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EDITORIAL

Welcome to our readers to this issue ofFunction!

The diagram on the front cover represents the classic mathematical problem of
describing the paths of four turtles initially positioned at the vertices of a square,
each moving towards the turtle in front of it. A feature article by Michael Deakin
looks at two different ways of solving the problem, using mathematical induction
and symmetry. In the Problem Corner you will find another argument to determine
where the turtles meet; also, the Computers and Computing colunln includes a
computer program to draw the paths of the turtles. '

Although there is much about turtles in this issue ofFunction, there are also
other interesting articles. Bruce Henry presents a geometric problem and shows
how this can be solved in a variety of creative ways: using trigonometry, various
geometric constructions and proof by contradiction.

If you are a Tattslotto addict, then you should read Malcolm Clark's article
which analyses the probability of a run of consecutive numbers when randomly
selecting 8 numbers. His conclusion seems to contradict the general belief that
randomly selected numbers should not contain clumps or runs of cons'ecutive
numbers. Perhaps this article will make you change your strategies.

The History ofMathematics column is about the achievements of John Wallis,
a contemporary of Isaac Newton. The "Wallis Product" is a formula which

, expresses the number 1t as a quotient of two infinite products of positive integers.
The article presents the simple methods he used to find what we now know as
integrals of quite sophisticated functions which led to the formula.

You will find in the Problem Corner solutions and more new problems. If you
send your solutions promptly we will publish them in the first issue in 1999.

We hope you enjoy this issue of Function.

* * * * *
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AN INTERESTING PROBLEM AND SOME CREATIVE
SOLUTIONS

.Bruce Henry

This article is all about the following problem and a variety of solutions to it.
Readers may wish to try it themselves before reading on.

ABCD is a square, EF bisects both AB and CD. P is a point on EF such that

LPAE = ISo. Prove that DP = DC.

A E B

P

D F c

The problem can be solved by a large variety of methods which use a lot of
different ideas in mathematics. Some of these may not be known to the reader, but
others certainly are. The "nice" solutions are those which employ an insightful
construction that enables elementary Euclidean geom~try to solve the problem.

Trigonometry

The first proof is trigonometric.

Let AB = 2, so that EF = 2 and DF = AE = 1. (No generality.is lost by this; it
merely amounts to a convenient choice of units.) Now set EP = x. Then

x = tan1So.
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~2J3+~12+4
So it follows that x2 + 2J3x - 1 = 0 and x = ~ = - J3 ±2 .

. 2:.· ..
But x > 0, and so EP = x = 2 - .J3. B~t sirice we h~d: EF== 2,. then FP = .J3.
But now, since DF =1, we easily find DP == 2, by Pythagoras"s Theorem.

Creative Construction 1

LetXand Ybe the midpoints ofAD and Be respe?tively. Let Q be the point on

.xYsuch that L.QAD = 15°. DrawQD, QPandDP.

p

SO LQAP = (90 -15 -15)° = 60°, and APQ
is thus an equilateral triangle and in particular

AQ=QP.

. Triangles AXQ, XQD and AEP are congruent, A E B
(assuming symmetry properties of right triangles) and ~-..,.....---y------,

so AQ =DQ.= AP. Also 150

LXAQ == LEAP = 15°.

D F c
. Now LAQX = 75°, so that

LPQY = (180-60-75)° = 45°.

Next LDQY = (180-75)° = 105°, so that LDQP = (45+105)° = 150°. Then
the trianglesAQD andDQP are congruent (SAS) and AD = DP. ThenDP = DC as
required.

Creative Construction 2

Draw equilateral triangles ATB on AB external to the square as shown. Draw
DP.

In triangles TAP and PAD, LTAP = (60+ 15)0 = 75° = LPAD.
Also AD =AT (by construction), and AP is common.

So triangles TAP and PAD are congruent (SAS) and

LADP = LATP = 30°.

Then LPDF = 60°, triangle PDC is equilateral and so PD = DC, as required.
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The Logician's Solution
Let us instead of the original problem prove its A

~---r-----"'-----,

converse:

IfP is such that PD = DC (= AD), then

LPAE = 15°.

Since in this case, the triangle PDC is equilateral,

LPDC = 60°, so LPDA = 30°. Then the triangle
PDA is isosceles (PD = AD) and the base angles are D

75°., Then LPAE = 15° as required.

F c

This in itself is not enough to prove the original proposition, but maybe we can
use it to construct a proof by contradiction.

Suppose P is not such as to make PD equal to DC. Then there is another point on
EF, R say, distinct from P, which is ~uch that RD = DC. Then the converse

already proved shows that LRAE = 15°. But we are told that LPAE = 15°,
and now it is not possible forR to be distinct from P. Therefore R coincides with
P and PD = DC, as required.
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Creative Constraints

Draw the circle with centre D and radius AD. Let this circle cut EF at G.
Extend AD to cut the circle at Qand then join AG, GD and GQ.

Since they are all radii of the circle,DG = AD = DC. Also LADG = 30°. It

follows that LAQG = 15°. (Because of the theorem that states that the angle
formed on the circle itself is half that formed at the centre·, when both angles stand
on the same arc - in this case, the arcAG. As a result of another standard theorem

(angle in the "alternate segment") we deduce that LEAG = 15°.

But LEAP = ISo also, so P and G must coincide. This means that P lies on
the circle and so PD = AD as required.

c

A

D

Q
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In the triangle AOQ, AQ = ~1 + x 2 and

AO = -Ji, LOAP = L.QAP = 30°, so PAis the
bisector of LOAQ. Therefore PA divides OQ in the

ratio of AO to AQ.

