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EDITORIAL

Welcome to our readers!

Most readers will be familiar with the classical Greek problem of
"squaring the circle": given an arbitrary circle, is it possible to construct a
square of the same area using straight edge a:nd compass only. Mathematicians
have attempted to solve this problem from as early as 200 Be, but it was only in
1882 that it was finally proved impossible.

The front cover is a humorous look at the converse problem: given a
square, is it possible to find a circle with the same area? The answer is Yes: cut
the square into pieces (cutting along the indicated smooth curves) and re­
arrange the shapes to give the word "circle"!

The issue starts with a reminder that most mathematicians do not work
alone but collaborate with one another. The legendary Hungarian-born
mathematician Paul Erdos has collaborated to such an extent that
mathematicians have devised a new quantity, an Erdos Number, to describe it.

Bert Bolton and Graeme Hunt describe some surprising extensions to
results concerning the well-known Fibonacci sequence. Of particular interest are
the limiting ratios of successive terms of related Fibonacci sequences.

Marko Razpet looks at various extensions to the curve known as a
cycloid, which in its simplest form is the path traced out by a fixed point on the
rim of a rolling wheel. Have a look at the i~tricate curves that can be produced!

In the History ofMathematics column, Michael Deakin writes about the
life and achievements of the mathematician Ada Lovelace, the daughter of the
poet Byron. He also discusses various related philosophical issues, such as why
purely mechanical procedures can produce valid results.

Probability and randomness are a fascinating area of mathematics. But as
many readers know, the calculation of probabilities can be very difficult. One
solution is to use a computer to simulate random phenomena; our Computers
and Computing column gives some illustrations of how to do this.

Finally, Problem Corner contains another batch of solutions to past
problems and new problems to exercise your minds over the summer break!

* * * * *
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WHAT IS YOUR ERDOS NUMBER?

Malcolm Clark, Monash University

Many people have the impression that mathematical research is' a solitary
pursuit. They imagine a mathematician locked away in some dingy room or lonely
cabin, oblivious to everyday concerns, and focused on a single problem, scribbling
weird symbols on scraps of paper, and thinking long and hard before emerging with
a triumphant "Eureka!" and a proof.

The dramatic announcement in 1993 by Andrew Wiles that he had proved
Fermat's Last Theorem seemed to support this popular view, for Wiles had worked
almost alone and independently of other mathematicians for 8 years on this problem.
Yet he still relied on much previous work by other mathematicians who had tackled
the same problem.

Doing mathematics is really a social process. Mathematicians do not work in
isolation: the abundance of meetings, seminars, conferences and other gatherings
confirms this. Electronic communication has sped the process of collaboration.

This world-wide collaboration between mathematicians is no better
demonstrated than by the legendary- Hungarian-born mathematician Paul Erdos.
Over a working life of at least 60 years, he wrote almost 1500 research papers on a
huge variety of topics, and collaborated with hundreds of fellow mathematicians.

The extent of Erdos's collaboration is such that, in typical fashion, ,
mathematicians have invented a new quantity to define it, an Erdos Number.

Erdos himself is assigned the Erdos Number O. All those who have published a
paper (research article) jointly with him are give)) Erdos Number 1. Those who have
published a paper with someone who has published a paper with Erdos are given
Erdos Number 2; those who have published a paper with someone who has
published a paper with someone who has published a paper with Erdos receive
number 3. And so it goes. Any person not yet assigned an Erdos Number who has
written a joint mathematical paper with a person having an Erdos Number n earns
the Erdos Number n + 1. Anyone left out of this assignment has the Erdos Number
infinity.

This score-keeping system started years ago, but Jerrold Grossman at Oakland
University has become the compiler and guardian ~f this list of collaborators. He
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maintains an interesting web site, giving information about the project, Erdos
himself, and related topics at

http://www.acs.oakland.edu/-grossman/edoshp.html

As at January 2000, there were 507 mathematicians with Erdos Number 1
(including 200 with more than one joint paper with the master), and 5897 with
Erdos Number 2. A person's Erdos Number measures the closeness of their
collaboration with Erdos, not necessarily their innate mathematical ability; Einstein
had the Erdos Number 2, and Andrew Wiles has an Erdos Number ·of at most 4.

Another way of looking at mathematical collaboration is by means of a graph.

Not the sort of graph like y =x 2 or a bar chart, but as an array of vertices

connected by edges. Each mathematician is represented by a vertex, and any two
mathematicians who have collaborated on a paper have their vertices joined by an
edge. Erdos himself is somewhere in the centre of the graph. The result is an
enonnous tangle of lines that snares almost all mathematicians, with branches
reaching out into computer science, biological sciences, economics and even the
social sciences. And any person's Erdos Number is given by the shortest number of
edges linking that person to Erdos in this enormous collaboration graph.

So what's your Erdos Number? If you have never co-authored a· mathematical
article, then regrettably it must, by definition, be infinity. But maybe you know
somebody who has, and in principle, their Erdos Number could be finite.
Grossman's web site gives some tips on finding out your Erdos Number, saying
"You never know: it could be lower than you think!"

* * * * *

In the quest for simplification, mathematics stands to computer
science as diamond mining to coal mining. The former is a
search for gems. ... The latter is permanently involved with
bulldozing large masses of ore-extremely useful bulk material.

-Jacob T Schwartz in Discrete Thoughts: Essays on
Mathematics, Science and Philososphy, Boston: Birkhauser, 1986

* * * * *

A good proof is one that makes us wiser.
-Yu I ManininA Course in Mathematical Logic

New York: Springer Verlag, 1977
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EXTENSIONS TO THE FIBONACCI SEQUENCE

Bert Bolton and Graeme Hunt, University of Melbourne

The mathematician whose name occurs in the title is the Itali(}n Leonardo
Fibonacci (c1170-c1240). His name is pronounced Fee-bon-ah-chee, and the
c's that occur in the brackets after his name stand for circa, a Latin word
meaning "about". They show the uncertainty in both the date of his birth and
that of his death. [An easy way to find good information about Fibonacci and
other influential mathematicians is to look them up in The Dictionary of
Scientific Biography (DSB). This work runs to many volumes and is usually
found only in large libraries, but the Concise DSB is often found in local
libraries.]

