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EDITORIAL

Welcome to this issue of Function! We hope it contains much that will
interest you .

The figure on the front cover i~ related to the leading article written
by our Honours student Selena Ng about non-euclidean geometries. Selena
gives a very intuitive introduction to the geometry of the hyperbolic plane,
a geometry in which parallels through a point are not unique, and in which
the sum of the angles of a triangle is less than 1f radians. What you see on
the front cover is a tessellation of the plane with hyperbolic tri~ngles. There
is much stimulating reading in this, article.

The second feature article is a contribution from Rik King. The author
poses the practical problem of finding the base distance between two leaning
ladders. The problem is modelled with a polynomial equation of degree 8,
and gives rise to the question of 'where the spurious solutions come from.

In the History of Mathematics column, our regular columnist Michael
Deakin explains how in some cases two mathematicians think the same
thought, but without knowing about each other. He illustrates this with
a few classical problems and theorems which' in each case \vere discovered
independently by two mathematicians.

The Internet is a popular topic these days. In' the Computers and Com
puting column, of this issue you will find the serious limitations this medium
currently has for the communication of mathematics, and' the' latest news
about how the problem is being solved.

Many pages of this issue of Function are devoted to the Problem Corner,
giving solutions to previous problems, and presenting new ones. We are very
pleased to see so many readers contributing to this section of our journal.

Happy reading!

* * * * *
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A NON-EUC,LIDEAN GEOMETRY

Selena Ng, Monash University

Many· of you would already have met the Euclidean plane and its geometry
(even if you didn't know it!). Triangles, circles and squares as we know them
are all defined in the Euclidean plane, in which the angles of a triangle add
up to 1f radians. Something else we also know, and use probably without
thinking, is that there is a unique parallel to a given li~e through each point
in the plane. That is,. for every line L and point P not on L, there is only
one line through P that never intersects L:

P The parallel.............................................................

L

The Euclidean plane is named after the Greek mathematician Euclid
(325 Be) who was one of the first to attempt to formalise the foundations of
geometry in his work Elements. One of his postulates essentially stated that
parallels are unique, and for 2000 years mathematicians attempted to prove
this parallel postulate, and failed.

But in the 1820s, the German mathematician Gauss, the' Hungarian
Bolyai and the Russian Lobachevski began to conceive a new notion. Per
haps it was possible that a geometry other than the Euclidean g~ometry

existed, a geometry where the parallel postulate does not hold, Le. parallels
are not unique (and are in fact infinite in number), and in which the sum
of the angles of a triangle· is less than it- radians. And so was born the con
cept of a non-euclidean geometry, which has come to be known as hyperbolic
geometryl.

However, this non-euclidean geometry lacked intuitive appeal, and a few
decades passed before mathematicians began to take notice and study these

new ideas.

Let us try to gain an intuitive. feel for the nature of hyperbolic geome
try. Returning to the Euclidean plane for the moment, how do we define
Euclidean distance? If we layout our cartesian coordinates on a flat piece
of ground and label points A, B, C, D such that the distance between A and
B is equal to the distance between C and D, then it takes us the same time

lSee also Function Vol 3 Part 2.
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to walk" (assuming we walk at the same speed both times!) from A to B as
it cioes from C to D.

y

~A Cl)--:..-...:..-..-+-----~--O B

C----'-"t..--t---------eD
_____...a-- --+x

What happens in the hyperbolic plane? Now imagine a two-dimensional
universe with cartesian coordinates but with an infinitely cold x-axis. Then,
as the people "in this strange land approach the x-axis, they contr"act so that
it takes them less "time to walk from A to B than it does from C to DI Even
stranger, however, is that their rulers also contract as much as they do, so
that it seems perfectly normal to them!

y

Ae--...e-.-~-+----------eB

_____....1..- ----, X

infinitely cold

More formally, we can write that

Hyperbolic distance =
Euclidean distance

y

where y is the Eucli~ean distance to t.he x-axis.

What we have essentially seen here is the French m~thematicianPoincare's
(1854-1912) model of the hyperbolic plane, which uses the Euclidean upper
half-plane (y > 0) together with the hyperbolic distance defined above. This

, definition of distance tells us much about the geometry of the plane: in par
ticular, the nature of the curves of shortest length between any two points
in the plane.
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For the Euclidean plane, the straight line connecting two points is clearly
the curve of shortest length. Now if we take "lines" in the hyperbolic plane
to ~e curves of shortest length, then these hyperbolic "lines" turn out to
be (arcs of) ·semicircles sitting on the x-axIs and (segments of) straight lines
perpendicular to the x-axis (you can think of these as semicircles with infinite
radius). .

y

hyperbolic lines
/'

--JI-.. ...L---:----'------.x

The Poincare. model allows us to see some of the ·geometrical features
of the hyperbolic plane, and a beautiful way of demonstrating this is via
tessellations.

A tessellation is a way of covering a s~rface with non-overlapping con
gruent polygons, called tiles. Let us consider in particular tessellations by
triangles with angles 1f/p, 1fIq, 1fIr radians, where p, q, T are integers; we will
call these (p, q, r) tessellations. N~~ how do we generate a tessellation? And
how do we determine what sorts of triangles are suitable for tiling the plane?

Let's start with the straightforward-Euclidean case. Since the angles of a
triangle sum to 1f radians, we must have

111-+-+-=1,
p q T

which leads to only three possihie triangles

1 1 1
3+3+3
111
2+4+4
111
2+ 3+ 6'

To generate a tessellation, we will assume that triangles can be obtained
from each other by. reflections in the sides of the triangles.

Take the (2,3,6) triangle as an exalnple.
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The starting triangle is:
1t/6

~
1t/2 1[/3

113

The first reflections are:

lines of reflection

Further reflections are:

The (2,3,6) tessellation is:

This tessellates the Euclidean plane with hexagons as well as triangles.
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Try the (3,3,3) and (2,4,4) by hand. You should find that they tessellate by
equilateral triangles and squares respectively.'