The Sledgehammer

. Extend PE to Q so that PE = EQ. Join AC. Let
AC intersect EF at O. Then the triangles AQE and
APE are congruent (SAS). Once again, let AB = 2 15°
andPE=x. Then EO = 1.

OP AO . I-x
Thus - =- or In other words --

PQ AQ 2x

-Ji
~. It follows that

\i1 + x
2

which expands to

The quartic expression factorises (readers may check!) to give

(x + 1)2(x - 2 + -J3)(x - 2 - -J3) = 0,
so that

x = - 1 or x = 2 + -J3 or x = 2 - -J3 .

However we also have 0 s x S 1 and only one of these three possible solutions

satisfies this inequality. So x = 2 - -J3 .

Then PF = -J3 and since"DF = 1, ~e have Df = 2 by Pyth.agoras's Theorem
anq. DP = DC as required.

* * * * *
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THE FOUR-TURTLES PROBLEM

Michael AD Deakin

Problem 22.2.2 is a hardy perennial that has many interesting features, going
beyond the problem itself. Figure 1 shows the problem as posed in Function (April
1998) and taken from the collection The Chickenfrom Minsk.

Figure 1

The turtles are- trained to move each towards the turtle in front of it and to do so
with constant speed. They are initially placed at the vertices of a square. If we place
the origin at the centre of this square with axes toward the right and the top, then the
top right turtle will have initial coordinates (a, a), where a is half the length of the

side of the square. I leave it to readers to supply the initial coordinates for each of the
three others. Each turtle is supposed to move with speed V.

We may now ask several questions. What happens to the square? What paths do
the turtles follow? When will they meet?

The first result to establish is: At all subsequent times, the turtles are situated at
the vertices ofa square. I would like to give two proofs of this statement.

First, suppose that, instead of moving in a continuous fashion, each turtle moves
in a series of finite steps which I will call "jerks". At the outset, the top right turtle
moves down (as drawn on the page) for a time t, in· which time it covers a distance
Vt. A -similar outcome is found for each of the other three turtles. It is then very
clear from the diagram that after the first "jerk" the new positions for the turtles also
form the vertices of a square. If we now apply a second "jerk", the result will be a
smaller square, but quite obviously a square. See Figure 2.
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Figure 2
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Now because the result· of each "jerk" is to produce a square from a previous
square, and as the initial positions form a square, then the subsequent positions always
form a square. This is as a result of the Principle of Mathematical Induction,
described in my History of Mathematics Column in Function, Vol 22, Part 3.

Now we have not specified the value of 't, the time-interval occupied by each
"jerk"; we haven't needed to. It follows that the maintenance of the square pattern is
independent of "(, which can be made arbitrarily small. So, as the "jerky" motion
approximates the smooth motion better and better as "( gets smaller and smaller, the
statement also applies to the smooth J?otion.

This is interesting as an example of a case of an unusual version of Mathematical
Induction. Usually it applies in cases where we are making statements about things
we can count. (Thus, in the arguIl).ent above, if the turtles fonn a square pattern after
the nth "jerk", then they will also do so after the (n+l)th "jerk".) But our further
deduction allowed an extension to a situation where counting is not applicable: the
smooth motion. This is the simplest example I know of an inductive argument going
beyond the use of the natural numbers.

A second argument uses symmetry. Each turtle is the same as each of the others;
they each follow the same programme. Suppose that at some time after the start that
the turtles occupied positions that were not the vertices of a square. Then they would
occupy· the vertices of a quadrilateral some of whose sides or some of whose angles
(or both) were not equal to other sides or angles (as the case might be). But this
would imply that one or two of the turtles had behaved differently from other turtles,
and this is not allowed. Thus the initial square pattern must persist.



[We may in fact extend this argument to cover the case in which n turtles set out
from the vertices of a regular n-gon. This too will remain a regular n-gon as the
motion progresses. In the extreme case as n~ 00, the turtles- follow each other round
the circumference of a circle for ever. Certain insects can be induced. to behave in
exactly this fashion! This is possible because of the action of chemical secretions
called "trail pheromones".]
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Let T be the position of the turtle that sets out from the top right corner and join
T to the centre of the pattern by a line OT. This line must now always make an
angle of 45° with the direction of that turtle's motion, because it is the diagonal of the
square. Thus, initially, T is (a,a) and is moving in the "down the page" direction,

and the line OT slopes up the page at 45°, and makes -an angle of 45° with the
direction of Ts motion. This pattern persists, as a glance at Figure 2 will show. The
initial position is perfectly typical.

This constancy of angle is the defining' property of a curve known as the
"equiangular spiral", so it follows that the path travelled by T is an equiangular
spiral, and similarly for the other turtles.

But now we may answer other questions also. Think back to the "jerky motion".
In each time-interval t, the turtle at T advances a distance Vt, .and of this a

component Vtcos4So =Vt / Ji is directed toward o. Thus the component of the

turtle's velocity toward the centre is V / Ji, a constant. (Again note that this is a
property independent of the value of -r and so it applies also to the smooth motion.)

Now, initially the distance OT is aJi, and at the end of the motion, when the

side of the square has shrunk to zero, it is o. So, a distancea.J2 has been covered at

an effective speed of V / .J2. It follows that the time taken is 2a / V .

Finally we may deduce the total distance each turtle has actually walked. The
time is 2a / V , and the actual speed over the ground is V. Thus the total distance is
2a.