The mathematical sequence named after Fibonacci is given by the pattern of
numbers

F} : 1,1, 2, 3,5,8,13, ... (1)

where the subscript in F;. is the value of the second term. The two initial numbers
are given and from then on each number is the sum of the two to its left. The ratio
of two successive numbers; with the right-hand one in the numerator and the left­
hand one in the denominator, yields the pattern

1,2,1.5,1.666... ,1.6,1.625,1.6153 ... ,

which suggests that every ratio is not'only a member of this sequence but also a
member of one or the other of two sub-sequences, one of which seems to converge
from above and the other from below. Readers who like computing may like to
write a program and check that the two sub-sequences do each converge to
1.6180.... This value may be confirmed by an algebraic argument. We will show
that if such a limit exists, then its value may be determined.

Represent the· mth term of the sequence by am, so that the next terms are

am+l and am+2, and

(2)

Dividing by am+1 gives
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am+2 =1+ -.!!J1L
am+l am+l
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(3)

Assuming that there is a limit to the ratio ~ as m gets very large, let
am+1

this limit be called x. Then equation (3) becomes

1
x=l+-

x

1±~
which may be solved as a quadratic equation with roots x =-2-' Because x

must be positive, we find

1+~
x =--=1.6180....

2
(4)

This is the required v~lu:e, applying to both of the subsequences, the increasing
one and the decre-asing one. The rectangle that has the ratio of its longer side to its
shorter exactly equal to this value is called the golden rectangle, which is also said
to be the best rectangle to look at! [For more on the golden rectangle and its
rectangular spiral see Bert Bolton's article in Function, Vol 21, Part 1; see also
Function, Vol 16, Part 5.]

There are other similar sequences related to the Fibonacci Sequence. First
consider the sequence in which the second 'member is 2 (replacing 1), but with
equation (2) holding as before. This new sequence is

F2: (2,3, 5, 8, 13, ... ,

which is the same sequence as F1 apart from its first term.

But now try putting a 3 in the second position to get

F3 : 1,3,4, 7, 11,18, 29, ...

and this time the ratios of successive pairs become

(5)
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3,1.3333 ... , 1.75, 1.5714... ,1.6363 ... ,1.6111 ... , ....

Again we ~otice that ther~ are two subsequences of ratios both apparently
converging to the value given by equation (4). Algebraically, the sequence is still
determined by equation (2), and so the argument given earlier still holds for this
new sequence. Furthermore new sequences, all different, may be written as
follows:

F4: 1,4,5,9,14,23, .

F5: 1, 5, 6, 11, 17, 28, ..

etc.

All such sequences will·give the same limit as found by equation (4).

Some new insight is gained when the
values of the terms of the sequences are
plotted on the x and y axes of a graph. In
Figure 1, some of the terms (the odd­
numbered ones) of F} (1 , 2, 5, ... ) are

marked on the x-axis and the
corresponding' terms of F2 (1, 3, 8, ... )

(which are also the even-numbered terms
of F} ) on the y-axis. Corresponding

components on the two axes are joined by
straight lines as shown, suggesting strongly
that if these lines make angles B with the
x-axis, then these angles converge to a limiting value.
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Figure 1

In Table 1, the components of both sequences are labelled with the subscript m
to indicate the mth term in the sequence. Thus Flm represents the· mth term or

entry in the sequence Fl. We note that F2m =Fl m+l and that Flm is the

same as the number previously called am. We now have:

m 1

1

1

2

1

2

3

2

3

3

3

5

5

5

8

6

8

13

etc

etc

etc
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Table 1

The value of tan e is just the ratio of the two terms at the rnth position. Each

value of tan () is a value of F2m . These values have "already been shown to
Flm

converge to the value 1.6180... , as defined by equation (4). This limiting value
now has an interpretation of tan ewhere

e= 58.2825...°.

The next sequence considered was F3 with components F3 m as shown in

Table 2.

m

1

1

2

3

3

3

2

4

2

4

3

7.

2.333 ...

5

5

11

2.2

6

8

18

2.25

etc

etc

etc

etc

These numbers making up
the sequence F3 are plotted in

Figure 2. Along the horizontal
axis are the odd-numbered
terms (1, 4, 11, ... ) and along
the vertical axis are the even­
numbered terms (3, 7, 18, ... ).
The lines joining them reveal a
new feature; the values of tan e
are larger than those in
Figure 1. Further values of
Fnm were calculated up to

F
n =7 and the values of nm

F1m

obtained to get their limiting

Table 2
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Figure 2
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values to 4 significant figures. The results are recorded in Table 3.

Function 5/00

n 2 3 4 5 6 7

Limit 1.618 2.236 2.854 3.472 4.090 4.708

Table 3

Figure 3 shows a plot of the values found in Table 3, which indicates that a
straight line can be drawn through them. We will now prove thatthis is indeed the
case. In fact we will do this more generally. .

5~~~~~~~~~~~

~ 4~~~~~~~~~

~ 3 t0Y;ft~~~~D0~~1
(1) 2 ~~~~~~~~~~~
:::s
c; 1 _~~~::'"-'--'-.-"-..i;.'-:.o.~,~~~~~

>

2 3 4 5 6 7

Value of n

Figure 3

To prove the linearity, consider Table 4, which is a generalisation of
Table 2.

m o
1

1

1

1

n

2

2

n+l

345

358

2n+l 3n+2 5n+3

Table 4

6 7

13 21

8n+5 13n+8

In the bottom row, the coefficients of n are all entries from the row above,
and if we now form the required ratio, we get, for example

More generally, it can be shown that
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nFl m-l +F1m-2

F1m
nF1m - 1
----+

Fmm

In equation (6), the last term can be written as

(
FIm-2) (F1m-.1)
F1m- 1 Fim
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(6)

and in the limit as in~ 00, each of these ratios is the reciprocal of x as given by
equation (4). So, for very large values of m, we have the ratio Rn (let us call it)

given by

n 1
R ~-+-n 2x x

As x is a given number, this represents a straight line in the limit as m -) 00,

as claimed. We have

L
.. n 1
lmzt=-+-

x x 2

or, numerically,
Limit == 0.618n + 0.382.

