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THE FRONT COVER

Our front cover for this issue displays one of the diagra~s from our
feature article on tHings. This' is an important study within Mathematics
and moreover a topical one. In our previous issue, the book review took
account of several tilings to be seen in the public architecture of
Melbourpe.

In particular, the 15th and last of Jill Vincent's list of notable
mathematical sights concerned the "Tesselating Pentagon Pavement" at
the University of Melbourne.

Our article provides a proof that it is not possible to use a regular
pentagon to tile, or tessellate, a plane. However, if we drop the condition
of regularity, then there a number of such tilings known. (According to
our article; there are 14 that have been found so far, but there may be yet
others that no one has yet discovered!)

The diagram is reproduced again below for the reader's con
venience.

Notice thatthe pentagons combine to fonn a rose-shaped structure,
each "head" of which contains six congruent pentagons. These six
pentagons make up a structure with the symmetry properties of a regular
hexagon. In fact the boundary could be seen as a "defonned hexagon". It
follows that the tiling shown here is a periodic (repeating) tiling.
Contrast this \vith the Penrose tiling, also mentioned in the article, which
is not periodic.
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TILINGS

Josefina Alvarez, University of New Mexico
and

Cristina Varsavsky, Monash University

In bathrooms, kitchens and beyond, house tHings are mani
fest~tions of a craft that has adorned buildings from ancient Rome to the
Islamic world, from Victorian England to colonial Mexico. .

In general, the word 'tiling' refers to any pattern that covers a flat
surface, like a painting on a canvas, using non-overlapping repetitions of
one or more shapes, so that the 'design does not leave any empty spaces.
Contemporary tilings can be found in African-American quilts,
Indonesian batiks, molas (traditional blouses sewn by the Cuna womem
from the San BIas Islands off the coast of Panama), and Aboriginal
paintings. Tiling was a favourite means of expression for the Dutch artist
M C Escher (1898-1972). He had this to say about tiling: ".0. I have
embarked on this geometric problem again and again over the years,
trying to throw light on different .aspects each time. I cannot imagine
what my life would be like if this problem had never occurred to me; one
might say that I am head over heels in love with it, and I still don,'t know
why"l. In these and other words,. Escher repeatedly expressed his love
for this art-form, acknowledging at the same time the influence on his
work of the mosaics he admired and sketched at Moorish buildings in
Southern Spain. In spite of this influence, Escher's art went far beyond
anything seen before. He produced enigmatic tilings, with strange
creatures and mutating landscapes that suggest a craft free from any
worldly limitation. Despite this appearance, tiling is a very precise art,
where not much can be left to chance. Even the simplest tilings fall under
the sway of mathematical principles. We can push and tum and wiggle,
but if the maths is not right, it isn't going to tile.

To see how Mathematics can limit the fancy of the best tile
installer, we fITst try our hand at tiling with copies of just one regular
polygon. Not only do we want to use copies of just one regular polygon,
but we also want to place theln vertex to vertex, that is to say, with the
vertices of one copy only touching the vertices of another copy. These
tHings are called regular. For instance, in Figure 1, tilings (a), (b) and (c)

1 InF Cajori, A History ofMathematics, Sth ed, AMS Chelsea Publishing, AMS 2000
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are regular, while tilings Cd), (e) and (f) are not. In fact, the squares in
tiling (d) lie in parallels that can "slide past" one another. THings (e) and
(f) use more than one kind of regular polygon each, regular octagons and
squares for (e), regular hexagons and equilateral triangles for (f).

(a)

(d)

(b)

(e)

Figure 1

(c)

(1)

As the tHings (a), (b) and (c) in Figure 1 show, squares, equilateral
triangles and regular hexagons do make up regular tHings, a fact that was
known to Pythagoras's followers in the fifth century BC. But Mother
Mathematics says that no other regular polygon can make the same claim.
Why? If we look at the regular tilings in Figure 1, we·can see that the

magnitudes of the angles meeting at each vertex add up to exactly 360
0

•

What happens with, say, regular octagons? As Figure 2 (overleaf)

illustrates, two regular octagons fall short of completing 3600

, while
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three regular octagons produce some overlapping. ,Tiling (e) shows that
the perfect tiling companion of two regular octagons is a smaller square
wedged between them.

So our claim about which regular polygons can tile a plane
regularly is really a claim about the size of their angles. To say that a
regular polygon will produce a regular tiling of a plane is the smneas
saying that the size of its angle (in degrees) divides exactly into 360. In

other words, that the ratio . 360 . is equal to one of the numbers
angle measure

1,2,3, ....

Figure 2

Now, if we want to show that only equilateral triangles, squares
and regular hexagons make up regular tilings, we need to show that the
angle-measure of any other regular polygon will not divide exactly into
360. aow do we do this? A mix of geometry and algebra will do the
trick very nicely. We first use geometry to come up with a formula for
the size of the angle of any regular polygon. Let us see how. Figure 3(a)
(opposite) shows a regular polygon with n sides and angle measure a. The
generic number of sides n can be 3,4,5, ... '. We haven't completed the
picture of our polygon because we do not want to fall into thinking about
a particular polygon. Whatever we do has to work for any regular
polygon. In Figure 3(b), we have outlined one of the n isosceles triangles
whose apices meet at the centre of our polygon.
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What can we say about the magnitudes of the angles of this

isosceles triangle? They are equal to !:, !: and 360
0

, as Figure 3(b)
2 2 n

suggests. We also know that the sum of these three angle-measures has

to be 180
0

• Or

That is to say:

a =1800
_ 360

0

n

Figure 3(a) Figure 3(b)

This is the fonnula we ··will use for the angle of our regular
polygon. Of course, it produces the values we have already found for the
angle of an equilateral triangle, n =3, a square, n =4 and a regular
hexagon, n = 6. Now, let's remember that our regular polygon will make
a regular tiling only when the measure of the angle a divides exactly into
360. This means that we are looking for those regular polygons for which

the ratio 360 equals one of the numbers 1, 2, 3, .... If we substitute in
a

this condition our newly acquired fotnlula for a, the condition becomes
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180

360

360

n

must be equal to 1 or 2 or 3 or ....

After some simplification, this condition reads

2n
-- must be equal to 1 or 2 or 3 or ....
n-2

So, our geometric problem of tiling has become the following algebraic
problem: to show that 2n is divisible by n - 2 only when n = 3, 4, 6. We

can quickly see that the condition is true for n = 3, 4, 6; we can al~o

check that is not true when n =5 (pentagon) or when n =7 (heptagon).

But checking individual values for n will not do the job. We need to do
some further algebra to prove the assertion. By division, we can write

2n 4
-- = 2+--
n-2 n-2

Now we only need to show that _4-cannot be a counting number,
n-2

for n ~ 8. But this is easy, because when n =8 we have~ =~ and,
8-2 3

as n increases, the ratio _4_ decreases. So there is no way that~
n-2 n-2

could ever become a counting number, for any n ~ 8 ,and the same must

then be true for 2 + _4_. And we are done. We now know for sure
n-2

that the only regular tHings of the plane using one regular polygon are the
frrst three tilings depicted in Figure 1.

