens?
TEACHER: Well, it seems a little outside the scope of our program, and anyway maybe not everyone’s interested.
Students: We’re all interested, so you can go ahead and explain.
TEACHER: You’re all interested, are you? But this is your first day. Wouldn’t it be more useful to get to know the course better…
STUDENT: Look, no-one’s forcing you.
TEACHER: Ok, sure…. Well now (he gets up and goes over to the blackboard unsure of what to do, and is saved by the end-of-lesson bell).

29:07
MICHELE: Ecco, ora dovrebbe essere chiaro perche all’infinito (get blackboard) una linea retta e una curva coincidono.

58:34
BINACA: La matematica ti piace?
MICHELE: Mi piace la chiarezza, la logica. Un numero e positivo o negativo. No mi piacciono le vie di mezzo.

1:07:31
Student” Traccio la tangente T all a curva su R che si incontra sull’asse X in un punto detto omega. (Two blackboards)