This result further confirms the linear relationship depicted In the graph in
Figure 3.

* * * * *
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THE CYCLOID AND ITS RELATIVES

Marko Razpet, Institute of Mathematics, Physics
and Mechanics, Ljubljana

Suppose P is a point on the rim of a wheel of radius a, and this wheel rolls
along a straight line which we will take as the x-axis. Suppose the point P is
initially on this axis, and that the wheel rolls through an angle t (measured in
radians). Then the x and y co-ordinates of P are given by the equations:

x =aCt - sint)

y =a(l- cost)

and the curve is called a cycloid.

[You may be most familiar with the description of a curve in terms of an
equation of the form" y = f(x), in which a value of y is calculated from some
given value of x. When a curve is described by means of two equations, as here,
each dependent on some third variable, we say it is given in parametric form.
The cycloid is one of the standard examples of a curve specified in parametric
fonn.]

Figure 1 shows the cycloid and its relation to the circular wheel that generates
it.

o x

Figure 1. The Cycloid and its generating circle.
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The cycloid has many interesting properties, but it is only one among a set of
more general curves, which we will now examine. Consider the equations

x =a(Kt - sinmt)

y =a(l- cost)

where the first equation has been modified by the insertion of two new constants,
K and m. The different values of K and m .give rise to different curves of which
the cycloid itself is one (with K =m =1). Because the second equation is not
altered when we pass from the cycloid to its generalisations, the curves all share
the property of the cycloid itself of lying within a strip bounded by the lines y = 0
and y =2a.

Let us now look at some special cases.

The Casem = 1

Start with the special case m = 1. This gives a set of curves, whose properties
depend on the value of the other constant, K. When y =0, we have cost = 1, so
that t =2n1! , where n is an arbitrary integer. Similarly, when y = 2a,
t = (2n +1)1!. If we put these values into the equations for x and y, we find that y

= 0 when x =2n 1CJTa and y = 2a when x =(2n + l)1CJm • All the curves exhibit

these· properties.

Figure 2 shows some· <?f the curves from the full set. The curve for which
K =1 is the cycloid, and that for which K =0 is readily seen to be a circle.
These curves are drawn with solid lines in the figure. The others shown are those
for which K =3/4 (dots) and K =5/4 (dashes).

y

o

...~.~~.~~~ ~~.~~.=--~-~;"""""':'~'~'~.~.:.-----~.:.~.~~ """""':"""""""
)<: ' "
t} "\

Figure 2. Curves x=a(Kt-sint), y=a(l-cost)
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I
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If we allow the possibility of negative K, this leads to nothing really new. For
if we replace K by -K throughout and also replace x by x +a l(1! and y by 2a - y

also throughout, the fonnulae are unaltered. Thus the curves .for negative values
of K are the same as "those for positive values except for a translation and a
reflection. This property is illustrated in Figure 3.

y

..................:.~';:~:~~ .
"" > 0 ..><..

.........
............. . .

..............
x

Figure 3. The curves x=a(Ta-sint), y=a(l-cost) for K=±1/2

The Casem =2

When m =2, we get more interesting curves. The special case K = 0 gives a
curve with the parametric equations

x =-a sin2t

y=a(l-cost)

and this replaces the circle we found in the previous section. This new curve is a
member of a set of curves known as Lissajous Figures. [The circle is also a
Lissajous Figure.] This curve has the equation

which is derived by eliminating t. Figure 4 (on the next page) shows a graph of
this curve.

We may also derive the curve in this new family for which K =1. Just as in
the previous family we had a circle and a cycloid as special members of the set, so
here he have the curve shown in Figure 4 and a new curve shown in Figure 5 (also
on the next page).
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x

Figure 4. The curve x =-asin2t, y =a(1- cost)
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o t = 0

t=1f

.......... p
x

Figure 5. The curve x =a(l- sin 2t), y =a(1:-.. cos t)

Other values of 1C give other curves, many of them most attractive to the eye.'
Some examples are shown in Figure 6 (on the next page). This shows the cases
arising when K is positive and relatively small. When K is a large positive
number, the curve is relatively uninteresting, but they become nicer to look at as K

decreases. All these curves meet the line y = °at the points where x = 2nK7Ca.
They also meet the line y = 2a at'the points where x = (2n+l)K7Ca. The lines
x = (2n+ 1)1C7Ca/2 are axes of symmetry for all these curves.

We may also investigate the cases for which K is negative. Again if its
absolute value is large, the curves look relatively uninteresting, but when K lies
between -1 and 0, the curves are both complicated and ornamental. Some
examples are shown in Figure 7.
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I', = 1/2

x
Figure 60 The curves x =a(Kt - sint), y =a(l-cost) for various positive values

OfK.

y

y

1',==-1

x

I', = -1/2
~(

x

x

Figure 70 The curves x =a(Kt -sint), y =a(l-cost) for various negative values
OfK.
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NEWS

Blessed Francesco Faa di Bruno

In Function" Vol 10, Part 5, the story was told of Francesco Faa di Bruno, a
mathematician and Roman Catholic Priest, whose good works led to his becoming
a candidate for canonisation. There are four steps in this process. First, the
Vatican must be sufficient!y interested in the case to open an .official file on the
individual concerned. When this happens, the person under review becomes
known as a "Servant of God". If the initial investigation is favorable, they give a
limited endorsement to the cult of the candidate, who then becomes known as
,"The Venerable ...". The third step is more serious and involves a ceremonial
announcement endorsing the candidate's life as manifesting good works and a
lifestyle to be regarded as exemplary. This step is known technically as
Beatification, and it bestows on the candidate, the title of "Blessed". Australia's
Mother Mary McKillop reached this stage a few years, back. The final stage is
called canonisation, and it bestows the title "Saint" on the candidate.

Francesco Faa di Bruno (1825-1888) is said to have lived a life of exemplary
piety and has a devoted band of admirers, especially in his native Turin. He was, a
mathematician, and in that capacity is best remembered for his generalisation of
the familiar chain rule of elementary calculus, to the case of the nth deriv~tive.
That is to say, he gave a precise formula (a very complicated one) for

(~rj(g(x». It is today called Faa di Bruno's Formula. [As an exercise, try

working out the first few cases: n = '2, 3, ....] He is also remembered for a
number of inventions, notably an early form of typewriter for the use of the blind,
and also for his good works, especially his concern for "fallen women" as the
Vatican put it.