It has been said that mathematicians do not know where to stop,
meaning that we always find yet another wrinkle to explore. Here is my
new wrinkle: Tiling (d) in Figure 1 shows that we can build a sliding
tiling using copies of a square. Is this true for an equilateral triangle?
How about a regular hexagon? How about other regular polygons?
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Let us consid~r first the case of equilateral triangles. We can start
with two equilateral triangles sitting as in Figure 4(a).

Since 3x60° =1800
, we should be able to fit exactly another fOUf

copies of the triangle, two above and two below, as shown in Figure 4(b)
below. The result is a regular hexagon broken into two halves, with one
half slid along the other. Now we can see what is going on: If we break
the regular tiling (b) in Figure 1 along all or some of the horizontal lines,
or along all or some of the slanted lines, and if we slide the strips along
the fracture lines, we obtain a tiling, like the one shown in Figure4(c).
We could try to reason in the same way with regular hexagons, but as it
happens, doing the same thing does not always guarantee the. same
outcome. As Figure 4 suggests, the angles refuse to cooperate, leaving
annoying empty spots.

Figure 4(a) Figure 4(b) Figure 4(c)

So, the answer for the triangular wrinkle is "yes", while the answer
for the hexagonal wrinkle is "no". What happens with other regular
polygons? A moment's reflection will show that a regular polygon will
produce one of these sliding tilings only when its angle measure divides

exactly into 1800

• Or,
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180
----- must be equal to 1 or 2 or 3 or ... .

360

n

Reorganising this expression as before, we can see that the
poseibility of the sliding tiling using· one regular polygon goes hand in
hand with the truth of the condition

n
-- must be equal to 1 or 2 or 3 or ....
n-2

- 2
That is to say, 1+-- must be equal to 1 or 2 or 3 or ....

n-2 .

But _2_ is a counting number only for n =3, 4. In other words,
n-2

only equilateral triangles and squares can produce this kind of sliding
tiling using just one regular polygon.

You can see how the rules and regulations of Mathematics appear
very quickly even in the simplest tiling designs. No pentagons in the
bathroom floor! No pentagons? Well, thinking of it, we only know that
regular pentagons do not work. But what happens if we drop the word
'regular' from the specifications? What if we just want to tile with copies
of one convex pentagon, which means a five-sided polygon with all the

angles less than 1800 ? If we do, a very different and interesting story
will unfold, because there are quite a few convex pentagons that will tUe
a plane. For instance, how would you like to have one of these patterns
in your bathroom floor? -

Figure 5
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As you can see, non-regular pentagons give quite a lot of choices.
They are also more difficult to handle. The problem of tiling with copies
of one convex pentagon is open. To date, 14 different tilings are known,
but nobody knows whether this list is complete. '

What happens if we get back to regular polygons, but this time we
allow more than one shape and size to be used? We have seen already
examples of this kind of tiling: Tiling (e) in Figure 1 uses at each vertex
one copy of a square and two copies of a regular octagon, while Tiling (f)
uses at each vertex one copy of a regular hexagon and four copies of an
equilateral triangle. Inspired by these tilings, we could demand of our
tHings with more than one regular polygon that polygons with the same
number of sides have the same size, that vertices meet at vertices and that
the same number of polygons of each shape is used at all the vertices.
We will call these patterns mixed tilings. Actually, the first three regular
tilings of Figure 1 could be considered particular cases of mixed tilings,
that use at each vertex fOUf copies of a square, or six copies of an
equilateral triangle or three copies of a regular hexagon., Combining
geometry and algebra, with some help from a computer, we could find all
the possible mixed tilings, but this would need to be another article!

You can see that we could go on forever with this very serious
tiling game. What if· we allow the polygons to get smaller and smaller?
What if we use copies of any triangle or copies of any figure with fOUf
sides? What if we want to emulate Escher and try to draw some
figurative meaning into the tiles? What if we look for patterns that, in
some sense, never repeat? Each of these "what if', and many others that
you might imagine, will open up new fascinating possibilities.

As a guide for your explorations, we suggest the excellent
presentation in Chapter 20 of For All Practical Purposes2

• There you can
tead, for instance, about the endeavours of one of Escher's tiling pals, the
British mathematician Roger Penrose. Penrose has designed non
repeating tilings that now seem to agree with the internal structure of real
materials, such as some composites containing aluminium. On a lighter
note, Penrose's designs have also caught the attention of a toilet paper
manufacturer, because paper embossed with ~ non-repeating pattern can
be rolled without leaving bulging spots. But Penrose had copyrighted the
pattern and the manufacturer got a legal spanking. Beyond the fun side of

2 For All Practical Purposes: Introduction to Contemporary Mathematics by COMAP, New York: W
H Freeman, 2002.
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tiling and its more, or less, serious applications, Penrose's .interest in
tiling relates also to his interest in artificial intelligence and the workings
of computers.

For instance, the tiling problem (that is whether a given bunch of
shapes will tile a plane) belongs to a class of mathematical problems
called non-recursive. The tiling problem is answerable in each particular
case, but, Penrose says, "there is no systematic procedure that, once
implemented on a machine, could give an answer in any case, without
requiring any more thinking." These and many other issues are discussed
in Penrose's controversial books Shadows of the Mind: A Search for the
Missing Science of .Consciousness3 and The Emperor's New Mind:
Concerning Computers, Minds and the Laws ofPhysics4

•

Let us get back to tiling. In the books The Magic Mirror of M C
Esche,.s, and Visions of Symmetry: Notebooks, Periodic Drawings and
Related Work ofM C Escher6

, the authors present and explain lnany Qf
Escher's tiling masterpieces. For more examples on how well
Mathematics and tiling play together, you can look into The World of
Patterns7

• This CD-ROM includes many tHings classified by their artistic
and mathematical traits. It also has an extensive list of references to other
works on tiling. An internet search will lead you to several nice computer
programs where you can play the tiling game. I also fmd it very
interesting to experiment with shapes cut out of sturdy paper.

From looking at pretty pictures or making them, to doing
-Mathematics, the choice is yours. For now, we draw the line here.

3 Published by Oxford University Press in 1994.
4 Published by Oxford University Press in 2002.
5 By B Ernst, published Barnes & Noble in 1994.
6 By D Schattschneider, published by W H Freeman in 1990.
7 By B Wichmann, CDROM and booklet published by World Scientific in 200L
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NEWS ITEMS

"Contrived Equations"

A recent article in the Intenzational Journal for Mathematical
Education in Science and Technology raises some interesting and
surprising. points. It is to be found in their issue for February 2004
(Volulne 35, Part 1), pp 135-144. The authors are Miriam Amit, Michael
J Fried and Pavel' Satianov, all of Ben GUli.on University in Israel.