Further Reading

. There are many good accounts of this problem. One (with dogs instead of turtles)
Isto be found in Chapter 11 ofA Book of Curves, by E H Lockwood (Cambridge
University Press, 1971). This also gives a-lot of detail on the equiangular spiral.
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PATTERNS IN TATTSLOTTO NUMBERS

Malcolm Clark

The popular Australian lottery Tattslotto is one of the many lottery games around
the world in which the winners are determined by the random selection of k· balls
from n numbered balls. Each player specifies a set of j numbers from 1 to n. Prizes
are awarded to players whose choice of j numbers is a subset of the k numbers
actually drawn. Depending on the rules of the lottery, selection of the k numbers may
be with or without replacement, and the actual order of the winning numbers mayor
may not be important. In Tattslotto, j =6, k = 8, and n = 45.

In each Tattslotto draw, the winning numbers are selected by a mechanical
randomisation device in which 45 numbered balls are mixed in a spherical container.
Eight of these balls are selected without replacement, the first six designated as
winning numbers, the last two as supplementary numbers. Those players who happen
to select all six winning numbers share the First Division prize pool, winning around
$200,000 to $300,000 on average. Lesser prizes are available under less stringent
conditions; for example, a player with any 3 of the 6 winning numbers plus either
supplementary number wins a 5th Division prize, typically around $20.

The results of a recent Tattslotto draw (No. 1727) were somewhat surprising: the
six winning numbers were 2, 3, 7, 20, 21, 22, and the two supplementary numbers
were 11 and 23. So amongst the six winning numbers, there was a run of three
consecutive numbers, and amongst all eight numbers, there was a run of four
consecutive numbers: 20, 21, 22~ and 23. This pattern caught my attention, arid I
asked myself, how unusual is such an outcome? In other words, what is the
probability of obtaining one run of four consecutive numbers. when randomly
selecting 8 numbers from 1 to 45?

But this is not the correct probability to calculate if we are concerned about the
randomisation or otherwise of the Tattslotto machine. For example, a Tattslotto draw'
with two s~parate runs of four consecutive numbers, or a single run. of five
consecutive numbers, would be'even more worrying. What we need to compute is the
probability of getting a result equal to or more extreme than what actually happened
in Draw 1727. In other words, what is the probability of there being at least one run
of at least four consecutive. numbers (when selecting at random 8 numbers from 45)?

In principle, the solution is straight-forward:. all we need do is count all of the
possible selections of 8 numbers from 45 for which the condition is true. In practice, a
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direct calculation is not so simple: we must ensure that each possible selection for
which the condition holds is counted once and only once. This is quite difficult.

Instead, let us look at a simpler problem where it is possit>le to obtain a direct
algebraic solution. Let's look at the occurrence of runs ofany length, i.e., pairs,
triples, and. so on. So we ask the simpler question: what is the probability ofat least
one run of at least two consecutive numbers when k numbers are selected from n?

We can answer this by considering the complementary event: that there are
no runs of any kind in the k numbers selected from 1 to n. To derive the solution, we
represent each possible draw ofk numbers in a particular format. Unlike theTattslotto
machine which has n numbered balls, we imagine that we have n cells numbered
from 1 to n, and k identical but un-numbered balls. Each time the Tattslotto machine
draws a numbered ball, we put one of our k balls in the corresponding cell. When the
draw is completed, k cells will be occupied and n - k cells will be empty.

We can represent each selection of k numbers from n by a line of k stars and
n - k circles, the stars indicating occupied cells (or equivalently, drawn numbers) and
the circles indicating empty cells. To be definite, suppose ·k = 3 and n = 7. Then the
selection {2,3,5} would be represented schematically by

Clearly every possible arrangement of k stars n - k circles corresponds to a
possible selection of k numbers out of n, and hence the total number of such

selections is (:) .

We now need to count how many of those arrangements contain no runs, ie, no
pairs (such as {3,4}), no triples (such as {3,4,5}) and so on. If there are no runs, then
in terms of our "balls-in-cells" equivalence, each occupied cell must have at least one
empty cell.on either side of it. What will the corresponding line of stars and circles
look like?

Suppose we are about to watch a draw of k numbers from 1 to n in which there are
no runs. Initially we don't know which numbers will be drawn, or which of our.cells
will be occupied or empty. We can indicate this unknown configuration by a line of
n dots, e.g.
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Once the draw (with no runs) is completed, we may move along this array of dots
from left to right, changing them to circles or stars indicating empty or occupied cells
as before. But this time, for the first k - 1 stars, the next symbol must be a circle. For
example, the partially completed array might look like:

o 0 * 0 • • e

When we get to the last star, the next symbol on the right (if there is one) will
automatically be a circle. This is because when the last ball is allocated to a cell, all
the remaining cells (if any) must be empty.

The important point is that for the first k - 1 stars, we have no choice regarding
the next symbol: it must be a circle. So this "star-followed-by-circle" should be
regarded as a single entity, which we may denote by a different symbol., say a plus
sign. In this process, k -1 of the original n - k circles disappear. The last star may
also be replaced by a plus sign, provided we interpret it as a single occupied cell.

With this interpretation of plus signs, each selection oft numbers out ofn with no
runs corresponds to an arrangement of k plus signs and n - 2k + 1 circles (a total of
n - k + 1 symbols), and conversely. Hence the corresponding number of

arrangements is (n -: + I) .

So the probability of no runs in the selection of k numbers out of n is

(
n-

k
k+l)

(n - k + l)!(n - k)!
Q(k,n) = (:') = ,) (n-2k+l)!n!