He was accorded the title of "Venerable" in 1971, and we learned of this rather
late in the day and so reported it in Function, Vol 10, Part 5 (1986). We were
behind the times then and the same is true of this present news-item; he has been
beatified. This event took place on September 25, 1988, a little over a hundred
years after his death. You may look up brief further details of his life on the
website

http:'//www-history.rncs.st-and.ac.uk/history/
Matnematicians/Faa_di_Bruno.htrnl



156 Function 5/00

which is part of an ambitious project to make large numbers of (usually brief)
biographies of mathematicians available on the internet.

This one gives a typically brief, and mostly accurate, account of Faa di Bruno,
although it makes a common mistake in that it claims that he has been made a saint
(much as our own media did in the case of Mother Mary McKillop). This has not
yet happened, as the above explanation makes' clear. However, there are links to
two more authoritative sources, one. of them the relevant entry in The Catholic
Encyclopedia, the other a large specialised source, that you may browse if you
read Italian.

These sources both tend to be more concerned with his piety and good works
than with his Mathematics. However, the larger of the two (the second) also
covers this second aspect of Faa-di Bruno's life.

* * * * *
What indeed is mathematics? ... A neat little answer ... is
preserved in the writings of a church father of the 3rd century
A.D.; Anatolius of Alexandria, bishop of Laodicea, reports that
a certain (unnamed) "jokester", using words of Homer which
had been intended for something entirely different, put it thus:

Small at her birth, but rising every hour,
While scarce the skies her horrid [mighty] head can
bound,
She stalks on earth and shakes the world around.
(Illiad, IV, 442-445, Pope's translation)

For, explains Anatolius, mathematics begins with a point and a
.line, and forthwith it takes in heaven itself and all things within
its compass. If the bishop were among us today, he might have
worded the same explanation thus: For mathematics, as a
means of articulation and theoretization of physics, spans the
universe, all the way from the smallest elementary particle to
the largest galaxy at the rim of the cosmos.

-Salomon Bochner in The Role ofMathematics in the
Rise ofScience, Princeton University Press, 1966

* * * * *
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HISTORY OF MATHEMATICS

Mathematical Sprites and Fairies

Michael A B Deakin

In this column, I finally and reluctantly address an issue that I would rather
not. I do so however, because I have had more requests for this topic than for any
other, and these requests keep coming. So here goes; I will write about Ada
Augusta King, Countess of Lovelace (1815~1852), often known as Ada Lovelace.
My article, however, will be in two parts. The first will give a brief summary of
her life and achievements; the second will treat a number of philosophical issues
raised by the first. I shall refer to my subject as Ada throughout, not to belittle her,
but rather to avoid the problems that arise in trying to decide her surname.

I. Ada's Life and Achievements

Ada was the only legitimate child of the poet Byron, who legally separated
from her mother shortly after Ada was born. [Salacious gossip attributes various
illegitimate children to Byron, with greater or lesser degrees of plausibility in the
various cases.] Grown to womanhood she married Baron William King, who later
became the Earl of Lovelace. After the fashion of the day, she adopted King's
surname on her marriage, and so her name came to be as I· have given it.
However, she is also known under various other names, with some reason behind
the more sensible of them.

It is very clear that she wanted not only to learn but also to excel in
Mathematics. Her current reputation is based on the belief that she succeeded in
this ambition and contributed significantly to the field (unless one also counts the
notoriety of her being her father's daughter). I believe that this reputation is
greatly overblown, and that her mathematical talents were minimal. Which is why
I have been so reluctant for so long to devote a column to her. She learned her
Mathematics from textbooks and with the help of a variety of tutors, of whom
Mary Somerville (1780-1872), Augustus .De Morgan (1806-1871) and Charles
Babbage (1791-1871) are the best known.
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She is the subject of at least three book-length biographies, of which by far the
best is Dorothy Stein's Ada: A Life and a Legacy (MIT Press, 1985). This w.as
the second to appear and is the only one (at least of these three) to be written by a
biographer who knew enough Mathematics to do the job well. However, much of
what we read about Ada comes from other sources and is unreliable and uncritical.
Stein's book details the origins of the present exaggerated claims made on Ada's
behalf, and goes on to a. more realistic assessment of her true significance. Her
own work is a model of biographical writing and is based on very ~areful analysis
of original documents such as letters and manuscripts.

What is very clear is that Ada had a passion for Mathematics, and that her
womanhood was a difficulty in her pursuit of this goal. Mathematics was seen as
most unwomanly: even more so than other very definitely unwomanly things in
Victorian England! As Stein remarks (pp. xi-xii), "Ada swears unabashedly,
gambles, and takes a lover, but feels constrained to buy her books and geometry
models anonymously".

But Stein also notes seyere limitations in. her understanding of the
mathematical enterprise. One is that she never really came to terms with the
simple procedure of substituting one expression into another. So we find in one of
her letters to De Morgan:

.. (x+8)n- x n
"It had not struck me that, callIng. (x +8),-= ~, the form . ()

vn _xn

becomes . And by the bye, I may remark that the curious
v-x

transformations many formulae can undergo, the suspected & to a
beginner apparently impossible identity of forms exceedingly
dissimilar at first sight, is I think one of the chief difficulties in the
early part of mathematical studies. I am often reminded of certain
sprites and fairies one teads of, who are at one's elbow in one shape
now, the next minute in a form most dissimilar; and uncommonly
deceptive, troublesome and tantalizing are the. mathematical sprites
and fairies sometimes; ·like the types I have found for them in the
world of fiction."

That a beginner might have such difficulties is understandable, but as the
context makes clear, Ada is here learning .Calculus, and these difficulties should
by now be behind her. However, they persisted. Even later, when she was
working with Babbage, they were evident. Stein comments:
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"For the subject [Mathematics] itself she had little natural talent; its
techniques, despite hard work, continued to elude her; its symbols
remained the doings of 'mathematical sprites & fairies'."
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This weakness is all the more remarkable, when it is considered that her
present claim to fame rests entirely on an alleged aptitude for computing, which
relies to an enormous extent on formal manipulations of symbols, and a trust that
this process is valid.