Now what does a hyperbolic triangle look like? The Euclidean triangle is
the result of the intersection of three non-parallel Euclidean lines (excluding
infinity as a possible value for p, q or r). So taking the intersection of three
non-parallel hyperbolic 'lines', we have a (p, q, r) triangle.

y

The angles of a hyperbolic triangle add up to less than 1f radians (measure
it!), land so to tessellate the hyperbolic plane we require

111
-+-+-<1.
P q r

You can quickly see that there is an infinite number of possible combinations
ofp, q,T which satisfy this inequality. So there is an infinite number of (p, q, r)
tessellations of the hyperbolic plane.

Let's choose as a starting triangle a (2, q, r) triangle, where one of the
angles is 1r /2 radians.

y

rr/q

------""--L-----&.---&..I---+x

Yo~ can find the coordinates, angles. etc. of the starting triangle by ordinary
geolnetry of circles, but this is quite hard.
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Using the same idea as before, we now have to reflect in the lines along
the sides of the triangle, but hyperbolic reflection is a little tricky as we have
to take account of the hyperbolic distance. A formal definition:

If L is a hyperbolic line with ends 1, r and centre 0, then the
reflection in L of the point P is the poin~ pIon the line 0 Pwhere

OF· OP' = (Or)2

Note that if we just have the Euclidean half-line with ends at y == 0 and
y = 00, then the equation above' reduces to normal Euclidean reft~ction.

(Keep r fixed and, let I tend to -00 on the x-axis.)

So as for the Euclidean (2,3,6) tessellation, if we first reflect in the sides
of the starting triangle, then keep reflecting in its reflections and so on, we
can generate a (2, q, r) tessellation of the hyperbolic plane.

A word of advice: don't try this by hand! I wrote a program in C to
generate the (2,3,7) tessellation shown on the front cover.

We gain a certain intuition for hyperbolic distance from the Poincare
model. All the (2,3,7) triangles in this tessellation are of equal hyperbolic
size (since they have the same angles); however, they become infinitely small
in this model as they apprQach the x-axis.

We can also see in the picture below some examples of non-unique par
allels. The line L (thick line), for instance, llas four parallels through the
point P, namely [1, £2, £3, and £4 (dotted lines).

There are other models of the hyperbolic plane ,vhich you may wish to
explore, in particular the Beltrami disc model ,vhich appears in many of
the works of the Dutch artist M C Escher (see Circle Limit I, II, III, IV in
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The Magic Mirror of M.e. Escher by Bruno Ernst). A related article also
appeared in Function Vol 3 Part 4.
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LEANING LADDERS

Rik King, University of Western Sydney'

Part of the fascination of mathematics is that, often, what seems to he 'a
fairly simple looking problem gives rise to a complicated equation required
for its solution. The famous "cattle problem" , said to have been propounded
by Archimedes (circa 500 Be), for the discomfiture of a rival, Eratosthenes,
merely involved numbers of cattle of various kinds and different colours. It
came down to solving an' equation with two squares,' yet the integer needed
to satisfy that equation consisted of 206545 digitsP

Hardly likely to achieve the same fame but, nevertheless,· net without
its own interest, is the problem following. Consider the situation shown in

Figure 1 below:

Figure 1

Two ladders of lengths 3m and 4m lean across a narrow path by ~aking

angles with vertical walls on each side. Their crossing- 'point is at height 1m
abov~ the path - how wide is the path?

Suppose that the width of the path is d. It will be shown below that
the final explicit expression from '\vhich d may be found turns out to be a
polynomial which is of d~gree 8t

1The cattle problem is discussed in Function Vol 16 Pa1't 3.
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To establish the equation for d, we redraw as in Figure 2 below, with
points labelled as shown:

4-y
A

p

B

and finally

C

d

Fig'.ure2

AO x, so OL = 3 - x

BO == y, soOM==4-y

M

q

AB ==p, ML = q, and Be = l.

Now from. this point, it is possible to work out many relationships. Some
are shown below, although it is certainly not claimed that the following
selection of equations is necessarily the most economical or elegant which
might be devised.

From the triangles BGO, BLM the application of Pythagoras's theorem
gives:

[2 + 1 == y2

d2 + q2 = 16.

From the same triangles (which happen to be similar),

1 q

y 4

(1)

(2)

(3)
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Then, by substituting y = v'f2+1 (from (1)) and q == V16 - d2 (from (2))
into equation 3, we obtain

1 )16 - d2

Jl2+T = 4 (4)

(5)

(6)

(7)

In a fashion similar to the preceding, triangles LCO and LBA give the
following relationships:

d2 + p2 = 9
1 p

--=-
3 - x 3

and, following the same procedure as before, using these three equations
taken together, we get

1 v'9=dJ
3

(8)

Now equations (4) and (8) contain only land d. Since the former is not
required, an equation in d may be obtained by making 1the subject of each
of (4) and (8). Thus, after squaring and inverting each, we get:

I.e.

~ 16 fd216 _ d2 - 1 = l = d - ~ 9=d2 (9)

(11)

(10)~ 16~ d2 = d - ~ 9 :2d2 ·

We notice, after rearranging, that d is a factor of (10), so that we have

d ( ~ 16 ~ d2 + ~ 9 ~ d2 - 1) = 0,

whence d = 0 may be extracted as a solution of the equation (11), but not,
of course, of the original problem!

From this point there are two paths which may be taken. First, if the
reader is in the fortunate position of having access to computer algebra pack

.ages such as Derive or Mathematica, he or she will find that the commands.
soLve or NSolve (respectively) will give the solution of (11) as:

d = 2.60329,
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(12)

which finishes the problem there. In fact, the only other solution technique
is to use trial and error, beginning with some arbitrary choice for d, bearing
in mind that for a starting point, 0 < d < 3, which may be deduced from an
examination of Figure 2.

Second, for the sake of completeness, can we progress to an explicit ex
pression for d, that is, one free- of radicals?