Finally, the pro~ability of at least one run ofat least two consecutive numbers is

P(k,n) = 1 - Q(k,n)

The numerical consequenc'es of this formula are surprising and counter-intuitive.
For Tattslotto (n = 45), the probability of at least one run in the first six winning
numbers is 0.5287, while the corresponding probability for all eight numbers is
0.7731.
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Most people believe that randomly-selected numbers should not contain clumps
or runs of consecutive numbers. The above calculation shows that such clumping is
not at all unusual in Tattslotto. Therefore a good strategy in choosing your Tattslotto
numbers is to select numbers which are clumped together to some extent. This is
because most other players will not make such a choice. Whatever choice ofnumbers
you make, you still have the same small probability of winning. But, in the unlikely
event that your selected numbers are the winning numbers, you will share the First
Division prize with fewer other people.

Essentially the same procedure can be used to find the probability of at least one
run of at least three consecutive numbers. Once again, we consider the
complementary event: no runs longer than two consecutive numbers. In this case, it's
more complicated because of the various ways this complementary event could occur.
For example, if k = 6, there could be six "single" numbers, or four singles and one
pair, or two singles and two pairs, or three pairs. We need to consider these fOUf
possibilities separately. The balls-in-cells idea represented by a line of symbols still
works, but this time .we need different symbols to distinguish between "singles" and
"pairs". We leave this calculation as a challenge to our more adventurous readers.

* * * * *

When we learn to drive a car
we are able to "go places"
easily and pleasantly
instead of walking to them
with a great deal of effort.
And so you will see that
the more Mathematics we know
the EASIER life becomes
for it is a TOOl- with which
we can accomplish things
that we could not do at all
with our bare hands.
Thus Mathematics helps
our brains and hands and feet,
and can make
a race of supermen out of us.

Lillian Lieber in The Education ofT eMits
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LETTER TO THE EDITOR

Dear Editor,

An article in Part 2 of Vol 22 reminds me of the following proof of a special case
of Ptolemy's Theorem.

)

Let ABCD be a cyclic quadrilateral with
AB = AD. Let AC cut BD at P. Then

LAPD = LABP + L.BAP

= LADP+ L.CDP = LADC

Hence

B
D

.!. AC· BD sumADC = .!. AC· BD sinAPD = Area (ABCD)
2 2

= Area (ACD) + Area (ACB)

== .!. AD . CD sin ADC + .!. AB . BC sinABC
2 2

= l. AB· CD sinADC + l. AD· BC sin ADC
2 2

It follows that· AC·BD = AB·CD+AD·BC.

Andrei Storozhev of ,the .Australian Mathe
matics Trust showed me the generalisation of
the above argument.

B

Let ABCD be a cyclic quadrilateral. Reflect
A across the perpendicular bisector of BD to
A'. Let AC cut BD at .P. Then

D
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Hence

LAPD = LABP + LBAP

= LA'DP+ LCDP = LA'DC

.!. AC·BDsinA'DC = !AC.BD sinAPD
2 2

= Area (ABCD) = Area (A'BCD) = Area (A'DC) + Area (A'BC)

= .!. A'D . CD sin A'DC + .!. A'B . BC sin A'BC
2 2

= ! AB· CDsinA'DC +-.!.. AD· BC sinA'DC
2 2

It follows that AC . BD = AB· CD + AD· BC.

Note that the special case is not used to prove the general case, just to motivate it.

Yours sincerely

AndyLiu
University ofAlberta

* * * * *

Number Crunching Software

Our reader, Daniel Corbier, has released Veale Fast Math Parser, a
piece of software that may be of interest to Function readers. This is a
component for software developers which allows programs to evaluate
algebraic expressions defined at runtime. It is particularly designed to run
very fast inside loops, making this math engine ideal for heavy-duty
number crunching.

To find out more about this math component, and to download a copy,
visit http://www.ucalc.com/dll.

* * * * *

A good student is one who will teach you something.

- Irving Kaplansky

* * * * *
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HISTORY OF MATHEMATICS

John Wallis and his Wonderful Product

Michael A B Deakin

John Wallis (1616-1703) is much less well-known than his younger
contemporary, Isaac Newton. Nonetheless he achieved much in the direction of
early development of the ideas that we now collectively refer to as "Calculus".

He was born in the English county of Kent, and was some 26 years older than
Newton. Those were turbulent days in England as it was the time of civil war
between the monarchy and the high church on the one hand and the forces of
parliament and low church puritanism on the other. He was the son qf a parson,
but the family sympathies lay with the puritan side. He followed an ecclesiastical
career for some time, indeed being consecrated bishop of Winchester in 1640.

In 1649, and to the surprise of many, he was appointed to the prestigious
Savilian chair of Mathematics at Oxford. It was a political appointment, as Wallis
had little reputation in the area of Mathematics at this time. Indeed he replaced a
man whose royalist sympathies had led to his being removed when the other side
was in the ascendant. However, Wallis managed to rise to the challenge of his new
appointment and also to steer a middle course politically, 'so that with the
restoration of the monarchy he did not suffer the fate ofhis predecessor.

The story I will tell here is of his method for finding areas and some of the
consequences he derived from it. It should be noted that he lived in an age when
standards of mathematical proof were less. rigorous than they became later and
remain today. Many of his results were not fully 'proved, but they were correct and
may be proved quite easily by modem methods. However by diligent work and
great ingenuity he was able to discover them from quite elementary considerations.

Suppose we. want to work out the area under a parabola, and suppose for

simplicity that the parabola in question is y =x 2
. If we seek the area bounded by

this curve, the x-axis and the lines x = 0 and x =n (n being a positive integer),
then in modem terms we may write this area as
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and it is not difficult to evaluate the result, which is tn3
•
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Indeed we can now go further and say that if we look for a rectangle on a base
of n units with the same area as we have just been discussing, then the height of

this rectangle will be tn2. Nowadays we speak of this value's being the average,

or mean, value of x2 over the interval 0 s x s n .