They begin by considering an equation that seems absurd. The
idea is to graph the equation:

,Jl-x2 H - .J1-x2 H =0. (1)

The equation is so apparently ridiculous that we might be tempted, at
frrst sight, to dismiss it out of hand. But wait!

Think of what an equation means. It defines the set of (in this
context) (x, y) for which the statement that the equation makes is true. So
for example if we write the equation

then if (x, y) represents a point on the unit circle, the equation is true; for
any other point it is false.

Now look again at Equation (1). As long as

- 1~ x ~ 1 and - 1~ y ~ 1 (2)

the equation is certainly true. However, for all. other x, y the left-hand
side is undefined (in real algebra). Thus Professor Amit and her co
workers claim that Equation (1) and the inequalities (2) are equivalent.

It follows that the interior (including, here and in what follows, its
boundaries) of the square given by the inequalities (2) constitutes the
"graph" of Equation (1), which, because of its unusual character, the
authors refer to as a "contrived equation". They go on to discuss the
equations that produce triangles in a similar manner, and this will here be
set as a challenge to readers to do for themselYes.
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The convention in all this is that~ is the positive (or zero) square
root of x if x ~ 0, but is meaningless if x < O.

If this were all there was to their article we could say of it: ''This is
a bit of a surprise, but so what?" However, they go on to discuss related
matters - matters with rather more substance to them.

This time they consider another function I~, known as the absolute
value of x. [Some software packages call it ABS(x).] This function is
defined to be x if x;?: 0, and -x if x < O. In view of our earlier remarks,

we can give a rather nice alternative definition: Ixl:::H. The three

authors go on to produce "contrived equations" involving the function I~ .

Think fIrst of three points on a line. Call them A, Band X.
Corresponding to these three points will be co-ordinates a, b and x
respectively. Then /a - bl will be the distance between A and B, and

similarly for the other pairs of points. Then if X lies between A and B,
then

Ix - al + Ix - bl = la - bl

but if X lies outside this interval, this equation is false.

(3)

The three authors refer to e-quationslike Equation (3) as also being
"contrived", but here the usage is not quite the same. If we do not hav-e
a ~ x ~ b or b ~ x ~ a, Equation (3) asserts a falsehood rather than being
meaningless. However here also we can think of the interval between a
and b as being the "graph" of Equation (3). The usage "contrived"
describing such equations now refers not just to the apparent tautologies
of equations -like Equation (1) but also to other situations where an
equation defines a region.

And now we have another way to represent the interiors of
rectangles. If we take as well as the points- A, B and X on the x-axis,
points C, D and Y on the y-axis, then we can plot the y-values in the
interval betweenc and d (the y-co-ordinates of C and D respectively).
This results in another equation

Iy - cl + Iy - dl =/c - d/. (4)
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Equations (3) and (4) toget~er give the set of points that form the
interior and boundaries of a rectangle contained between the lines x =a,
x =b, y =c and y = d.

But now we can combine the two separate equations (3) and (4)
into one. It is most instructive to llluitiply them. This gives:

~x ~ al + Ix - bl}.~y - c/ + Iy - dl}= la - bl·le - dl·

Now expand theleft-hand side. We find that

Ix - al·ly - cl + Ix - bl·ly - cl + Ix - al·l)' - dl +Ix - bl·ly - dl = la - bl~c - dl (5)

But now this equation possesses a ready interpretation. Look at the
diagram below

y

d

c

a b

(x, y)

x

The rectangle we have been graphing is split up into four smaller
rectangles by the horizontal and vertical lines through the interior point
(x, y). What Equation (5) tells us is that the total area of the big rectangle
is the sum of the areas of the four small ones. While this is not exactly
news, it is surprising to see it turn up here in this context. The equation
for the rectangle is a statement of one of-its properties. Equation (5) is
true if (x, y) lies inside the rectangle, false if not.

The three authors next go on to look again at triangles. Here they
make use of a fonnula that we saw in Function last June. Ifgoes like this.
Let the vertices of a triangle be (Xl' Yl)' (X2,Y2) and (X3;: Y3 ). Then the
area of the triangle is given by the value of the detenninant
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Xl YI 1

X2 Y2 1

x3 Y3 1

with one small complication that we glossed over then, but which is
important in the present context.

This complication is that the value of the determinant might turn
out to be negative. In some contexts, this is quite unimportant (it
provides information on the orientation of the orientation of the triaqgle).
Here however it is an unwanted complication. We can get lid of it by
using the absolute value function in this context also.

To make the notation somewhat easier to follow, write

Xl Yl 1

x2 Y2 1 =D(Xl'Yt;X2'Y2;X3'Y3)·

X3 Y3 1

The area will then be written as ID(X1'Yl;X2'Y2;X3'Y3)!' This way there will
be no complication arising from the determinant giving a negative area.

Now take another point (x, y). If this new point lies inside the
triangle, we may divide the original triangle into three smaller ones
whose total area is the same as that of the large one. This tells us that

ID(x, y;xl' Yl ;X2'Y2) I+/D(x, Y;X2'Y2;X3 , Y3) 1+ID(x~Y;X3' Y3;XJ , Yl) I
=ID(x1 , Yl;X2 , Y2 ;X3 'Y3) I

(6)

Once again, this equation will hold if (x, y) is an interior point of the
triangle; otherwise not. So this statement of area conservation is the
equation for the interior of the triangle.

Readers might like to explore matters further. For .. example, if
Equations (3) and (4) had been added rather than multiplied, the new
equation would still describe the same region as is given by Equation (5).
Is it possible to provide a geometric interpretation?
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More 'on the Tw~n Primes Conjecture

Some of the entries in the list of prime numbers form pairs
separated by a common difference of 2: (3, 5), (5, 7), (11, 13), etc. It has
long been conjectured that there are infinitely many such pairs, but so far
no one has managed to prove this. This was one of the outstanding
conjectures in Number Theory that formed the subject matter for the
History column in April 2001. In the years since, there has been a flurry
of interest in the conjecture, and we have report~d aspects of this in
several news items in recent issues of Function.

Recently there has been another attack on the problem. Last May,
a proof (by R F Arenstorl, an American number theorist) was announced:
in fact a .proof of an even stronger result, i.e. a result that entailed the
correctness of the twin prime conjecture and proved further matters as
well.