Rearranging (11) and squaring gives:

1 ~ 1
16 - d2 = 1 - 2~ 9=d2 + 9 _ d2'

which, after squaring yet again, comes down to:

(
-151+25d2-d4)2 4
(16 - d2)(9 - d2) = 9 - d2 '

Then, after multiplying out, the equation

dB - 46d6 + 763d4
.- 5374d2 + 13585 == 0

(13)

(14)

appears. This is the degree 8 polynomial in d mentioned at the beginning of
the article.

A plot of the polynomial of degree 8 in (14) is shown in Figure 3 below.

40

20

Or---------'r--------------J~__jd

-20

-40

2.5 2.6 ·2.7 2.8 2.9

Figure 3

From this figure it may be seen that there are now two values of d which
are roots of equation (14). We now make use of a computer algebra package
to find the values of the roots of (14) more exactly.
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II;.

.1i.

Derive initially cannot cope with a" polynomial of such high degree; but
it may be encouraged to do so by making the substitution

d2 = u,

after. which the values below follow. Mathematica, however, (with the NSo·lve
command) immediately gives all 8 roots, as expected:

d = -3.92241± O.0721765i (two complex roots)

d 3.92241 ± O.0721765i (two complex roots)

d = ±2.60329 (as previously found)

d ±2.909072.

Plainly, both the negative values of d are inadmissible for the original
problem, but what about the new value of d = +2.909072?

Here is a point of interest..This value- must satisfy equation (14); it does
not, however, satisfy the original physical problem.

Can you explain this?

References

10 Ersoy Y, Moscardini A, 1993, Mathematical Modelling Courses for
Engineering Education, ~pringer-Verlag, New York.
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* * * * *
The knowledge I had· in mathematics, gave me great assistance in

acquiring their phra~eology, which depended much upon that science,
and music~ and in the latter I was not unskilled. Their ideas are per
petually conversant in lines and figures. If they would, for example,
praise the beauty of a woman, or any other animal, they describe it by
rhombs, circles, p~arallelograms, ellipses, and other geometrical terms,
~r by words of art drawn from music, needless here to repeat. I observed
in the king's kitchen all sorts of mathematica.1 and musical instruments,
after the figures of which; they cut up the joints that were served to
his majesty's table.

- Swift Jonathan in Gulliver's Travels

* * * * *
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Thinking Other People's Thoughts

Michael A B Deakin

-In my column for this issue, I would like to revisit some of the topics I've
discussed in the past, but from a single point of view: that of seeing how it
can come about that someone can ·rediscover the thinking of someone else. In
such cases, one mathematician and another mathematician think the same
thought, but without either depending on or copying from the other.

Of course, in other areas, say literature, close correspondence of text in
dicates copying (or plagiarism -as it is called), and it is rightly condemned.
In all intellectual endeavours, IU:athematical or otherwise, it is good practice
as well as being simple courtesy to acknowledge the contributions of oth
ers. Regrettably it is not always followed. However, my various cases to
be discussed here are all matters of simple rediscovery. Indeed, for someone
redis~overing a result it comes as a disappointment to learn that one has
been' preceded; one likes to be first.

I'll take five case studies, all discussed in Function previously, but draw
ing out this aspect of the matter. Four of them are geometric, the fifth is
"algebraic" .

1. Fasbender's Theorem

In my column for June of last year, I discussed the history of Fasbender's
Theorem. In rough terms this says that if a floppy polygon is made from rods
held together by hinges at their ends, then the polygon's area is maximised
when its vertices (the hinges) are arranged to lie on a· circle.

We saw that the case of four rods had been known to the ancient Greeks,
and there the matter rested for almost two millenia. Then in 1843, a minor
mathematician named Umpfenbach stated the general result and proved the
case for five rods. He may have thought this was enough to establish a
"pattern" for the general case or he may not have. If he did, .then ,he was
wrong. However, in very short order another minor mathematician, Eduard
FaSbender, was able to show that the case of four rods did indeed generalise
to that of any number of rods.

Fasbender's paper .began by giving a very clumsy proof of the case of four
rods. It is clearly his o\vn, and equally clearly he was quite unaware that this
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much had been kno\vn" from antiquity. The argument by \vhich he ext,ended
the case of fouf rods to the general situation is, however, most elegant. We
don't know who named the general results as "Fasbender's Theorem", but
whoever it was did give credit where credit was due.

Another proof, also very elegant, is now known. I learned it from a book
by Ivan Niven, a contemporary American mathematician. So far I haven't
found out who first discovered it; I speculated that it was Niven himself, but
I now know "this is not the case. 1 Niven doesn't tell us where he got it, quite
likely because he had forgotten where he learned of it, or else because he
learned of it from· someone not the actual originator.

But all this work assumed that it was possible to arrange the vertices so as
to lie on a circle. Nobody seemed to. realise that this was a II:latter requiring
proof, and the proof that finall,Y appeared, though simple to provide, is
anything but simple to discover.

The gist of that proof was first given by D S McNab in 1981, but unfor
tunately McNab didn't consider all possible cases and so his proof required
patching up. The first adequate proof was supplied in a book by Z A Melzak,
published in 1983. Whether Melzak knew of McNab's work we can't say. He
need not have drawn attention to it because, had he done so, he would also
have been under the obligation of pointing out its unsatisfactory nature.
Some authors decide to 'handle such matters one way; others the other.

Later Melzak's proof was rediscovered by ProfessorChih-Han Sah (just
last year). He sent it to an email group of which I am a member (and .in
direct response to a query of mine). Another member of the group, however,
pointed out that Sah had rediscovered the exact same proof that already
appeared in Melzak's book. There was no question but that Sah had had
the idea, the same idea; he didn't fry in any way to pass off Melzak's or
McNab's work as his o\vn. Doubtless he was disappointed to learn that
Melzak had beaten him to it, but such is life!