Ada's mathematical reputation rests on a single paper, to which I now tum. It
is widely held that Charles Babbage contributed in a significant way to the early
development of the computer. Whether this is true or not is a moot point, but it is
clear that one of his designs, for the so-called Analytical Engine, anticipated
many of the ideas nowadays seen· as central to computer design. [Babbage,
however, saw his Analytical Engine as being machined in metal, and the extreme
engineering precision required was right at the edge of what could then be
achieved; he also experienced continual difficulties with the funding .of his
project.]

Babbage never published anything on his Analytical Engine, but he lectured
on it and so it happened that one of his lectures was the subject of a report, written
in French published by the Italian engineer and politician Luigi Menebrea. Ada
set out to translate this work into English, and did so, including not only the
translation itself, but also copious notes whose total length greatly exceeded that
of the work .itself. She was encouraged in this enterprise qy Babbage, and
struggled to complete the task to his satisfaction despite quarrels and
disagreements.

It is a measure of her will to succeed and of the importance she attached to the
work that she referred to the paper as "this first child of mine": this at a time when
she had already given birth to three (human) children! The work did appear and
its author was identified as "A. A. L.", (s9 that the name Ada Augusta Lovelace
has some historical basis).

This paper may be read in a number of places, of which the most convenient is
probably the anthology Charles Babbage and his Calculating Engines, by Philip
and Emily Morrison (Dover, 1961). There you may find a rather curious passage:

"Let us now examine the following expression:
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2 2 222 22. 2 .4.6 .8 .10 ...(2n)
22222 2 2'1 .3.5 .7 .9 ...(2n -1) .(2n+1)

which we know becomes equal to the ratio of the circumference to the
diameter, when n is infinite. We may require the machine not only
to perform the calculation of this fractional expression, but further to
give indication as soon as the value becomes identical with that of the
ratio of the circumference to the diameter when n is infinite, a case
in which the computation would be impossible. Observe that we
should thus require of the machine to interpret a result not of itself
evident, and· this is not amongst its attributes, since it is no thinking
being. Nevertheless, when the cos of n = 1/0 has been foreseen, a
card may immediately order the substitution of the value of 1t (1t

being the ratio of the circumference to the diameter), without going
through the series of calculations indicated."

The formula quoted is Wallis's Product. (see Function, Vol 22, Part 4), and the
sensible point is made that the machine itself is incapable of taking the limit as
n~ 00, as that formula requires. But we, knowing this answer, can tell the
machine what we know, so that we may have it check the progress of its
calculation as n gets larger. The use of the term 1/0 sho~dd not trouble us unduly;
it is simply an old symbol for 00. But what of "the cos of n = oo?" This is a
plain nonsense, and Ada should have known as much. But she didn't. Stein
tracked down the origin of this queer tum of phrase. Back in the original French~
Menbrea had "Cependant, lorsque Ie cos. de n = 1/0 a ete prevu ...", and here it is
clear that we are dealing with a misprint. It should read "Cependant, lorsque Ie
cas de n = 1/0 a ete prevu ...", which means "Nevertheless, when the case of n =
1/0 has been foreseen ...", and which makes perfect sense.

Ada should have recognised the mistake and have corrected it. But she didn't.

And I .am sorry to be so negative about her, but it seems to me that Stein has
made out her case most convincingly.

2. The Wonder of the Mathematical Sprites and Fairies

But now let's leave Ada herself, and concentrate on the question that her
naivete raises ·for us. Why does substitution work? How is it that purely
mechanical procedures produce valid results?'
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Now this is not itself a mathematical question. The techniques of Mathematics
itself are unable to answer it. But it does help to address it if we look at
mathematical argument and what it does.

Essentially a chain of mathematical reasoning is no different from any other
chain of reasoning. What distinguishes the mathematical from, say, the verbal
argument is that its greater complexity demands aids to memory and flags
detailing where the argument has got to. These are usually written symbols, but
they can also find embodiment in hardware or in stored programs, etc.

But the laws of Logic that make a mathematical argume~t valid or invalid are
those same laws of Logic that apply in everyday discourse. If we say "The cat is
on the mat" and if we happen to know that the mat is in the living room, then we
may deduce that the cat is also in the living room.

Nonetheless, mathematical results can be surprising, even though supported by
an impeccable chain of argument. For example, if a, b, c are the sides of a
triangle and A, B, C are the angles subtended respectiyely by those sides, then the

statement "C is a right angle" implies that c2 =a 2 + b 2 (Pythagoras' Theorem)

and we also know that the statement c 2 =a 2 + b2 implies that C is a right angle
(Converse of Pythagoras' Theorem). Both these inferences are capable of strict
proof: they proceed by means of chains of valid deduction, and so in this sense the
two statements are equivalent.

Yet the two give rise to two quite different responses in our minds. One refers
to the measure of an angle; the other to the equality of two areas. Logically, the
statements are equivalent; psychologically, they are not. It is very much as if the
statement about the angle has metamorphosed into a quite different statement
about areas, much as sprites and fairies may assume different guises. Ada's is not
a silly question therefore, but it is not a mathematical one as such. Most of us, as
we learn Mathematics, learn not to worry about such questions, at least not to
worry in such a way as to impede.. our actual mathematical endeavours.

Philosophers, looking .at such questions, tend to classify statements into
various categories. Thus analytic statements are those for which the subject (the
thing we are talking about) necessarily possesses the properties asserted of it by
virtue of its very nature. "All squares have four sides" is an analytic statement,
because it is part of the definition of a square that it have four sides. Synthetic
statements, by contrast, do not follow simply from the definition of the subject.
"The cat is on the mat" is synthetic, because nothing intrinsic to the nature of the
cat entails its being on the mat.
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Then there is a further classification into a priori and a posteriori
statements. A priori statements are those that are knowable independent of
experience; they are necessarily true, and can never be otherwise. Our earlier
example of Pythagoras' Theorem is an example of an a priori statement. A
posterori statements, by contrast could be false. "The cat is on the mat" is an a
posteriori statement; it could well be false. The cat could (under other
conditions) very well be elsewhere, but right now it is on the mat.