Wallis looked at precisely this problem but he came from a different direction.

He considered the value of x 2 at each of the values x ~ 0,1,2,3, ..... , n and he
averaged these. The result is

02 + 12 + 22 + 32 + ..... + n2

n + 1

Now this is an expression whose value is easily worked out if we can sum the
numerator. This was already known when Wallis worked. It was known much
much earlier, to Archimedes. The relevant formula is

and it may be proved by the method of induction discussed in my last column. So

now we know that the average value we seek is tn(2n + 1). If we now express

this as a fraction of the final (and largest) value n2
, we find that the average value

is

and as n gets larger and larger, the factor in the brackets tends towards the value t.
This much would have been familiar ground, for again, Archimedes had got this
far.

But now Wallis asked about more complicated. functions than y = x 2
. What

about y =x 3? He studied a lot of special cases and came to the conclusion that in
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this case, we could proceed similarly and reach a factor of .!.. + ~, which, as
4 4n

n 4 00, approached the value ±.
Proceeding now to higher cases y =x k, where k > 3 , Wallis found a very

simple fonnula for the limit, which works out to be _1_ for every positive
k+l

integral value of k. Of course, we today find what is essentially this result very
cheaply using integral calculus, but Wallis didn't have that advantage.

So by modem standards, Wallis lacked a full proof. However, the formula he
discovered was true.

His next step was even more daring. He looked at the case in which k was not

necessarily integral. Suppose we put k =£.. In this case the limiting ratio will be
q

_1_ or in other words -q
£+1 p+q
q

Wallis's word for the value of k was "index" and we still use it today. It was
during the course of this investigation that Wallis discovered the relation between

roots "and fractional powers: 9[;, =xX.

Thus, in essence, Wallis was computing integrals, even though the precise
concept of "integral" did not at that time exist. The results he obtained so
laboriously are now routine and his formula can readily be written

fl 'k 1
Jo x dx =k+l

However, we d~ not properly appreciate the greatness of Wallis's work if we
fail to understand it in its own terms.

This much would have been quite an achievement in itself, but Wallis went
further. tIe next considered the area of a quarter-circle. In our terins, he set out to
investigate the integral (with its known value)
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r1

.Jl-x2 dx =!!..Jo 4

The left-hand side is an example of a formula of the type

131

where, in the case we want, p =q =!. Notice again that, in order to present the

problem to a modem audience, I have used modem notation; Wallis did not have
that advantage.

In order to get a handle on the problem, Wallis looked at the expression that we
could write like this:

and tabulated the result of calculations for integral values of p and q for integral
values between 0 and 10. This was to be an intermediate step in getting to where

4
he wanted to go. What he was after was the formula IC!,!) =- but to get there

1t

he started with simpler problems. Table 1 gives some of his results.

q

p 0 2 3 4 10

0 1 1 1 1 1 1
1 1 2 3 4 5 11
2 1 3 6 10 15 66
3 1 4 10 20 35 286
4 .1 5 15 35 70 1001 .

10 11 66 286 1001 184756

Table 1: Values of !(p, q)
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There are several features that will strike the reader about the numbers
generated in Table 1. It is symmetric about its main diagonal, and all of the
numbers are numbers that arise in the construction of I>.ascal' s triangle. (The
binomial theorem was not known at thi~ time; it was ·.laJer to be discovered by
Newton. However, Pascal's triangle was available and Wallis knew about it.) You
may care to look for other features of interest; several more are mentioned below.

If we follow the rows across, we see first simply a row of Is. Below this
simply a list of the natural numbers. The next one would also have been familiar to
Wallis. The numbers involved are the "triangular numbers". Each entry is the sum
of the numbers in the row above and to the left. Indee~ this is a feature of every
entry in the table. In this instance, we find: 1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3, etc. The
entries are the successive sums of the simple arithmetic progression in the line
above. We know a formula for these and so did Wallis. It goes

f(2,q) =t(q + l)(q + 2).

His next idea was to use this formula even when q was not integral. .Thus he

wrote f(2,!) = !(! + 1)(! + 2) = If and so on. Similarly, he was able to

calculate many other values of !(P,I). For example, he knew the formulae

J(1 11) = n + 1
'2 2

and

and the pattern such formulae set up led him to guess others. He also made use of
the symmetry of the table and So set up an extended version. This is shown in
Table 2.

What Wallis wanted to do now was to fill in the "blanks" in this table; in

particular the "blank" value of !(i,t) that I have indicated by the question mark.

By studying Table 1, and using his knowledge of Pascal's triangle, Wallis was now
able to find the formula:

p+q
f(p,q) = -f(p,q-l).

q
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q

p 0 1/2 3/2 2 5/2' 3-

0 1 1 1 1 "I

1/2 1 7 3/2 15/8 105/48
1 1 3/2 2 5/2 3 7/2 4

3/2 1 5/2 35/8 315/48
2 1 15/8 3 35/8 6 63/8 10

5/2 1 7/2 63/8 693/48
3 1 105/48 4 315/48 10 693/48 20

Table 2: More values of I(p,q)

He now applied this formula to Table 2, and in particular to its second row, that

for which p = t and which contains the entry I designated by 7. Ifwe apply this

formula to this row, we find first that

1+2 4?
1(1 1) = 1.--1.? = -.:..

-2'2 1.. 3
2

and proceeding" in this manner, we can till in the entire row in terms of the one
unknown, namely 7.