20 The Four Circles Theorem

The Four Circles Theorem (also known as. the I<iss Precise) was the sub
ject of our cover story in August 1991: -Imagine making four circles out of
wire. Place three of them on a smooth table top and slide them about until
each of the three touches the other two. Then try to place the fourth circle in
such a way that it touches (i.e. just touches) each of these three.. Generally

1See the update in my column for February this year.
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this will not be possible, but in special circumstances it may be achieved. If

the first circle has a radius of Tl, the second r2 and so on, then the condition
is

.!- + .!- + .!- + .!- _ ! (.!- + .!- + .!- + .!-) 21'f 1'~ 1'i 1'1 - 2 1'\ 1'2 1'3 1'4 • (
1
)

This theorem was first discovered in 1643 by Rene 'Descartes, but it has been
rediscovered several times since· then.

The first of these redis~overers was Jacob Steiner, a geometer who re
vived this branch of mathematics in the early part 0.£ last century. We shall
have occasion to speak again of Steiner in the course of this article. He re
discovered the Four Circles Theorem in 1826. There is no question of his
plagiarising Descartes. He investigated the same pro~lem (and of course
came up with the right answer) quite independently.

A few years later, an English. amateur mathematician, Philip Beecroft,
rediscovered the result, unaware that he had been twice anticipated.· .

Nor did this end the story, for a very eminent chemist, Frederick Soddy,
also found the result in 1936. Soddy.had been sickened by the military uses
of chemistry in World War I and turned away from that discipline, in which
he had advanced to the very highest levels. (He won a Nobel Prize!) One
of the areas he turned to was Inathematics. His announcement of the Four
Circles Theorem took the form of a verse entitled «The I<:iss Precise" and
was one of two results he published in this unusual manner.

When I .first wrote on this, I thought this catalogue \vas surely complete,
but I later learned of even a further rediscovery. A Colonel R S Beard
gave the result in 1955. This ,vas certainly an independent discovery (as
of course were the others) because Beard missed the particularly elegant
form - Equation (1). You can retrieve Beard'8 form of the result by solving

Equation (1) as a quadratic in one of the radii, say 1~1'

3. Urquhart's Theorem

Suppose two lines intersect at A. On one line choose two points Band
. C (B being closer to A); on the other, choose t,vo points D and E (D being

closer to A). Join BE and CD, and let the·intersection of these lines be F.
Then Urquhart's Theorem states:

If AB+BF=AD+DF, thenAC+CF=AE+EF.

The late Mac Urquhart was employed at the University of Melbourne and
later at the University of Tasmania. He came to this theorem independently
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[

in 1964, and although he did not himself publish it (although he was very
creative, he published nothing), others saw to it that proofs were published
and that Urquhart received the credit. His original proof in fact appeared
in Function in an article by John Barton, one of our regular contributors.
(See Volume 2, Part 3·.) A nicer version was soon produced, better than the
original, and this is the one we now use.

For this and more, see my column for October 1990. This will also give the
information that another proof ~ay be given as a special case of a theorem
discovered in 1860 by the French geometer Chasles.· However, Chasles did
n~t go on to make this further deduction.

So for many years it was believed that Urquhart had indeed found a new
theorem in elementary geometry. In a sense this W(1$ true, but he wasn't
after all the first to discover it. We no\v kno\v that Augustus De Morgan, an
English mathematician, published it semi-p~eudonymouslyin 1841. Indeed,
De Morgan had in essence the same simplified proof that is now standard.

Shortly after Urquhart's rediscovery (as we now must concede it to be),
the Australian Mathematical Society held its meeting in Hobart. Urquhart
had by then died but many of his colleagues were still around. One of the
leading speakers at that conference was the American geometer Dan Pedoe,
and I rather suspect that it was in this context that Pedoe learned of the
theorem. Certainly he was attracted toit, wrote further on it and also delved
into its history. Among other things Pedoe tells us is the information that a
geometer called Yaglom, again independently of Urquhart, and only slightly
later came up with a result from which the theorem easily could have been
derived, but \vasn't. Shades of Chasles!

Thus Pedoe was active in ·using Urquhart's result as. a springboard for
further investigation. Urquhart himself, ho\vever, rediscovered a result that
De Morgan had found earlier (and which Chasles failed to notice.). It may be
just "the luck of the draw" that Pedoe and others took notice of Urquhart's
discovery, whereas an earlier generation overlooked De Morgan's paper.

4. The Steiner point

Take three points A, B, C. We seek a fourth point P so situated that
the total distance AP + BP + OP is Inimimised. To fix matters, think
of a triangle A.BC with? as some point in its interior (or perhaps on its
boundary).

This problem was discussed in Function in the Octo.ber 1987 issue. First
let me tell you the answer, because the. main purpose of this present dis-
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cussion is to look at a rather complicated history of discovery. The answer
comes in two parts.

If there is a vertex of the triangle for which· the angle is 1200 or
more (of course there can be at most one such), then that vertex is
the required point.

Otherwise, there is a unique point P inside the triangle for which
the angles APB, B PC, CPA all equal 1200 and that is the point we
want.

This problem was considered by Steiner in a pair of discussions (1835,
1837) and is often attributed to him in the belief that he was the first to
consider the matter. In Steiner's honour the point P is· sometimes referred
to as the "Steiner point" of the triangle ABC.

A particularly elegant analysis of the Steiner point was provided by Hugo
Steinhaus early this century. Steinhaus imagined a table with holes drilled
in its top. at points corresponding to A, B, C. Strings were supposed to be
passed through these holes. Above the table they were knotted together;
below' they supported equal weights. This system adjusted itself so thf).t it
came to rest with the knot at the Steiner point.

One of the more remarkable discoveries that came to light after I had
written on this matter was the- unearthing of an obscure memoir by two
French mathematicians, Lame and Clapeyron. ·These two by at the latest
1829 had had both the Steiner and the Steinhaus ideas. But it seems that
nobody noticed their work. For more on this matter, see my column for
February 1990.