Sadly, the proof is now known to be defective. A mistake in the
demonstration of one of the subsidiary results used along the way has
been.shown (by the French mathematician G Tenenbaum) to be in error.
Both th~ proposed proof and the revelation of the error are posted on the
web. The first is at:

http://arXiv.org/abs/math.NT/0405509

and the second at:

http://listserv.nodak.edu/scripts/wa.exe?A2=ind0406&L=nmbrthry&F=S+&P=1119

Opinions are divided on the seriousness of the error. Remember
that Wiles' initial proof of Fermat's Last Theorem needed patching up in
one respect. In that instance, the defect wC\s remedied in fairly short
order. The present case may ·be somewhat similar as many believe and
hope. However, Terienbaum believes that the error may well indicate
serious problems with the whole approach of Arensdorf' s method.

.For more detail, see:

http://mathworls.wolfram.comlriews/2004-06-09/twinprimes/

This website (unlike those given earlier) should be quite understandable
to all readers of Function.
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"Boy bitten bya Lizard" .

The recent exhibition at the National Gallery of Victoria of works
by Caravaggio and his followers jncluded two items both, called Boy
bitten by.a Lizard. In the catalogue they are reproduced as Plates 4 & 5.
At first glance, the two paintings seem identical, but if they are examined
in more detail, differences become apparent. The first of the pair is held
by the National Gallery in London and the other by the Longhi Gallery in
Florence.

Between their being painted and their reaching their current places
in art museums (early and late C20), there are long gaps in the
"provenance" of both. That is to say, we do not know their history for
much of the intervening 300+ year period. Neither has survived intact.
The British version is described in the catalogue as "very damaged",
while the Italian one has been covered with a "thick varnish". . This
means that differences in colour (which are the most obvious of the
variations between them) are not truly representative of the original state
of either. It may also be that very slight differences in' the size are also
the result of different treatments over the centuries. (The Italian version
is 2mm shorter and 28mm wider.)

The catalogue discusses in some detail the debate over the
authenticity of these paintings. Quite why Caravaggio would want to
paint the same subject twice is the question that naturally arises. For
many years it was thought that one or other was a copy by someone other
than Caravaggio. 'Modem scholarly opinion, however, accepts both
works as being from the master's own'hand.

The matter is discussed in some d~tai1 by David Jaffe and John T
Spike, the authors of the relevant pages of the catalogue. They believe
that the London picture was executed fIrst (perhaps somewhere between
1595 and 1600), and that the Florentine one came later (perhaps around
1600). However, they note that other authorities take a different view and
put the Italian one first. The idea is, however, that the original
(whichever it was) became very popular, and that Caravaggio decided to
cash in on this by producing a second version for a wealthy patron.

They seem not to have considered a different possibility: that the
two versions were meant to be viewed together.
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Last century, the Spanish s:urrealist Salvador Dali painted several
such pairs, of which possibly the best-known is Le Christ de Gala. The
idea is to view the paintings together using either special glasses or with a
cross-eyed vision that can be learned with practice. The result is that the
two images merge into a single 3-dimensional one.

Several exhibitions of Dali's work have displayed such pairs and
so placed them that a special optical device, also carefully positioned,
allowed the viewer to gain the full effect. This aspect of art was taken up
by Dali in 1976 and continued to interest him for the rest of his life.
Readers can learn more .about this from several websites, of which
possibly the best is

http://www.3d-daILcom

Dali's interest in the production of 3-dimensional images sprung
from his study of the Dutch painter Gemt [Gerard] Dou (1613-1675).
For an account of this, see Robert Descharnes' book Salvador Dali (p 168
in Eleanor Morse's English translation). This mentions that Dali had to
work very hard to perfect the technique of painting such pairs well
enough to achieve a satisfactory 3-D effect. Quite how successful DOll
was seems not to have been discussed.

Dou, however, was influenced (via Rembrandt, and thus at some
remove) by Caravaggio, and so it is not altogether fanciful to think that he
was motivated by Caravaggio's having himself made such pairs, of which
perhaps Boy·bitten by a Lizard is one.

The art of making such "stereo pairs", as they are called, depends
on having two almost identical, but subtly different, iniages. In the early
years of the 20th Century, photographers would produ·ce· such pairs by
taking a shot of a scene (say) as viewed by the left eye, and another of the
same scene as viewed by the right. .The two wer~.Jh~l1. mQ~J;1~e.Q. si.d:~. .1?Y.._. __ ...u

side onto a postcard, designed to fit into a special viewing device called a
stereoscope. When this was held up to the eyes, a striking 3-D image was
seen.

It is a little difficult to know whether Caravaggio's work has this
property. Clearly a stereo pair can· be constructed from the two images.
However, because of the damage to the originals, it is not really possible
to know if it was like this back in 1600 or so!
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The Cassini Project Encounter with Phoebe

On June 23 2004, the Cassini ProJect (a NASA exploration of our
solar system) announced the discovery of large--scale deposits of carbon
dioxide on the surface of Saturn's outermost orbiting major satellite
Phoebe and gave a mean density for this ancient, battered moon of 1.6
grams per cubic centimeter (glee). Prior to these discoveries, Monash
University mathematician Andrew Prentice had predicted three different
possible bulk·chemical compositions and mean densities for Phoebe using
his controversial theory of Solar system origin (described" in Function
back in April 1978; see also http://www.cspa.monash.edu.au/news.html).

Three possible compositional models (Options 1, 2 and 3) for
Phoebe were considered, as no one knew exactly where this moon had
originated. Unlike Saturn's other main satellites, which all revolve in
circular orbits close to the planet and in the same common direction as
the planet's own spin, Phoebe's orbit is highly eccentric (elongated);
furthennore this moon goes around the planet in the opposite direction.
All this suggests that Phoebe is a captured, rather than a native, moon of
Saturn.

Prentice's first model assumed that Phoebe condensed at Saturn's
distance from the sun from a gas ring that was shed some 4 billion years
ago by the same primitive cloud of gas that went on to fonn the Sun
itself. The condensate from this model has a mean density of 1.33 grams
per cubic centimeter. This model, however, is now clearly ruled out by
the Cassini data, not only because the density is too low but also because
it cannot explain the ubiquitous presence of carbon dioxide found by the
Cassini spacecraft. But because the capture of a moon is much, more
readily explained if it starts off on" the same circular orbit as Saturn,
Prentice initially preferred this model prior to the Cassini encounter
(http://www.aas.org/publications/baas/v36n2/aas204/887.htm).

The other options both considered the possibility that Phoebe had
originally condensed much further out in the Solar system than where it is
today. Somehow (not so far explained!) it then got relocated to Saturn's
orbit prior to capture. Option 2 assumes that Phoebe is a left-over
planetesimal from Neptune's orbit; Option 3 has it that Phoebe is a 'first

Continued on p 124.



111

HISTORY OF MATHEMATICS

Joseph Bertrand and his Legacy of Paradox

Joseph Bertrand (1822-1900) was a French mathematician, who
contributed to Mathematics on several fronts. In the field of Number
Theory, he. is remembered for Bertrand's Conjecture: between every
positive integer n (> 1) and its double, there is at least one prime. (This
was later proved by. the Russian mathematician Chebychev.) But he is·
also the source of many of the so-called paradoxes of Probability Theory.
Almost all of these derive in some way from his text Calcul des
probabilites, frrst published in 1889.