We find as a general formula !(!,q) = 2q+l !(!,q-l) and applying this
q

successively, we reach the row entries:

? 3 4? 15 _8? 105

2 3 8 5 48

128?

35
945

192
etc.

Still he needed some further handle on the problem in order to determine the
value of 7. This he found by looking at the ratios of the various entries along each
row. If we look at"the second row in Table 1 for example, we find the ratios

f '!' t, %' Each is smaller than its predecessor and as· we go further and

further out, we get closer and closer to 1. The same is true for all the other rows in
Table 1.
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So Wallis decided that this pattern must likewise hold for the rows of Table 2.
Applying this insight to the row displayed above, we find successively

? 3/2
->-
1 ?

3/2 47/3
-->--

7 3/2
47/3 15/8
-->--
3/2 47/3
15/8 87/5
---.--->--
47/3 15/8

and so on.

From the first inequality we learn that 7> Jf72, from the second that

? <~.J4i3 , from the third that ? > ~. i.J5i4 , from the fourth that

? < f t%i .J675, and so the pattern goes. There are successive upper bounds

(overestimates) for 7 of i.J4i3, ti~~.J675, and so on. The square root aspect

of these gets closer and closer to 1, while all the others tenns bring the
overestimate down. Similarly if we look at the underestimates, we see a pattern in
which these come up.

Thus Wallis concluded that in the limitthe value was

3x3x5x5x7x7x ..

2x4x4x6x6x8x ..

and remembering that this has the value i we may now tum the fractions upside
1t

down and so reach

1t 2x4x4x6x6x8x .

4 3x3x5x5x7x7x .

This formula is today known as "Wallis's Product". There are easier ways to
reach it, but they need more advanced Mathematics than Wallis had at his
command. Nowadays too we are able to prove the validity of the many steps that
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Wallis merely guessed. But Wallis got there first, and the formula he discovered is
quite remarkable.

Further Reading

See Victor J Katz, A History ofMathematics, PP 443-446, C HEdwards, The
Historical Development of the Calculus, pp 113-117, 170-176 and the article on
Wallis in the Dictionary ofScientific Biography.

* * * * *

Digesting mathematics

I was at the mathematical school, where the master taught his
pupils, after a method, scarce imaginable -to us in Europe. The
propositions, and demonstrations, were fairly written on a thin
wafer, with ink composed of a cephalic tincture. This, the student

, was to swallow upon a fasting stomach, and for three days
following, eat nothing but bread ·and water. As the wafer digested,

. the tincture mounted to his brain, bearing the proposition along
with it: But the success has not hitherto been answerable, partly
by some error "in the quantum or-composition, and partly by the
perverseness of lads; to whom this bolus is so nauseous, that they
generally steal aside, and discharge it upwards, _before it can
operate; neither have they been yet persuaded to use so long an
abstinence as the prescription requires.

- Swift, Jonathan in Gulliver's Travels; A Voyage to Laputa

* * * * *

So highly did the ancients esteem the power of figures and
numbers, that Democritus ascribed to the ffgures of atoms the first
principles of the variety of things; and Pythagoras asserted that
the nature of things consisted of numbers.

-Lord Bacon

* ~ * * *
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COMPUTERS AND COMPUTING

The Turtles' Paths

Cristina Varsavsky

For the readers interested in computers and computing, here is a program that
displays the spiral paths of the turtles following each other as described in the
article The Four-Turtles Problem.

REM Setting the cartesian axes and scale definition
SCREEN 9: WINDOW (-4 / 3, -1)-(4 / 3, 1)

REM Definitions
turtles = 4
DIM a(turtles) , b(turtles)
Pi = 3.1416
alpha = .1
beta = (1 - 2 / turtles) * Pi
factor = SIN (beta) / (SIN(alpha + beta) + SIN (alpha) )

REM Coordinates of first polygon
FOR s = 0 TO turtles

c = Pi * ~2 * s t 1) / turtles
a(s) = SIN(c): b(s) = COS (c)

NEXT s

REM Drawing all polygons
FOR m = 1 TO 70

PSET (a (0), b (0) )
FOR s = 1 TO turtles

LINE -(a(s), b(s))
NEXT s

REM Definition of next vertices
FOR n = 0 TO turtles

aux = a(n)
a(n) = factor * (a(n) * COS (alpha) + b(n) * SIN(alpha))
b(n) = factor ~. (-aux * SIN(alpha) + b(n) * COS(alpha))

NEXT n
NEXT In

The initial distance from the centre of the square to each turtle is' 1. The
coordinates of the position of the turtles are stored in the arrays a and b. At each
step the square is rotated clockwise through the angle alpha, and then reduced so
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that the vertices are on the previous square. The variable turtles is initialised
to 4, but you can. change it to any number. Figures 1 and 2 show the screen outputs
corresponding to turtle = 3 and turtle = 6 respectively.

Figure 1

Figure 2

.* * * * *
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PROBLEM CORNER

SOLUTIONS

PROBLEM 22.2.1 (from The Chicken from Minsk; submitted by
Lachlan Harris)

Old Man Mazay rows for his vodka
Old Man Mazay (the alcoholic) is rowing down a river. The current is 2

mileslhour. Just as Mazay is passing under a bridge, he takes a drink, but instead of
returning the bottle to the stem of the boat, he drops it into the river! Mazay
continues rowing downstream for half an hour, until·he realises. he is thirsty once
again. Mazay roWs at 3 mileslhour, but aided by the current, h~ goes at 5
mileslhour. How long will Mazay take to retrieve the bottle, and how far from the
bridge will he be at that time?