But recently I came on yet another discussi?n of the matter. You may
be interested to hear how I found it. In Function recently (February 1997) I
published an article jointly authored with Otto Steinmayer on the flight of
arrows. Gordon Troup, one of our readers and occasional contributors, was
taken by a footnote in that article and this led to some collaborative research
9Y Gordon and me. In the course of that work we came across a series of
articles by the nineteenth century physicist P G Tait analysing the flight of
not arrows but golf balls.2

2Tait was, as well as being a physicist, a passionate golfer. His son Freddie was more
than this, a champion. His career was cut short by his death in 1899 in the course of the
Boer War. L
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While pursuing this work, we came across a brief paper by Tait on (you've
guessed it) the Steiner problem. Tait in fact traces the origins of the problem
back even further than the early 1800s.. To Fermat, in fact; that is to say,
some 200 years earlier. Tait then went on to solve the problem himself,
although he dutifully documented the solutions he had already read.

But Tait wanted to use quaternions to do the ~ork of solution. This would
have been a quite natural thing for Tait to do, as Tait was the most enthusi
astic follower of Hamilton's newly invented quaternions.3 But next comes a
surprise. "The quaternion investigation at once suggests the following kine
matical solution of the problem." And there fo11o,vs the Steinhaus solution,
'which we 'know to have already been thought of by Lame and Clapeyron.

So this marvellous piece of lateral thinking was the independent product
of not merely two but three separate investigations!

5. Thermodynamics and Inequalities

After all this geometry, some algebra. The result to be discussed is this.

Let a, b, c, ... be positive quantities, n in number. Then we may

f h ·h -. Adfi db A a+b+c+ ... d horm t e arlt metlc mean e ne y .= an . t e
n

geometric mean G defined by G = \!abc . .. ~ Then A 2 G.

A good proof of this result can be rather hard to find, but we reproduced
one in Function (February)984). It is the work of Ivan Niven, whom we
filet in Part 1 of this article. We also gave a demonstration (rather than a
strict proof) in our issue for February 1981. This proceeds as follows.

Consider n objects, identical in all respects except for their tem
peratures, which we will suppose to be a, b,.c, . ... Put all these
objects inside a thermally sealed calorimeter so that no heat can
get in or out. Then the objects exchange heat among themselves
and eventually reach a common temperature, which is A. This
is iIi consequence of the First Law of Thermodynamics. However,
there is also a Second Law of Thermodynamics. This tells us that
a quantity called the "entropy" must increase as time goes by. The
entropy of each of the objects is proportional to the logarithm of its

3Quaternions have been the subject of several articles in Function. The most recent
discussion is in the issue for October 1995.
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temperature. In fact, if we choose the right units, we can make the
entropy equal to the logarithm of the temperature.

So when we start the entropy is log a+log b+ log c+ . ... Because
of the law of logarithms, we may write this as log(abc .. ~), which in
its turn is n log G. The entropy attained when the common temper~

ature is achieved is n log A, and this must be the larger of the two.
That is to say, n log A > n log G, and it follows that A > G(or we
could have, in the very sp'ecial case a = b = c = ..., that A = G).
This completes the demonstration.

I first heard of this demonstration (it is not a proper mathematical proof)
as a result of the work of P T .Landsberg (Univer~ityofSouthampton) in

the late 1970s. By 1979, however, Landsberg realised that he had been
anticipated and that' the physicist Arnold Sommerfeld had had .the same
idea and had put it into a book that first saw print (but after Sommerfeld's
untimely death) in 1952.

Actually the idea goes back much further. While we were looking at
Tait's work (see the previous section of this article), we found thatTait had
also written on this question. Indeed, Tait used the technique to "prove"
more complicated inequalities, as later did Landsberg.

However, Tait seems to have thought that these demonstrations were in
fact proofs; Sommerfeld and Landsberg realised that they were not. All the
same, it is interesting to see the same idea occurring, clearly independently,
to three separate researchers.

6. Finale

It often happens that young mathematicians find for the,ffiselves some
result, only to learn that it is already known. This disappoints them; they
would prefer to have found something genuinely new. However, it is very rare
for young people or amateur mathematicians these days to discover genuinely
new results. But it is still an achievement to find for oneself things the great
mathematicians of earlier years also found.

It should be a source of pride, rather than of disappointment, that one
has thought for oneself the same thoughts as some great and famous mat~

. ematician.

* * * * *
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COMPUTERS AND COMPUTING

Mathematics and the Internet

Cristina Varsavsky

The Internet has opened many new and exciting possibilities, and it is
"already shaping the way we communicate with others. Until recently, the
Internet was available to a handful of people, mainly a~ademics, who used it
foi' the exchange of text based information. The standardisation of graphics
formats which enriched the information that can be put on the World Wide
Web - or the Web, as we tend to call it these days - was a major factor
in the explosion of the use of the Internet around the world. Now not only
academics, but also teachers, students, business people, children, and ordi
nary citizens use the Internet for communicating ideas, learning, searching,
striking deals, buying goods, chatting, playing games, etc.

Unfortunately mathematics was not ready for this new type of commu
nica~ion. Web browsers use HTML (Hyper Text Markup Language) for the
formatting of Web pages, the creation of links, and the embedding of images.
But this language does not support the display of mathematicaJ expressions,
which makes'the communication of mathematics on the Internet a very dif
ficult task. However, mathematicians have not given up; despite the limita
tions they still manage to create Web pages with mathematics content, but
they do so with much work and less than perfect results. The most common
approach is embedding equations as graphic images. This has two maj~)1'

inconveniences for the page viewer. The embedding of graphics significantly
slows down the downloading process, so reading a page with many equations
may be a very frustrating experience. Also, the font size of the equations
is fixed in their images, while ·the surrounding text varies with the user's
setup, which usually makes the Web pages look a bit awkward. There are
also other methods that rely on special HTML coding, which include viewers
for commercial mathematics software, and specialist plug-ins for the conver
sion of Ib-1EX code - the universal typesetting language for mathematics 
to be rendered by the browser. In any case, these attempts are made only
for the static display of mathematics; they do not solve the problems of the
input of mathematical expressions and- the flexible manipulation of dynamic
mathematical objects.