It was the philosopher Immanuel Kant (1724-1804) who proposed this
twofold classification and who pointed out that the two modes of classification are
not exactly the same. There is a tendency to imagine that analytic statements are
a priori while synthetic statements are a posteriori. This is because the first
group are logically forced on us, while the second depend on experiment and
observation.

Kant recognised that analytic a posteriori statements could not exist. We
cannot possibly imagine a situation where something is necessarily true as a matter
of simple definition and nonetheless requires experimental checking; the check
would always be unnecessary and irrelevant. But he did allow the case of
synthetic a priori statements, and he saw mathematical statements as being
examples of this class. Thus, Pythagoras' Theorem does not follow immediately
from the definition of a right angle, but it is nonetheless the case that all right
angles must possess this property.

I would say that the difference lies in our own ability to see or not to see the
connection. A synthetic a priori statement is, on this account, one that we have
to work - to appreciate. (And perhaps here we can sympathise with Ada's
difficulties over the "apparently impossible identity of forms exceedingly
dissimilar at first sight, [which] is I think one of the chief difficulties in the early
part of mathematical studies".)

For Kant, the synthetic a priori classification included even such apparently
simple statements as 7 + 5 = 12, because the definition of (say) 12 makes no
reference either to 7 or to 5. We would define 12 as "the next number after 11" or
else perhaps as 11 + 1. Nonetheless, it is not a difficult matter to show that this
definition readily entails the property asserted. By contrast, it turned out to be
very difficult to prove that Fermat's Last Theorem was entailed by the arithmetical
properties of the natural numbers! .
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When mathematicians approach such problems, they tend to think of there
being a mathematical world in which such things as right-angles and natural
numbers' actually exist. This is not a "real world" in the sense that the world of
everyday experience is real; it is often called an "ideal world", and the underlying
philosophy is called Idealism, or Platonism (after the philosopher Plato). By no
means all mathematicians agree with this view of matters, and some argue strongly
against it, but it underlies a lot of the day-to-day language of Mathematics.

Those who argue against such a view hold that Mathematics is the task that
builds logical consequences on previously accepted ref)ults and does so in such a
way that no contradiction can ensue. Those who hold to it emphasise the process
of abstraction, of arriving at universal results from specific instances. So, for
example, if I (by counting them) find that

7 bottletops + 5 bottletops = 12 bottletops,

then I intuit, without need of further experimentation, that 7 + 5 = 12. The
property is then applied universally, not just to other objects, but is seen as
intrinsic to the numbers themselves.

That such mental processes can actually provide us with information about our
world (both real and ideal) is a great mystery, but we depend on it in everything
we do. It was well put by the theoretical psychologist Warren MacCulloch:
"What is a' number, that a man may know it, and a man, that he may know a
number?" The gendered language should not worry us; it was the fashion of the
day (1961), but the questions remain and are as important and as puzzling today as
they have always been.

* * * * *

Neither you nor I nor anybody else knows what makes a
mathematician tick. It is not a question of cleverness. I know
many mathematicians who are far abler than I am, but they
have not been so lucky. An illustration may be given by
considering two miners. One may be an expert geologist, but
he does not find the' golden nuggets that the ignorant miner
does.

-L J Mordell in H. Eves Mathematical Circles Adieu,
Boston: Prindle, Weber and Schmidt, 1977.

* * * * *
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COMPUTERS AND COMPUTING

Simulating Random Phenomena

Cristina Varsavsky

Probability is a fascinating area of mathematics. Over the years we have
included in Function a number of articles in this area-The Buffon Paperclip, Are
your Tattsiotto Numbers Overdue?, Heads and Tails with Pi and On Biased Coins
and Loaded Dice are some of the articles that come to my mind, apart from the
recent History ofMathematics columns.

Probability deals with random phenomena. We encounter randomness in our
every day life, but we rarely get to see enough repetitions of the same random
phenomenon to be able to see the regularity in the long run that appears in it. So
we usually use mathematics to calculate probabilities of particular outcomes. But
this is not always easy and it could be quite challenging even for the more
experienced.

However; in many cases there is a simple way of tackling probability
problems. Since computers are very good at doing complex, repetitive,and
lengthy calculations, why not use them to simulate many repetitions of the same .
phenomenon? Let us see how this works. Take the following example:

A coin is tossed 4 consecutive times, what is the
probability of a mnof at least two tails in a row?

Using the computer to simulate repeated tosses of a coin is straight forward:
since there are only two possible outcomes-head or tail- both equally likely and
the outcome of each toss is independent from the previous one, we simply
generate a random sequence of 1's and O's where the 1's represent (say) heads and
the O's represent tails. I used Excel to obtain the following sequence:

0101 1000 1101 1100 1111 0011 00000101 0011 1001

This corresponds to repeating 10 times the phenomenon of tossing a coin four
times in a row. Of the 10 times, the 2nd

, 4th
, 6th

, 7th
, 9th and 10th group of four has

at least two consecutives O's in it, ie. it corresponds to at least two tails in row. So
our estimated probability is



Simulating Random Phenomena

.~ =0.6
10

165

if k 2 2 then counter f- counter + 1

k f- 0

Of course 10 repetitions is not enough to give you a good estimate, but now
that we· know how to simulate the coin tossing we could leave to the computer to
do the hard work of repeating an counting for us. Here is, in pseudocode, a
program that you can adapt to your preferred programming langu~ge:

1. n f- number of repetitions

2. if-I

3. counter f- 0

4. While i ~ n do

4.1 m=O

4.2 k == 0

4.3 Repeat until m == 3

4.3.1 mf-m+l

4.3.2 r f- random number 0 or 1

4.3.3 If r == 0 then

4.3.3.1 k f- k + 1

else
4.3.3.2

4.3.3.3

4.4 If k 2 2 then counter f- counter + 1

4.5 i f- i + 1

5. probability f- counter / n

6. Output probability

I wrote this in QuickBasic. In this language, a random number between 0 and 1
is generated with RND; but this has to be first initialised with RANDOMIZE (for
example, RANDOMIZE TIMER). Tn obtain a random number 0 or 1, we use

INT(RND + 0.5)

These are the different estimates of probabilities obtained with this program:

1000 repetitions ~

2000 repetitions ~

5000 repetitions -7
10000 repetitions ~

0.509
0.495
0.4974
0.4997
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20000 repetitions ~ 0.49785

Function 5/00

Therefore the probability of having a run of at least two tails when an unbiased
coin is tossed 4 times seems to be around 0.49. Perhaps you would like to see
whether you can prove this using mathematics.