Several of these have already appeared in one guise or another in
Function. The one most commonly associated with his name formed the
basis of the April Fools' Day column in 1996. It bears repeating here.
Consider a circle of unit radius. In it draw a chord at random What is
'the probability that the length of this chord·is longer than the side of an

equilateral .triangle inscribed in the circle, i.e. ..Jj? There are three
different answers traditionally given to this' question, although others are
perhaps possible as well. The traditional ones all derive from Bertrand's
discus~ion (pp 4, 5 of his text).

The frrst takes the chord to be defined by one point on the
circumference of the circle (A in Figure 1 on p '113) and a second one
somewhere else on the circle. If that second point lies in the arc Be, then
the condition is met,and the angle BAC defining the successful outcomes
is precisely one third of the total angle DAE. This conclusion holds
whatever initial point is chosen. .Thus the required probability is 13.

The second possible answer imagines the chord to be defined by a
direction (Be in Figure 2, p 113) and a co-ordinate in the direction
perpendicular to that (AK.in the figure). Whatever initial direction we
choose, the chords lying in the shaded area of the figure satisfy the
requirement, and these have a perpendicular co-ordinate lying in the
interval MN whose length is half that of the total AK. Thus the required
probability is Y2.

The third takes the chord to be defined by its centre point and also
by a direction. (See Figure 3, p 113.) If the centre lies in the shaded
region, as with the chord FG in the figure, then the requirement. is met; if
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not (chord DE in the figure), then it is not. The area of the shaded region
is one quarter of the whole, and so the required probability is 114.

The usual approach to this paradox is to deny that the problem was
"well-posed" in the first place. The answer depends on quite what
interpretation we place on the words "draw a chord atrandom". Because
three different interpretations are possible (along with perhaps others), we
have demonstrated that the original task was ambiguous. This is what is
meant by "not well-posed". Most authors who describe the paradox take
this view, and, to fill you in, this is also my own view.

I'll get back to this paradox before I finish, but let me now
introduce you to others of Bertrand's paradoxes. One is so well-known
as to be notorious: the so-called "box paradox". It made a brief
appearance in Function many many years ago, but here itis again.

Three boxes are presented to us and we are· told that each contains
2 coins: one contains 2 gold coins, another 2 silver coins, while the third
has one of each kind. One of the boxes is opened at random and a single
coin taken out and examined. It is gold. What IS the probability that the
other coin in the same box is also gold? A careful analysis of the various
possibilities involved results in the conclusion that the probability is %,
but the following argument carries a certain specious authority. "Clearly
the gold coin must have come from either the fust or the third box; the
chance that it came from the frrst box is Y2, and thus this is the ,chance that
the second coin is also gold." I leave readers to detect the error in this
argument.

This second "paradox" is merely an example of how easily we may
be led astray by failure .to analyse the problem in sufficient detail.
However, a further set of paradoxes 'arise from much more fundamental
considerations. The points at issue are essentially those discussed in my
columns for June and August 2000. They relate to the application of
probability notions to "real life". If there is no-one to tell us with the
voice of authority that a coin is fair or a die unloaded, how are
probabilities to be assigned?

One possible way is to use what has been called "the Principle of
Indifference": until proved otherwise, all possible outcomes of an
experiment are to be regarded as equally likely. One strong proponent of
this view, G N Schlesinger (The Sweep ofProbability), has argued for it
even in what might at first strike us as extreme circumstances.
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Suppose that a die is· to be rolled and that we· are warned in
advance that it has been tampered with and that one face is loaded in
such a way that it turns up much more often than it should, but that we
have no infonnation as to which face this is! Then if we bet on (say) a 2
turning up when the die is rolled, then we could be lucky if it so happens
that the shyster has loaded the 2, or else unlucky in all other events. The
same for every other possibility. We can do no better than regard the
probability of a 2 as 1/6, even though we know that this is not the correct
value!

[Here a distinction can be made and is important. If the
probability is regarded as an intrinsic property of the die, then the answer
1/6 is of course quite wrong. However i{we are measuring the state of
our knowledge on the matter, then 1/6 is a perfectly reasonable answer.
There are two different concepts here: the fact that they lead to different
values being assigned to what sounds like the same probability merely
reflects this. See again my columns for June and August 2000.]

But the Principle of Indifference leads to other and more troubling
problems, tIian this one. One of the simplest is the "Life on Mars
Paradox" that appeared in Function in October 1996. We took this from
Eugene P Northrop's Riddles in Mathematics, a work that owes a large
debt to Bertrand. The Life on Mars Paradox derives form the "Weather
Prediction Paradox" in Bertrand, but is considerably more telling.

An adherent of the Principle of Indifference is led to the reluctant
conclusion that the probability that there are no horses on Mars is Y2.
Ditto for the probability of no cows, and so on for no dogs, no cats, no
sheep, no goats, etc, etc, etc. The·probability therefore that none of these
forms of life exist on Mars is therefore txtxtxtxtx... ,a number we
can make arbitrarily close to 0, thus proving almost to a certainty that life
as we know it must exist on Mars!

This paradox is rather easily dealt with. The events are not
independent: the point Bertrand was concerned to make in his original
form of the paradox. [Besides which, the Principle of Indifference is
stretched to its limit when we give the probability of Y2 to the probabilitY
of any familiar form of life living on Mars!]
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Another paradox that has caused much more discussion is another
variant on a Bertrand paradox. "This is the Wine-Water Paradox that was
put forward in its present form by the German probability theorist
Richard von Mises. There is an account of it in his Probability, Statistics
and Truth') fIrst published in German in 1928. Many subsequent authors
have analysed it, and the precise form has varied a little from one
discussion to another. The one I use comes from a recent attempt at a
resolution "by Jeffrey M Mikkelson in the British Journal for the
Philosophy ofScience (March 2004).

Suppose we are presented with a container full of liquid, of which
it is known that it consists of a mixture of wine and water in proportions

. 1 wine 3
that lie somewhere in the range - ~ -- ~ -. Calculate the

3 water 1

probability that wine ~ ~. Put x = wine and consider the possible
water 1 water

values of x. As x could lie anywhere in the range 13 ~ x ~ 3, and the
favourable outcomes are those for which 2 ~ x ~ 3, simple arithmetic
seems to tell us that the probability of a favourable outcome is 3/8.

B Od h' water CI I 11 3 Thut now conSI er t e ratIo y = -.-. ear y /3 ~ Y ~. e
WIne

favourable outcomes are those for which ~ ~ y ~ Y2, and the probability
of this is 1/16.