Just in the same ,yay tnathenlaticians have settled O~l a standard universal
language for cOlnmunicating mathematics on paper -' a product of many
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cent~riesof refinement - now they have a strong need to settle on a standard
universal language for communicating mathematics electronically, a language
which does not depend on the computing environment of the users, nor
on their preferred mathematics software. What is needed is a language to
describe mathematical objects very precisely, using minimum space and time,
so that a Web browser can render them locally and display them properly.

.Fortunately there is some good news on this front. Several software com
panies and academics have joined forces to form the' World Wide Web Con
sortium HTML-Math group (known as W3C HTML-Math, or simply W3C)
to discuss the problem of communicating and preserving mathematics with
the evolving technologies. They are focusing on the two important aspects
of mathematics communication: the encoding of mathematical language .and·
its implementation. This group has taken 'a long term view of the problem
and they are directing more energy into the encoding aspect; they believe
that if the encoding problem is solved well, documents authored today wHl
still live on when better technology becomes available.

The W3C group has set as its goal to come up with a language - to be
called M athML - that would be easy to use and would allow conversion to and
from other mathematics formats used today, such as ~'JEX, and the various

syntaxes used by computer algebra systems. The output capabilities sh~uld

include print media (including braille), graphics display, speech synthesizers,
and any computer algebra system input. The language should also allow for
future extensions.

At the same time, the W3C group also set out to implement a browser
,vhich could render the information contained in the markup language. The
goals set by the group include the capability of rendering mathematical equa
tions encoded in MathML in accordance with the viewer's preferences, and
at the highest possible _quality; proper printing; reaction of equations to
mouse commands; and communication with other applications, particularly
mathematics software, through the browser.

It seems to me that there are fascinating times ahead for on-line math
ematics. A time when ,ve will be able to .browse nicely setup mathematics
Web pages, see animations live, change parameter~, cut mathematical ob
jects and paste and edit them in our preferred mathematics software, lecture
notes, assignments, or r~search work, and vice versa. 1 can hardly wait!

* * * * *
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PROBLEM-CORNER

SOLUTIONS

PROBLEM 21.2.1

A 5 x 5 square is tiled with six L-shaped pieces, leaving one square not
covered. Where can that square be?

SOLUTION

We will show that the uncovered square can be the centre square or one
of the corners, and that it cannot 'be anywhere else.

,Examples of the possible configurations are shown in Figure 1, in which
an L-shaped piece can be inserted into the shaded region in two ways, leaving
an uncovered square in either the centre or a corner.

Figure 1

We now show that the uncovered square ,cannot be anywhere,else. Colour
the first, third and fifth rows of squares black and the others white. Each
L-shape must cover either three black squares a..nd one white or three white
and one black. There are 6 L-shapes and 10 white squares. Suppose the,
uncovered square is white. Then 9 white squares are covered. If there are n
L-shapes covering three white squares each, then there are 6 - n L-shapes

, covering one white ~quare each. Therefore 3n +6 - n = 9, so 2n = 3, which
is impossible as n is an integer. Thus the uncovered square must be black,
Le. it must be in the first, third or ~fth row. By ~ymmetry, the uncovered
square must also be in the first, third or fifth column~ We are left to show
that the squares at the centres of the sides must be covered. We will do this
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by showing that the uncovered square must be one of the black squares in
Figure 2.

Figure 2

There are nine black .squares, and it is easy to see that each L-shape
. must cover either one or two of them. Suppose all nine of these squares are
covered. If there are n L-shapes covering one black square each, there must
be 6 - n L-shapes covering two black squares each. Thenn + 2(6 - n) = 9,
so n = 3. Thus at most three of the corner squares are covered by L-shapes
covering no other black square, so at least one corner square must be covered
by an L-shape covering one other black square. Within symmetry, this can
be done in only one way, shown by the shaded L-shape in Figure 3. Then
two more L-shapes must be placed as shown, covering one black square each,
and it is now impossible to place three L-shapes in the remaining space with
two of them covering two black squares' each. We conclude that not all of
the black squares in Figure 2 can be covered, so the uncovered square must
be one of these. This completes the proof.

Figure 3

\Ve received several solutions to this problem~ Jennifer Palisse (Year 8)'
and Sarah Nguyen (Year 10) found arraI!gements with the uncovered square
in the centre and in a corner, and described how one could be obtained
{roIn the other by Inoving just one L-sh~pe_. Natasha Chadha (Presentation
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College, Windsor) and Paul Tescher (Bialik College) also found arrangements
with the uncovered square in the centre and in a corner. .In addition, they
gave examples in which the uncovered square was placed in. each of the other
positions and the rem"aining space was filled with five L-shapes, with the
other four squares left scattered. Finally, Chris Cheung found arrangements
with the uncovered square in the centre and in a corner, and noted that these
were the only possibilities. While these solutions fall short of a proof that
no other arrangements can be found, they all show that the students had
explored the problem and gained some insight into it.

PROBLEM 21.2.2 (28th Spanish Mathematical Olympiad - First Round,. Ques
tion 8)

Let ABC be any triangle. Two squares BAEP and CADR are con
structed, externally to ABC. Let M and N be the midpoints of Be; and
ED, respectively. Show that AM and ED are perpendicular and AN and
Be are perpendicular.

SOLUTION

The situation is depicted in Figure 4. (The points P and R, and the
sides of the squares incident to them, are not needed in order to solve the
problem, and are therefore not shown.) Rotate triangle AED through 900 so
that AE coincides with AB. Let D' be the image of D under the rotation.
Then C, A and D' are collinear, so CD'B is a triangle~ Since CD' = 2CA
and CB = ~CM, triangles CD'B and CAM are similar: Therefore D'B is
parallel to AM, so AM is perpendicular to ED.

D

c

Figure 4
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A similar argument, in which triangle ABC· is rotated through 90° so
that AC coincides with AD, can be, used to prove that AN and Be are
perpendicular.

Claudio Arconcher (Sao Paulo, Brazil) supplied the following simple and
elegant proof using vectors. Since AM == !(AB +AC) and ED == AD - AE,
we have:

AM.ED ~(AB +AC).(AD - AE)
1 -+ -+ -+ -+ -+ -+ -+-+

-(AB.AD - AB.AE + AC.AD- AC.AE)
2 _
1 -+ -+ -+ -+ -+ -+ -+-+

- -(AB.AD - 0 +0 - AB.AD) (since AC.AE = AB.AD)
2 -

= O.