Now let us try to use the same approach to answer the follow question:

Tom and Jackie are a young couple who would very much like to
have a boy.. But they are prepared to have no more than 4 children.
How likely are they to have their dreams come true?

To answer this question we have to assume that Tom and Jackie are as likely to
have a boy·as to have a girl, and that there are no reasons to believe that they will
have twins. That is, the phenomenon has two outcomes-boy and girl-each of
them with probability of 0.5, and each birth is an independent event. We proceed
as before; we assign 1 to "boy" and 0 to "girl". I used Excel again to produce a
sequence of 1's and O's:

10100101011100111000100001111100101110000

which we group according to 'what we are looking for, ie groups of 4 or less
depending on the 1's:

1-01-001-01-01-1-1-001-1-1-0001-0000-1-1-1-1-1-001-01-1-1-0000

obtaining a total of 20 "successes" in 22 repetitions, which gives a probability

of 20 ~ 0.909.
22

A program to automate this process will not look very different from the one
before, only the loop in 4. )Vill have some changes:

4. While i ~ n do

4.1 m=O
4.2 k=O

4.3 Repeat until m =3
4.3.1 mf-m+l

4.3.2 r f- random number 0 or 1
4.3.3 If r =1 then

4.3.3.1 m=3
4.3.3.2 counter f- counter + 1
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4.4 If r == 1 then counter~ counter + 1
4.5 if- i+l
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These are the estimates of probabilities using an increasing number of repetitions:

1000 repetitions ~

5000 repetitions ~

20000 repetitions -j>

0.935
0.9364
0.9398

So it appears that the probability that Tom and Jackie will have their dream
come true is 0.93.

The technique we showed above with two examples does not have to involve
only two equally likely outcomes. For example, let us assume that there are three
possible outcomes with probabilities 0.2, 0.3, and 0.5. Then you could generate a
number between 0 and 9 (using for example, INT (RND* 1 0) in QuickBasic) and
assign a range of numbers to each outcome. For example:

numbers 0 and 1 correspond to outcome 1
numbers 2, 3 and 4 correspond to outcome 2
numbers 5 to 9 correspond to outcome 3.

and if the probabilities assigned to each outcome are say 23%, 32% and 45%, then
you generate random numbers between 0 and 99 (using for example,
INT (RND* 100) ), and proceed with a simulation similar to the one above.

Here are a few further exercises where you can apply your simulation skills:

Exercise 1: A coin is tossed 6 consecutive times. What is that probability of a run
of exactly 3 tails or 3 heads?

Exercise 2: A couple wishes to have at least a boy and a girl, and are prepared to
have at most 5 children to have their dreams come true. How likely is it for the
couple to have their wishes fulfilled?

Exercise 4: Sarah is working on a computer generated multiple choice test
consisting of 10 questions with 4 options each, which she is allowed to attempt 4
times. Sarah has not studied for the test, so she has decided to provide a random
answer to each question. What is the probability of passing (ie. get 5 correct
answers) by attempting the test up to 4 times?

* * * * *
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PROBLEM CORNER

PROBLEM 24.3.1

Show that 1 IS the stun of all the nUlnbers
x·y

1~ x ~ n, 1~ y ~ n, x + Y > n and x and y are relatively prime.

1 1 1 1 1 1
(Forexmnple, when n=4, -+-+-.-+-+-+-=1)_

1·4 2·3 3·2 3·4 4·1 4-3

SOLUTION

where

For n ~ 1, denote by 8
17

the sum of the fractions, _1_ where x and Y. are
x·y

integers, 1~ x, y ~ n, x + y > n and (x,y) =1, and where (x,y) denotes the

greatest cOlrunon divisor of x and y. We argue by induction that S" = 1 for each

n~1.

Base Case:

Induction Step:

1
n = 1, 81 =~ =1.

Let n > 1 and aSSUlne that 5;1'1-1 = 1.

We consider the set An oftenns in the SUln 8
11

which are not in 8n-1, and the

set Bn of tenIl.S in the stun /)11-1 which are not in 8
11

_ From the definition of these

SUlns it follows that the tenns of An are all of the fonn _1_ with x = n or y = n,
x-y

while the tenns of Bn are all of the fonn

can set up a two to one correspondence

x·y
with x + y = n _ Consequently we

(1)

between the terms in An and the tenns in Bn, upon establishing the result
that (n,n-x)=l and (x,n)=l B (x,n-x)=l (2)
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To verify (2), aSSUlne first that (n, n- x) == 1 and (x,n) == 1 and let (x, n - x) =: d .

Then d Ix and din - x, hence din., and since (x,n) == 1, d =1. Conversely if

(x,n-x)==1 and (n,n-x)==.d, then din and dIn-x, hence dlx. Thus

d = 1. Similarly, if (x, n - x) == 1 and (x,n) == d,

then d Ix and dIn and hence d == 1. This verifies (2).

Now observe that

1 1
---+-=:---
n(n-x) xn x(n-x)

so that froln the correspondence in (1) we can conclude that Sn - Sn-l = Sn-l - 81/
from which we have 51'1 == 81'1-1 == 1. This cSllnpletes the induct~on step.

PROBLEM 24.3.2 (proposed by Keith Anker, adapted from a Westpac
junior Inathelnatical cOlnpetition)

Fifteen (equal sized) circular discs, each either red or green, are arranged in an
equilateral triangular array with one disc in the top row, two in the second row, etc,
down to five in the fifth row. Show that there are three' discs of the saIne colour
with centres at the vertices of an equilateral triangle.

SOLUTION (Keith Anker)

We show that every attelnpt to fill the first four rows will result in an equilateral
triangle of a single colour (the triangle condition). The positions in the first four
rows are labelled as shown in the diagrmn below where each letter represents either
red (R) or green (G) .