But why should we have different answers? Surely the questions
are equivalent! And as if this were not enough to have us thoroughly
confused, a third answer has also been proposed. This one is mentioned
by Schlesinger and favored by Mikkelson. It goes like this. Suppose the
container held not water and wine, but water and oil. Then a simple line
of demarcation would be visible and we could measure where it was to
detennine the proportions. Here is the situation.

Oil

Water h
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The full height of the container is taken to be 1. Then the height h
of the interface can have any value between 14 and ~ , as you can readily
check. In the favorable cases, it must lie above %, and the probability of
this is 5/6. This is the answer they give. It has the virtue of not
depending on which of the two possible ratios we use to reach our
answer, because we are not using ratios at all.

The Principle of Indifference is much beloved of the Bayesian
school of thought (see Function, July and August 2000). It has taken
quite a battering in recent years, and von Mises, for example, regards the
WinelWater Paradox as constituting a reductio ad absurdum. Diehard
Bayesialls like Schlesinger, Mikkelson and Jaynes (of whom we will hear
more later) defend the principle. Clearly there are cases in which we
would instinctively use it. These have been explored in some detail by
John Maynard Keynes- in his Treatise on. Probability. (Keynes is best
remembered today as an economist, but he was also a formidable
mathematician.) Chapter IV of this work is devoted to the principle,
which he argues against (despite his having some affinities with the
Bayesians).

Keynes prefers the use of a "Principle of Irrelevance": if some
piece of data is judged to be irrelevant to the problem, then lve can
ignore it. One of his examples concerns two playing cards, chosen at
random and each from a different pack, placed face down on a table. One
card is turned over and found to be from a black suit. What is the
probability that the second card is also black? Here clearly the result of
the observation on the frrst card is quite irrelevant to the colour of the
second, and hence the required probability is Y2.

Or suppose that a barrel contains a collection of black and white
marbles. Then we agree that the probability of drawing out (say) a black
marble is determined by the numbers of marbles in the barrel, and by
nothing else. The actual colour of the ·marble is beside the point. For
most purposes the terms "black" and "white" could be interchanged.
However, if we learn that the black marbles are made of iron and the
white ones of tin and that furthermore the marbles are taken out using a
magnet, then this changes everything! This infonnation is relevant.

When we come to the WinelWater paradox, I would say that we
really have not enough infonnation to allow an answer to the problem.
The number x has a probability distribution p(x), of which all that is
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known is that p(x) ~ 0 on t ~ oX ~ 3, and f p(x)dx =1. The answer to the. . Jl/3

problem posed could be any number between 0 and 1. The Principle of
Indifference is an attempt to manufacture data where none actually exists.
The Oil/Water restatement constitutes a subtle attempt to supply further
relevant data, b~t it does so by further elaborating the original statement.

Bayesians tend to say that the meaning of the word "probability" is
that it measures the strength of our belief rather than some inherent
property of the system under study. But if we take this idea to its logical
conclusion, then there is no paradox at all. The person arguing from the
x-value and the person arguing from the y-value simply have different·
subjective assessments, just as two bookmakers (say) might initially
quote different odds on the result of a horse-race.

[Although I am critical of the Principle of Indifference, it does have
a place, perhaps in Keynes' restated form. There are situations arising in
actual practice (medical diagnosis, oil exploration, insurance, etc, as well
as gambling) where adequate data is·simply not available. Yet we need to
make decisions even so. This is the territory claimed by the Bayesians.
Schlesinger's account of the paradoxes contains a lengthy and closely
reasoned study of such cases. For more detail, see also my column for
August 2000.]

But now back to the original Bertrand Paradox: the "random chord
in the circle". This received a very thorough treatment in an article by
E T Jaynes in the journal Foundations of Physics (1973). (This article
also has a useful appendix summarising the views of previous authors
who also dealt with th~ paradox.) Jaynes replaces the original statement
with a supposed experiment in which a circle is placed on the floor and
long straws are dropped onto it. Because the straws are "long" the
possibility of a straw's having an end inside the circle is remote, and such
events are omitted from the count. Otherwise the straw overlying the
circle defines a chord in it and ~his can be measured to see how long it is.

He shows that, of the three proposed solutions, only the second is
insensitive to small changes in the conditions of the experiment: a small
alteration to the size of the circle and a small sideways shift in its
position. Not surprisingly he is able to report that when the experiment
was actually performed, this was the result he found. His restatement of
the problem seems to me to introduce a subtle shift in our understanding
of it. No wonder it rejects the fiTst solution as being incompatible with a
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change in the radius of the circle; the straws are not also scaled. (Jaynes
does however agree that the WinelWater Paradox cannot have a sensible
solution.)

Keynes offers a different analysis of the chord paradox. He sees
Solution 1 as regarding the chord as a degenerate form ofa long thin
triangle, Solution 2 as seeing it as a limiting fonn of a long thin
quadrilateral, and Solution 3 as the result of taking a more general
(sylmnetric) shape and letting its thickness tend toward zero. Again this
seems to be an attempt to provide data that are not really there, but it does
serve to illustrate that the three different answers correspond to different
geometric situations. Perhaps a little surprisingly, Keynes's resolution of
the paradox is not listed in Jaynes's summary of other opinions.

Of the authors whose opinions .are summarised, ·almost all agree
with the view I have here espoused. Bertrand himself wrote: "None of
the three is wrong, none is right, the question is ill-posed." Seven other
authors (including Northrop) give similar verdicts. von Mises also agrees
but goes rather further: "Which one of these or many other assumptions
should be made is a question of fact and depends on how the needles are
thrown. It is not a problem of probability calculus to decide which
distribution prevails ...". Jaynes is concerned to dispute this somewhat
narrow understanding of what constitutes probability theory, although
many mathematicians would espouse it.

Borel (who appeared in Function in April 2002) is seen by Jaynes
as the only author who agrees with his overall view: " ... it is a simple
matter to see that the majority. of natural interpretations lead us to
[Solution 2]". Borel give no further· details as to how he arrived at this
conclusion. But however he did, he must have made some assumption as
to what constituted a "natural interpretation", and thus given grounds for
disagreeing with his judgement.

Final Note:

There is a current project to put Bertrand's book up on the web. See

http://www.york.ac.ukldepts/maths/histstatllifework.htm

However, as I write, only a small amount is actually available. The
project is very much a work in progress.
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COMPUTERS AND COMPUTING

Computer Origami

This month's column is based on an article in The New York Times
on June 22, 2004. The author was the Australian expatriate Margaret
Wertheim, who has developed a formidable reputation as a science writer.
The title is "Curves, Cones, Shells, Towers: He made Paper Jump to
Life", and it concerns the work of the late David Huffman.

The arti~le can be read online by going to

http://www.nvtimes.com/2004/06/221Science/22orig.htmI

and following the prompts from there. However, we here give a
summary.

Whereas in traditional origami (the Japanese art of paper-folding)
all the folds are straight, computer simulations are exempt from this
restriction, and Dr Huffman moved beyond the strictly traditional to
.develop a more general artform based on curved folds, and giving rise to
surprisingly lifelike structures.