Thus AM and ED are perpendicular. A similar argument shows that AN
and f3C are perpendicular.

PROBLEM 21.2.3

Three circles in the plane intersect to form seven bounded regions. In
each region there is a token that is white on one side and black on the other.
At any stage, you can either:

(a) flip all fO,ur tokens inside one of the circles,

or

(b) flip all tokens showing black inside one of the circles, making all the
tokens in that circle white.

Starting \vith all tokens white, and using only (a) and (b) above, is it
possible to get all the tokens white except for the one in· the region common
to all the circles?

SOLUTION

No, it is not possible. We can show this by starting at the final state and
\vorking backwards. Since each circle c2ntains tokens of both colours, the
last Inove cannot be of type (b). But if a move of type (a) results in each
circle containing tokens of both colours, then each circle must contain tokens
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of both colours before the move is made. Therefore, as we step backwards
from the final state, we never encounter a move of type (b), and each circle
will always contain" tokens of both colours. Hence we can never reach a state
in which all tokens are white.

Keith Anker, formerly of Monash University, provided the fol'owing al
ternative argument. The number of bl~ck tokens in each circle is initially
zero, which is an even number. Any circle with an even number of black
tokens before a move of type (a) must still have an even number after the
move. A move of type (b) always results in a circle with an eve!). number of
black tokens (namely zero). Therefore _there will always be at least one circle
with an even number of black tokens. But the final state does not satisfy
this condition, so that state cannot be attained.

PROBLEM 21.2.4

A friend challenges you to the following game. You and your friend take
turns to say anyone of the numbers 1, 3 and 4, and a running total is
kept. (For example: you begin by saying 3; your friend replies by saying 4,
bringing the total to 7; you say 3 again, making the total 10; your friend says
1, making the total 11; and so on.) The player who says the number that
brings the total to 100 is the winner. (The total is not permitted to exceed
100.) You are given the choice of going first or second. Which should you
choose, and what is the winning strategy?

SOLUTION by Keith Anker

I will call second. I will contrive at each -turn to make the total either a
multiple of 7 or 2 more than a multiple of 7. (The starting total, 0, is of this
form, as is the final total: 100 = 7 x 14 + 2.) I do so as follo\vs:

If my opponent calls 3, I call 4, and vice versa.

If my opponent calls 1 when the total is a multiple of 7, so do I.

If my opponent call~ 1 when the total is 2 more than a multiple of 7, I
call 4.

Thus, I always make the total either a multiple of 7 or 2 more than a
.multiple of .7, and my opponent ca.n never make the total either of those
forIns. (In chess termin.ology, I "keep the opposition" .)

\Ve can see that this solution ,vo~~ks, but it is no~ obvious how it ,vas
obtained. We can gain some insight into this b~T starting at the final total
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and wotking backwards. If I bring the total to 99, then my opponent wins
by adding 1. If I can bring the total to 98, however, my opponent cannot
win, so 98 is "safe" for me. The totals 94, 95, 96 and 97 are unsafe, since
my opponent can reach 98 from the first two and 100 from the others. The
next number in descending order, '93, is safe, because from it my opponent
can reach only unsafe numbers..Continuing in this way, we are eventually
led to the solution described above.

For more information on how to solve such problems, look up the Sprague
Grundy theory for "subtraction" games in Winning ways for your mathemat
ical plays by E R Berlekamp, J H Conwq,y- and R K Guy (Academic Press,
1982).

PROBLEM 21.2.5 (from Mathematics and Informatics Quarterly, 2/96)

(a) At least two of these statements, apart from this one, are true.

(b) At least two of these statements, apart from this one, are false.

(c) At least one of these statements is .false.

(d) x of these statements are true.

Given that, if you knew the value of x, you, could determine uniquely
which statements are true and which are false, determine the value of x.

SOLU'TION

Statement (c) must be true, since if .we assume it is false then we are led
immediately to a contradiction.

Suppose (b) is true. Then the assertion made in (a) is correct, so (a) is
true. But then the assertion made in (b) is false, which is a contradiction.
Therefore (b) is false. l

Since the assertion made in (b) is false, at most one of (a), (c) and (d) is
false. We know that (c) is true, so at most one of (a) and (d) is false.

Suppose (a) is false. Then, by the reasoning above, (d) is true. But if the
assertion made in (a) is false, then at most one of (b), (c) and (d) is true.
This is a contradiction, so (a) must be true. From the assertion made in (a),
we conclude that (d) is true. (Are you s~.ill with us?)

IThis is an instance of consequentia mirabilisj see «The vVonderful Deduction" by
1'1 Deakin in Function Vol 17 Part 3, PP 83-88.
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At this point, we have established that (a) is true, (b) is false, (c) is true

and (d) is true, so three of the statements are true. Since (d) is known to be
true, we must have x =3.

PROBLEM 21.2.6

The minute and hour hands on a watch are interchanged. Prove that
the resulting arrangement does not correspond to. a valid time unless the
positions of the two hands coincide.

SOLUTION

I{eith Anker has pointed out to us that the assertion is incorrect! At
i~~ minutes after midday (just· after 12:05 pm), the hour hand has advanced
1~o3 minute marks since midday, 'and the minute hand has advanced i~~ minute
marks. At 81~~ minutes after midday (just after 1:00 pm), the hour hand has

advancedi~~'minute marks since midday, and the minute hand has advanced
8:4~O = 60 164°3 minute marks, Le. it is :4°3 minute marks past the XII position.
Thus the positions of the hands are interchanged, but they do not coincide.

We thank Keith Anker for pointing this out, and apologise to readers for
the error.

Solution to an earlier, problem

We continue providing solutions to problems which have appeared in
Function, but for which we have not published solutions previously. In this
issue, we present the solution to another of the Kiirschak competition prob
lems from the August 1990 issue.