SOLUTION

The simplest way to solve the problem is to measure the speeds relative to the
flowing water. In this frame of reference, the floating bottle is stationary, and
Mazay moves away from the bottle for half an hour, then towards the bottle at the
same speed, so it takes Mazay another h~lf an hour to return and retrieve the bottle.
During the one hour it has taken him altogether, the bottle has moved at 2
miles/hour relative 'to the bridge, so it must be 2 miles from the bridge.Mazay's
rowing speed is not needed to solve the problem.

Solutions were received from Carlos Alberto da Silva Victor (Nil6polis,
Brazil), Julius Guest (East Bentleigh, Vic), KeithAnker (Glen Waverley, Vic), and
Lachlan Harris (Gisbome South, Vic).

PROBLEM 22.2.2 (from The Chicken from Minsk; submitted by
Lachlan Harris)

Masha's mathematical turtles
Masha has trained her four turtles .to always follow each other. She arranges

them at the comers of a square, as shown in the diagram [Figure 1], with each turtle
facing its clockwise neighbour. The turtles move at one constant speed, V. What
will happen to the square [with a vertex at each turtle]? When will the turtles meet?
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Figure 1
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SOLUTION by Julius Guest

We realise that the four turtles fonn the comers of a uniformly shrinking square
which rotates clockwise as the turtles move toward the centre where they must all
meet eventually. Suppose the turtles are arranged in, clockwise order: A, B, C and
D. Turtle A would then eventually meet turtle B at the centre., turtle.B would
likewise meet turtle C there, and the same would. apply to C meeting D and D
meeting A. The length of each path must then be the length of the side of the given
square. (To see this, note that the velocity of turtle B is always perpendicular to
that of turtle A, so turtle B is not moving toward or away from turtle A; hence turtle
A will reach turtle B in the same time as it would have if turtle· B had stayed in its
original position.) If now the side length of the original square is a units, and their
constant common speed is V, then the four turtles must meet at the centre after
a I V units of time have elapsed.

Also solved by Carlos Victor, Keith Anker, and Lachlan Harris.

A further analysis of this problem can be found in Michael Deakin's article
The Four-Turtles Problem, which appears elsewhere in this issue.

PROBLEM 22.2.3 (based on a problem in New Scientist)

Three churches A, Band C are equally spaced from one another, ie., they lie at
the vertices of an equilateral triangle. George is standing at a point which is 8km
from A, 5 Ian from Band 3 km from C.

(a) Show that George must be outside the triangle.
(b) How far apart are the churches?
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SOLUTION

Function 4/98

(a) Let P be the point where George is standing. Using the triangle inequality
applied to the triangleBCP, we deduce that BC < 8. Since George is further
from A than the side length of the triangle ABC, George must be outside the
triangle.

(b} There are various ways of approaching the problem. The one we present here
is based on the solution submitted by Julius Guest.

Let the side length ofABC be x km, let the coordinates of the vertices be

A(O, 0), B(x, 0), and C(x / 2, xJ3 / 2), and let P(p, q) be George's
position. Using the three distances given, we obtain the following equations:

(p - x / 2)2 + (q - xJ3 /2)2 =9

Eliminate q from (1) and (2) to obtain

p = (x2 + 39) / 2x

Next, use (1), (3) and (4) to yield

q =(x 2 + 71)/ 2xJ3

Now, use (1), (4) and (5) to arrive at

(x2 -49)2 =°
Since only the positive solution of (6) is meaningful here,x =7 .

(1)

(2)

(3)

(4)

(5)

(6)

The problem can also be solved using the cosine rule fo~ triangles,but the proof
is still rather complicated. The fact that the answer is an integer suggests that it
should be possible to find a simpler proof, perhaps a purely Euclidean proof (with
no coordinate geometry or trigonometry). The problem offers some tantalising
hints in this direction. It turns out that P is on the' circumcircle of the triangle; this
follows from AP = BP +. CP , using the converse of a particular case of Ptolemy's
theorem that readers were recently invited to prove (Problem 22.1.2). Also, the
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angles APB and APe both have measure 60°. Perhaps one of our readers can
construct a Euclidean p'roofthat incorporates these observations in some way.

Solutions were received from Julius Guest, Carlos Victor, and Keith Anker.

PROBLEM 22.2.4 (Garnet J Greenbury, Brisbane, Qld)

Let k be the positive solution of the equation k 2 + k -1 = o. Prove that:

where an is the nth term of the Fibonacci sequence 1, 1,2, 3, 5, 8, ....

SOLUTION

The proof proceeds by induction on n, starting with n =2. When n =2, the

equation to be proved becomes k 2 =-(a2k - a1)' Le. k 2 =-(k - 1), which is true
by the definition of k. Now suppose the equation is t~e for a fixed value of n, say
no. We need to deduce that it is also true when n = no + 1. We have:

= (_l)no+l(a k - a _)k. . . no no 1

= (-, l)nO+1(a k2 - a k)no no-1

= (_l)no+l[ano (1- k) - ano-1k] since k2 + k -1 =0

= (-1)no +
1[ano - (ano + ano -1 )k]

= (-1)no+1(ano - ano+lk)

= (_l)(no+1)+1(a k - a )no +1 no

By induction, the result is true for n = 2, 3, 4; 5, ....

Solutions were received from Carlos Victor, Julius Guest, and Keith Anker.
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PROBLEM 22.2.5 (from Crux Mathematicorum with Mathematical
Mayhem)

Lucy and Anna play a game where they try to form a ten-digit number. Lucy
begins by writing any digit other than zero in the first place, then Anna selects a
different digit and writes it down in the second place, and they take turns, adding
one digit at a time to the nuniber. In each tum, the digit s~lected must be different
from all previous digits chosen, and the number formed by the firstn digits must be
divisible by n. For example, 3, 2, 1 can be the first three moves of a game, since 3
is divisible by 1, 32 is divisible by 2, and 321 is divisible by 3. If a player cannot
make a legitimate move, she loses. If the game lasts tet:l moves, a draw is declared.