In a related exploration, he looked at 3-dimensional analogues of
tiling patterns, such as those described in our feature article for this issue.
Huffman ··and those 'who 'continue his work have greatly enlarged the
o~igami repertoire.

They have also been exploring the Mathematics behind the art.
Last June, a conference on origami was held in New York, and included
sessions on computational origami (origami sekkei in Japanese). The
underlying Mathematics involves among other specialist areas compu
tational geometry, number theory, coding theory and linear algebra. At
the conference Dr. Robert Lang 'gave a talk on Mathematics and its
application to orig8:firl design. In it he included applications to such real
world problems as folding airbags and space-based telescopes.
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Dr Lang until recently was a laser physicist but he gave up that
career to become a "full-time folder". He is the author of a recent book
on technical folding: Origami Design Secrets: Mathematical Methods for
an'Ancient Art.

As well as the aesthetics involved in the art, there· are surprisingly
many applications. Besides the astronomical and engineering ones just
mentioned, there is the possibility that there may be biological
ramifications for the theory of how proteins fold (and thus become
biochemically active).

Lang has been studying the models and research notes left behind
with Huffman's death in 1999. Huffman pursued his interest as a hobby
and was known for this aspect of his life only within the narrow world of
origami sekkei. During his, life he published only one paper on the
subject.

One of his concerns was the precise calculation of what happened
at the joins of folds. This is where we expect 'strain on the paper. It is
iri:lportant not to let the paper stretch or tear.

One of his discoveries was the so-called pi condition which says
that if you have a point surrounded by four creases and you want the form
to fold flat, then opposite angles around the vertex must sum to 180°, i.e.
'!C radians, whence the name. The condition was rediscovered by others
and has since been generalised to the case of more than four creases. The
generalisation states that whatever the number of creases, all alternate
angles must sum to '!C. The conditions under which things can fold flat is
a major concern in computational origami.

Another mathematical link is to the theory of ·minimal surfaces:
these are naturally adopted by such things as soap bubbles and~ertain

biological structures such as the shells of sea urchins. They are of interest
to engineers because of their saving on material and their strength. A
typical application is to the design of pressed-metal car bodies.

Visit the website given above to-see some pictures of what can be
achieved in this unusual but fascinating and surprisingly important area.

OOOOOOOOOOOOOOOOOOO<JX)O()C)OOOOOOO
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OLYMPIAD NEWS

Hans Lausch, Monash University

The 2004 Australian Mathematical Olympiad

The Australian Ma~hematicalOlympiad (AMO) for 2004 was held

in Australian schools on February 10 and 11. On both days, 104 students
in years 9 to 12 sat a paper consisting offour problems, for which,they
were given four hours. These are the two papers:

First Day

1. Determine all pairs (a, b) of real numbers for which the equation

x~ + 3x2 +ax + b =0

has three different real solutions that can be arran'ged in arithmetic
progression (that is, the third minus the second is equal to the
second minus the frrst).

2. Suppose 0 ~ x ~ a ~ y ~ b ~ z and a + b + x + Y + Z =2004.

Determine, with proof, the mininlum possible value of x + y + z.
Determine, with proof, the maximum possible value of x + y + z'.

3. Determine the number of sequences at, a2 , ••• , a2OO4 which are the

numbers 1, 2, ... , 2004 in some order and satisfy

la t -1/ =la2 - 21 =.. ·=la2004 - 200~ > O..
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40 Let ABC be an equilateral triangle, and let D be a point on AB
between A and B. Next, let E be a point on AC with DE parallel to
BC. Further, let F be the midpoint of CD and G the circumcentre of
triangle ADE. Detennine the angles of triangle BFG..

Second Day

5. Determine all non-ne.gative integers m and n for which
61n +2" +2 is a perfect square.

6. Decide whether or not there is a function f defined for all positive
integers and taking positive integers as values such that

/(/(1»)=5, /(/(2»)=6, /(/(3»)=4,'/(f(4»)=3,

f(f(n»)=n+2 for n~5

7 A necklace is made from an even number, n' ~ 4, of beads, each of
which is coloured red, blue or green. There is an equal number of
blue beads and green beads on the necklace. It is impossible to cut
the necklace into two separate strings each of which contains a
positive even number of beads and each of which contains the
same number of blue and green beads.

Find all the possibilities for the number of red beads on the
necklace.

8. Let ABCD be a parallelogram. Suppose there exists a point P in
the interior ofABeD such that

LABP =2LADP and LDCP =2LDAP.

Prove that AB = BP ::: CPt
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The Sixteenth Asian Pacific Mathematics Olympiad

The Asian Pacific Mathematics Olympiad (APMO) was started in
1989 by Australia, Canada, Hong Kong and Singapore. Since then the
APMO has grown' into a major international competition for students
from about twenty countries on' the Pacific Rim a~ well as from
Argentina, Kazakhstan, South Africa and Trinidad & Tobago. It was held
on March 15/16, Australian participants numbering 30. Here is the
contest paper.,

1. Find all non-empty finite sets S of positive integers such that if
m+n

m,nE S then E S.
gcd(m,n)

2.' ABC is an acute-angled triangle with circumcenter 0 and ortho
center H. Show that one of area AOH, area BOH, area COB is the
sum of the other two.

3. 2004 points are in the plane, no three collinear. S is the set of lines
through any two of the points. Show that the points can be colored
with two colors so that any two of the points,'have the same color
iff there are an odd number of lines in S which separate them (a
line separates them if they are on opposite sides of it).

'4. Show that l{n-l}! J, is even for every positive integer n.
n(n+l)

5. Show that (a 2 +2Xb 2 +2Xe2 +2)~ 9(ab +be +ea) for all positive

real numbers a, b, c.

00000000000000000o00000000000000
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1hi8 year's International Mathenzatical Olyn1piad (IMO), attended

b~v teanIS .fronl nlore than 80 countries, was held at Athens, (]reece, in

July. Australia has ]Jarticipated in this cotnpetition since 1979 and this
year l-vas represented by six secondaly-school students. At the 2001 IMO
in Washington, USA, an Australian teant finished in 25th position, at the
2002 IMO in Glasgo lV, UK, as }veIl as at the 2003 IMO in TOkyo, Japan,

our teanl can1e 26th, while at the 1997 IMO in Mar del Plata, Argentina,
our tean? took 9th position. Our 2004 results rvill be reported in the next

issue.

cx:x>ooooooooooooooooocxxx>oooooooo

(continued from p 110)

cousin' of the recently discovered object Quaoar. This body orbits the
sun at an even greater distance, 1.44 times further from the Sun than
Neptune.