PROBLEM 14.4.8

For any given positive integer n, denote ·by S(n) the sum of the digits
of ri (in the decimal system). Determine all positive integers M for which

S(M) = $(kM) for all integers k for which 1 :S, k S; M.

SOLUTION

We claim that the required values of Mare 1 and all numbers consisting
entirely of the digit 9, Le. 9, 99, '999, etc.

, -"
If IvI == 1 then k must equal 1, and the condition is trivially satisfied. If

2 S; IvI :s; 8 then the condition is not satisfied (just check each value of M
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with k == 2). If M == 9 then it is easy to check that the sum of the digits of
each multiple of 9 up to 81 equals 9.

Now assume that M 'has n digits,where n ~ 2. If M is a power of 10,
then clearly the condition is not satisfied with k =: 2. If M is not a power of
10, let k be the n-digit number 100...01, where there are n - 2 zeros between
the ones. Clearly k S M, so this is a valid value of k. Now consider the
result of multiplying M by k. An example (we have chosen M == 567) will
help to illustrate ,,,hat happens:

567
x 1 0 1

567
5 6 7

5 7 2 6 7

Note that the last n - .1. digits of M appear as the last n - 1 digits in
the answer. In this example, and for most values of M., the first digit of M
app~ars as the first digit of the answer. For these values of M, the remaining
digits of the answer cannot all be zero, so the sum of the digits of the answer
must be greater than the sum of. the digits of M. The only way that the
first digit of the answer could fail to be the first digit of M is if, at the
addition step, there is a "carry" at every column from the middle leftwards.
This can happen 'only if the last digit of M is not 0 and the other digits of
M are all 9s. We can eliminate the possibility that the last digit of M is
a number in the range 1 to 8 by well-known "digital root" (or "casting 011t

9s") considerations. Therefore M must consist ~ntiI'ely of 9s.

It· remains for us to show that if M is a string of 9s then M has the
desired property. Suppose M is a string of n 98, Le. M == Ion - 1. Let k be
an integer for \vhich 1 S k :S M. We need to sho\v that S(kM) =: 9n. If k
ends in one or more zeros, say k = b.l0a v"here a 2: 1 ap.d b does not end in
zero, then S(kM) == S(bM), and the problem reduces to the same problem
\vith a smaller value of k, not endingin zero. We may therefore assume that
k does not end in zero. We have kM = k(lon - 1) = (k.lOn - 1) - k + 1,
,,,here k.l0n

- 1 comprises the digits of k - 1 followed by n 9s.

Perform the subtraction of k from k.l0n -1; since k has at most n digits.,
the digits of k are all subtracted from 9s, so the result is the n digits of
k - 1 (which are the same as the digits of k, except the last digit which
is reduced' by 1), followed by the complements modulo 9 of the n digits
(including leading zeros, if necessary) of k. The sum of the digits of the
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result is therefore 9n - 1. Finally, add-l to obtain kM; this is done simply
by adding 1 to the last digit, since that digit cannot be 9 (because k does
not end in zero). Thus the sum of the digits of the final answer is 9n, so

S(kM) = 9n as required.

PROBLEMS

Readers are invited to send in solutions (complete or partial) to any or all of

these problems. All solutions received by 8 December 1997 will be acknowl

edged in the February 1998 issue) and the best solutions will be published.

PROBLEM 21.4.1

You have three calculating" mC:l-chines:

Machine A (an adder) accepts two numbers, a and b, as input, and
calculates a + b.

Machine S (a subtractor) accepts two numbers, a and b, as input, and
calculates a - b. .

Machine Q (a "quarter-squarer") accepts one number, a, as input, and

calculates a2/4.

Explain how you could find the product, ab, of any two numbers a and b,

using only these machines and no hand calculation.

PROBLEM 21.4.2

Find all three quadratic polynomials p(x) = x2 + ax + b such that a and
b are roots of the equation p(x) = O.

PROBLEM. 21.4.3 (from Mathematical Spectrum)

A triangle has angles a, f3 and I which are whole numbers of degrees, and
a.2+ (32 = ,2. Find all possibilities for Q, f3 and ,.

PROBLEM 21.4.4 (Juan-Bosco Romero Marquez, Universidad de Valladolid,
Valladolid, Spain)

Find all possible sets of six two-digit numbers 111 = xy, lV == yz, P = Z'l.l,

lVI' = yx, lV' = zy, p' = 'l./,Z (\vhere :t, y, z and ?J, are d~cimal digits, and xy,
etc. denote the decinlal representations of the numbers), such that M, N, P
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and M', N' , P' are two geometric progressions with the same integer common
ratio.

PROBLEM 21.4.5 (Claudio Arconcher, Sao Paulo, Brazil)

Let r be a circle of radius r, and let Be be a chord of r. A point A on
r makes one revolution around r. Prove that the locus of the centroid of
the triangle ABC is a circle with radius r /3, and that this circle divides the
chord Be into three equal parts.

Garry O'Brien (Bunbury, WA) wrote to us asking about the following
problem. It is in fact a well-known problem which has been around for a
long time, and many readers will have seen it before. For those who haven't,
we will just mention that the answer probably can't be expressed exactly in
terms of known mathematical constants, but it can be approximated numer
ically.

PROBLEM 21.4.6

A farmer would like to graze his animal on his neighbour's circular pad
dock, but. the neighbour ·stipulates that the f~rmer can only use half of the
paddock and the animal luust be tethered on the boundary line. What is
the length of t~e tether as a function of the radius of the paddock?

* * * * *

Newton could not admit that there was any difference between him
and other men, except in the possession of such habits as ... persever
ance and vigilance. When he was asked how he made his discoveries,
he. answered, "by always thinking about them;" and at another time he
declared· that if he had done anything, it .was due to nothing but indus
try and patient thought: fli keep the subject of my inquiry constantly
before me, and wait till the first dawning opens gradually, by little and
little, into a full and clear light."

- W Whewell, History of t/ie Inductive Sciences

* * * *--*
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