I
J K

L M N
P Q S T

. Without loss of generality we can aSSUlne 1 == R. (Otherwise 1 == G and the
saIne argulnent works with the colours reversed). If the triangle condition is not
satisfied by ~.IJK then at le~st one of J and K is G.
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Case 1: K = G and J =.R. If L = R we must have M = G to ensure MLM
fails the triangle condition. Now if N = G then !1KMN satisfies the condition, and
jf N = R then MLN satisfies the condition. To avoid satisfying the condition we
must have L = G. This choice Ineans that we need to have S = R to avoid M<:.LS
satisfying the condition and this in turn implies P = G (for MPS). Continuing we
see that we must also have Q = R (MPQ) and M = G (MlQs) and N = G
(MNQ). But this will make M(MN all green so that we cannot have K = G and
J = R. A silnilar argulnent applied to K = R, J = G shows this is also not possible
without satisfying the triangle condition. We conclude that the only possibility is
K=J=G.

Case 2: K = J = G. Then M= R to avoid to triangle condition for MKM.

Sub-case 2(a) L == G. This implies S == R (MLS) and then

Q== N == G (~MQS and I1MNS). However MNQ is all green.

Sub-case 2(b) L == R. This implies N == G (MLN) and

M == R (MMN). We lTIUst then have Q == G (MMQ) and MNQ is then
all green.

We see that all attelnpts result in the triangle condition being satisfied in the
construction of the first four rows.

A solution was also received froin Carlos Victor.

PROBLEM 24.3.3 (proposed by Julius Guest, East Bentleigh)

Solve the equation 9x 4 + 12x3 - 3x2 - 4x + 1=O.

SOLUTION (Carlos Victor)

The equation

can be written
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so that either

(i) 3x 2 + 2x -1 == x

or

171

(ii)
2 '

3x +2x-l=-x

The quadratics solve to yield

-1+-J13 . -1--J13
Xl ==--6-- , X 2 == 6

Solutions were also received froln Julius Guest, David Halprin and J A Deakin.

PROBLEM 24.3.4 (froln Mathelnatics and Infonnatics Quarterly)

Points M and N are drawn inside an equilateral triangle ABC~. Given
LMAB == LMBA == 40°, LNAB == 20° and LNBA == 30°, prove that MN is

parallel to B(~~.

SOLUTION

Draw the perpendiculars MP and NQ to
BC," (see diagram). By the sine fonnula in
!1BAN:

A

BN a
-----
sin 20° sin 50 0

.,

where a =AC,~ = C'A =AB. By the sine

formula in !1BAM:

BM a B c

sin 40 0 sin 80 0

Then
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and

But

Function 5/00

NQ = BN sin 300 = asin 20
0

sin 30"
sin 50°

MP == BM sin 20° == asin400sin20°
sin 80°

sin300sin80° == !2sin40°cos40° =sin 40 0 sin 50°,
2

Hence NQ =MP => MPQN is a rectangle => MN is parallel to Be.

A solution using trigonolnetry was received from Carlos Victor.
Solutions using pure geolnetry were received froln Julius Guest and Gamet J
Greenbury,

PROBLEM 24.3.5 (froIn Mathelnatics and Infonnatics Quarterly)

n1 + n
Let x and y be real numbers of the fonn J where m and n are

, m 2 + n 2

positive integers. Show that if x < y then there is a real nlunber z of the saIne fonn
such that x < z < y.

SOLUTION

If f(rn n) -- n1 + n 1 r . . (. f( ) j( )) d, 'I 2 2' t len. IS syllunetric 1.e.. m,n = n,m an we can
\1m +n

I 1· . r m+nassume tlat m < n. Furtlennore, notIce that . (m,n) = J =

m2 +n2

1+ (rn In) If bI' 1 11ft· () 1+ x .. .I .' we esta IS 1 t lat t le Inchon g x == ~ IS IncreasIng on
-V 1+ (m / n)2 \! 1+ x 2

the interval (0,1), it will follow that

j(a,b)= l+(a/b) < j(c,d)= l+(c/d) if and only if ~ < ~.
~1+(a/b)2 ~1+(c/d)2 b d
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Therefore, any rational nlunber n1/n between a/b and c/d will yield a solution to
our probleln.

1 ( ') 1+ x .. . (0) b 1To prove t lat g x = r:-? IS IncreasIng on ,1, we a serve t le
\il + x 2

following equivalences for x and y in (0, 1):

1+ x 1+ y (1 + x)2 (1 + y) 2 x y
-=== < ¢:::> < ¢:::> -- < --
~l + x 2 ~l + y2 1+ x

2 1+ i 1+ x
2 1+ i

¢::> x + xy2 - Y - x 2Y < 0 ¢::> (x - y)(l- xy) < 0.

Since 1- xy > 0, it lnust follow that x< y and therefore, g is increasing on

(0, 1).

, A solution was also received frOlTI Carlos Victor.

PROBLEMS

PROBLEM 24.5.1 (froln Parabola)

Show that if m and n are positive integers then (mn)!~ (m!)n(n!)fl1 .

PROBLEM 24.5.2 (froln Crux Mathelnaticorum with Mathelnatical
Mayhem)

The sequence {an }~=l is defined by al = 2 and an+l = the smn ofthe 10th

powers of the digits of an' for all n ~ 1. Decide whether any nUlnber can appear

twice in the sequence {an }~=~ .
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PROBLEM 24.5.3 (frOITI Czechoslovak OIYlTIpiad 1993)

Function 5/00

Find all natural nlunbers n for which 7n -1 is a lnultiple of 6n -l.

PROBLEM 24.5.4 (froIU Mathematical Spectrum)

There are n sheep in a field, nUInbered 1 to n, and SOlne integer m > 1 is given

such that n1 2 ~ n . It is required to separate the sheep into two groups such that (1)
no sheep has nlunber m tilnes the nUlnber of a sheep in the saIne group, and (2) no
sheep has number the Stun of the nlunbers of two sheep in its iroup. For which
values of m, n is this possible?

PROBLEM 24.5.5 (froIn-Mathematical SpectruIn)

A triangle has angles a, /3 and r which are whole numbers of degrees,

and a 2 + /32 =r2
. Find all possibilities for a,!3 and r.

* * * * *
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