(a) Show that the game can end up a draw.

(b) Show that Lucy has a winning strategy and describe it.

SOLUTION

(a)· The games ends up a draw with the number 3816547290. (This was the
answer to Problem 20.5.5 from the October 1996 issue.)

.(b) There are many winning strategies for Lucy. One strategy is to start with 2.
Anna must then respond. with 0, 4, 6 or 8. We consider each of these
responses in tum.

If Anna chooses 0, Lucy then chooses 4. Anna ~ust now write down 8, and
Lucy wins by choosing 5.

If Anna chooses 4, Lucy then chooses O. As before, Anna must now write
down 8, so again Lucy wins with 5.

If Anna chooses 6, Lucy chooses 1 and wins.

If Anna chooses 8, Lucy then chooses 5. Anna must now write down 6, and
Lucy wins with O.

Solutions were received from Carlos Victor and Keith Anker.

PROBLEM 22.2.6 (Mathematical Team Contest "Baltic Way - 92")

Find all integers satisfying the equation 2x
( 4 - x) =2x +4.
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SOLUTION by Carlos Victor

Since x = 4 is not a solution, we have:

2x- 1 = x+2
4-x

(7)
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Observe that 2x
-

1 >°for all x E R, so we have -2 < x < 4. The integers in this
range are -1, 0, 1, 2, 3. Substituting each of these values in tum into (7), we find
that x = 0, 1, 2 are the only solutions.

Solutions were also received from Julius Guest and Keith Anker.

PROBLEMS

Readers are invited to send in solutions (complete or partial) to any or all of
these problems. All solutions received by 7 December 1998 will be acknowledged
in the February 1999 issue, and Clark's article "Patterns in Tattslotto Numbers" in
this issue.

PROBLEM 22.4.1

Use a "balls in cells" approach to find the probability that there are no runs longer
than two consecutive numbers when drawing 6 numbers from 1, 2, ... , n.

PROBLEM 22.4.2 (J A Deakin, Shepparton~ Vic)

Find all 2 x 2 matrices that commute with the matrix [::] .

PROBLEM 22.4.3 (Julius Guest, East Bentleigh, Vic)

Given that x + Y + z + U =0, prove that

x 3 + y 3 +z3 + u3 + 3(x + y)(y +z)(~+ x) = 0.

PROBLEM 22.4.4 (from Mathematical Spectrum)

A piece ·of wire of length I is bent into the shape of a sector of a circle. Find the
maximum area of the sector.
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PROBLEM 22.4.5 (from the Memorial University Underg~aduate

Mathematics Competition, 1997)

1 1 1·
Prove that 1+ - +.- +...+-2 < 2.

. 4 9 n

1 1 1 1t
2

(Note: Advanced methods can be used to show that 1+-+-+".+2+".=-'
- 4 9 n' 6

from which of course the inequality follows immediately. However, the inequality
can be proved using elementary methods, without appealing to this result.)

PROBLEM 22.4.6 (from Crux Mathematicorum with Mathematical
Mayhem)

In how many ways can t~e 12 vertices of a regular icosahedron- be partitioned into
four classes of three vertices, such that the vertices in each class belong to the same_
face?

* * * * *

The Pythagoreans and Platonists were carried further by this
love of simplicity. Pythagoras, by his skill in mathematics,
discovered that there can be no more· than five regular solid
figures, terminat~d by plane surfaces, which are all similar and
equal; to wit, the tetrahedron, the cube, the octahedron, the
dodecahedron, and the eic-osihedron. as nature works in the most
simple and regular way, he thought that all elementary bodies
must have one or other of those regular figures; and that the
discovery of the properties and relations of the regular solids must
be a key to open the mysteri~s of nature.

This notion of the Pythagoreans and Platonists has
u·ndoubtedly great beauty and simplicity. Accordingly it prevailed,
at least to the time of Euclid. He was a Platonic philosopher, and
is said to have wrote all the books of his Elements, in order to
discover the properties and relations of the five regular solids. The
ancient tradition- of the intention of Euclid in writing his elements, is
countenanced by the work itself. For the last book of the elements
treats of the regular solids, and all the preceding are subservient
to the last.

- Thomas Reid in Essence ofthe Powers ofthe Human Mind



BOARD OF EDITORS

C T Varsavsky, Monash University (Chairperson)
RM Clark, Monash University
M A B Deakin, Monash University
K MeR Evans, formerly Scotch College
P A Grossman, formerly Monash University
J B Henry, formerly Deakin University
P E Kloeden, Weierstrass Institute, Berlin

* * * * *

SPECIALIST E.DITORS

Computers and Computing:

History of Mathematics:

Problelns and Solutions:

Special Correspondent on
Competitions and Olympiads:

BUSINESS MANAGER:

C T Varsavsky

M A B Deakin

P A Grossman

H Lausch

* * * * *

B A I-Iardie PH: +61 3 9903 2337

* * * * *

Published by Department of Mathematics & Statistics, Monash University


	Cover
	Editorial
	An interesting problem and some creative solutions, B. Henry
	The four-turtles problem, M.A.B. Deakin
	Patterns in TATTSLOTTO numbers, M. Clark
	Letter to the editor
	John Wallis and his wonderful product, M.A.B. Deakin
	Digesting mathematics
	The turtles' paths, C. Varsavsky
	Problem corner