The expected bulk chemical compositions for Options 2 and 3
were both computed on 6 July 2003 and are archived for that date on the

, computer file VC$3:[AJRP.GRAVI]SUN7Q.OUT;299 on the Monash
U'niversity ITS Vax Cluster. The Option 2 model for Phoebe gives a
density of 1.50 glee. Option 3 predicts a density of 1.51 glee. Options 2
and 3 both. account for the carbon dioxide announced by the Cassini
ProjecLAnd both models just meet the lower limit on the observed
density, ''''hich has a fonnal error of 0.1 glee.

But when Prentice posted Option 3, he noted that the relocation
ot Phoebe from the frigid world of Quaoar to the relatively warm
environment of Saturn would cause the subsequent loss of all the frozen
methane from its surface. Since frozen methane is a very light substance
(density of only 0.5 glee), the loss of all such ige from Phoebe's· chelnical
inventory would cause the mean density to rise from 1.5 to 1.6 glee. This
is the very value found by Cassini!

Prentice now regrets ch.oosing Option 1 as his prefelTed pre
Cassini model. 'But his Option 3 model, whose possibility was
anticipated by his modem I...,aplacian lTIodel of Solar system origin one
year prior to the alTival of the spacecraft at Phoebe, accounts precisely for
the two lllain scientific discoveries that were announced by the Cassini
Project.
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PROBLEMS AND SOLUTIONS

We begin with the solutions to the problems posed last February in
Volunle 28, Part 1.

Problem 28.1$1 (submitted-by Julius Guest) read:

Provethat 4x 6n + 511+1
- 9 is divisible by 20 for all positive

integers n.

The solution below is by Anson I-Iuang (Year 11, The Gap High
School, Queensland). [His technique of proof is known as "mathenlatical
induction". See Function for June 1998. Eds] Other solutions were
received from Sefket Arslangic (Bosnia), John Barton, Derek G-arson and
the proposer.

Let P'1. = 4 X6n +sn+l - 9. Now suppose that for SOlne particular

value of n, k say, the statement is true. I.e. Pk =20P , for some integer P.

Now consider Pk+1 •

P
k
+

1
= 4x6 k+1 +Sk+2 - 9

=4x6x6 k +Sx5 k
+

1 -9

= 6[4X6 k +5 k+1 _9]._"""SktJ +5x9

= 6Pk ..... 5k
+

1 +5x9

=6x20P-Sktl +5x9.

Pk+1 will therefore be divisible by 20 if Sk+1 - 5x9 is divisible by

20. Clearly this number is divisible by 5. The quotient when this

division is performed is Sk - 9~ Write this as

Sk ~5-4=5x(5k-l_1)-4.

But now Sk-l --I is divisible by 5 -1, i.e. 4. Thus Sk - 9 is

divisible by 4, and so Sk+l - 5X 9 is divisible by both 5 and 4. It is thus

divisible by 20. The net result of aU this is that if Pk is divisible by 20
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then so is Pk+1 • But .~ =40, which is divisible by 20, and so P2' ~" P4'
etc are all divisible by 20.

Problenl 28,,102 (submitted by Sefket Arslangi6, Bosnia) read:

Let ABC be a triangle \vith sides a, b, c. Let

abc a £ b
p=-+-+- and q=-+-+-

b cae b a

Prove that Ip - ql < 1.

Solutions were received frOlTI John Barton, Julius Guest and the
proposer. Here is Bart.on's.

and so

ab 2 +bc 2 +ca 2

p=-----
abc

and
a 2b+b 2c+c 2a

q=------
abc

0
2 (c - b) +b2 (a - c) +(.'2 (b - a)

p-q= .
. abc

But no\v if a =b, then p - q =O. Thus the nUlnerator has a factor a - b,
and by symmetry also factors of b - c and c - a. It may readily be
deduced that

(a-b)(b-c)(c-a) a-b b-c c-a
p-q==------

abc cab

Then

Ip -ql =la -bllb-cllc-al
cab

But now by the triangle inequality, each of the factors 011 the right is less
than 1, and so the result follow·s ..



J27

Problem 28..1..3 (from School Science.an.d A1ath.enzatic"i) read:

Show that for all natural numbers n, n9 - 6n 7 +9n 5 ~- is
divisible by 8640.

Solutions were received from Sefket Arslangi6 (Bosnia)~ John
Barton, Derek Garson and Julius Guest.

What follows is a composite, also Inaking use of the solution
published in School Science and Mathelnatics, and sent to them by Vicki
Schell,

The given polynolnial nlay be written as

11 3 (n -1) 2 (n - 2)(n +1) 2 (n + 2) .

This product involves five consecutive nunl.bers and so must contain a
multiple of 5; It must also contain three of its nine factors that are
divisible by 3, and at least fOUf that are divisible by 2 and one that is

divisible by 4. Hence the product is divisible by 2 6
X 33

X 5, thatis to
say, by 8640.

Several solvers also submitted an inductive proof.

Problem 28..1.4 (also from School Science and Math~lnatics)read:

A fair coin is tossed n times. What is the probability that the

outcorne sequence does not contain two successive heads?

Solutions were received Jrom Bernard Anderson, John Balian, and
Derek Garson..Here is Anderson's.

Can a 'sequence that meets the requirelnent an "allowable
sequence". Let Sn be the number of allowable sequences of length n.

Let H be the nunlber of these ending "'lith a head, and letT be the
n n

number ending with a tail. Note that H = 1, T = 2, H = 2, T = 3.
2 2 3' 3
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Furthermore H . == T , and, because a final tail nl.aY follow either
n + I 11

an allowable sequence ending in either a head or a tail, T = Ii +T .
II + 1 n n

But T =: H by the first result in the previous sentence, and so we
n+l n+2

have H =: H + If ,which is the defining relation for the Fibonacci
71+2 n+l 11

sequence. Thus Hn = Fn where Fn is the nth Fibonacci number. Then

T == F ,and so 8n == H n + Tn == Fn + Fn+1 =: Fn+2 • This is the total
12 n + 1

number of allowable sequences out of a total of 211 possible sequences.

'rhe required probability is thus Fn+2 /2 n •

Corrections: .In the second line of the solution to Problem 27.5.1, sin 20°
should have read sin 220° throughout. In Problem 28.3.2, sin x should

have read sin.!.. and 4 + x 2 should have read 1+4x2
• Apologies!

x

We close with a nc\v set of problems.

Problem 28.4.1 (from Australian Senior Mathenlatics Journal)

Find all solutions of the equation

(
2 _ 5 ~ S\x2_9X+20 == 1

x ... X + J •

Problem 28.4..2 (from A1athelnatical Bafflers, Ed Angela Dunn)

Find all pairs of rational numbers (x, y) such that x Y =Yx •

Problem 28.4.3 (from Exploring, Investigating and Discovering Mathe
ltzatics, by Vasile Berinde, and following a news item in our
previous issue)

Find all prime numbers n such that n + 4 and n + 8 are both
also prime.
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