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EDITORIAL

The figure on the front cover is an illustration from our History Column
about ethnomathematics - a term which is very fashionable these days. It is
a Malekula sand-drawing de~ign using four-fold replication of a basic figure,
which is to be drawn without -lifting the finger from_ the ~and. Michael
Deakin uses this design to question the way its mathematical significance is
sometimes presented to give dignity to some cultures normally not regarded
as of advanced numeracy.

We include three feature articles in this issue of Function. F Mifsud and
K Spiteri present a classical method - already known by the ancient Greeks 
-for constructing a regular pentagon, using only an ungraduated ruler and a
compass. M Deakin, observing a special number pattern generated- using
the golden ratio which was presented in a previous article about Wythoff's
game, investigates the patterns that emerge when other irrational numbers
such as .J2 are used. Peter Grossman gives a mathematical explanation
for the "Rule of 72", which is often used to find an approximation to the
doubling time of anything that is growing.

The Computers and Computing article·gives an insight into how search
ing algorithms work to find a pattern in- text documents, World· Wide Web
information pages, or CD-ROMs. It also outlines the structure of a simple
algorithm which you may want to implement in your preferred programming
language.

Many thanks to all readers who sent solutions to our problems. We
publish all those that reach us before the due date. As usual, we include a
few new problems i~ the Problem Corner for your entertainment. We also
challenge you with the probl~ms set for the participants of the Ninth Asian
Pacific Mathematics Olympiad.

We hope you find in this issue of Function many interesting and enjoyable
items.

* * * * *
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CONSTRUCTION OF A REGULAR PENTAGON

F Mifsud and K Spiteri

A method for the construction of a regular pentagon, using ruler (ungrad
uated) and compass, was known to the ancient Greek geometers. It is iiven
in Euclid's Elements (Euclid: approx. 330-275 Be), a collection of mathe
matics books, some of which were used as school textbooks to the beginning
of this century.
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The construction procedure shown in this articlel depends on first deter
mining the length of a diagonal in terms of the length of a side. (The five
diagonals are shown in Figure 1.) Once this is done,' a side, say AB, is
drawn with any given length. Another vertex, C, is then determined by the
intersection of an arc with centre at B and radius length AB, and an arc
with centre A and radius length equal to the diagonal length (as in Figure

1A slightly different version of this construction was given in Function, Vol 15 Part 5.
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2). Similarly the point E can be constructed. Finally D can be constructed
as the intersection of arcs with centres E, C and radius length AB (Figure
3).

Now let AB. = 1 unit. It remains to determine the diagonal length,
AC = x units, and then to construct an interval of this length. Let AF =.y
units, where F is as shown in Figure 1. Some properties of the regular
pentagon are required. By symmetry, all diagonals have the same length (as
we have already assumed) and' each diagonal is parallel to one side of the
regular pentagon. In particular~ in Figure 1,

EC II AB, ED II AC, EB II DC.

From the second and third of the pairs of parallel intervals, it follows that
EFCD (Figure 1) is a parallelogram (in fact, a rhombus). From the first
pair of parallel intervals, it is easy to show that the 'triangles EFC and BFA
are similar. Hence

EC
=AB

=
x

so =1

therefore y =

Fe
AF
DE
AF (FC = DE from parallelogram EFCD)

.! (AF :: y units, AB =DE = 1 unit)
y
1
x

(1)

Now

therefore x ==

= AC

= x (Fe = DE = 1 unit)

AF+FC
1

so - +1
x

therefore 1 + x = x2

and x2
- x-1 = 0

1+V5
2

(x is the positive root of the quadratic equation)

The construction of a line interval of length 1+~ units is described in stages
below and is shown in Figure 4.

First draw AB one unit long (a side of the pentagon). With centres A, B
~

and the same radius length~ draw arcs to intersect at Rand S. Let RS,
the perpendicular bisector of AB, intersect AB at M, so AM == M B =
! unit.
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With centre M and radius l~ngth AB = 1 unit, draw an arc to intersect
~

RS at N. By the theorem of Pythagoras,

BN = J12+{1/2}2 units = V; units.

---+
With centre M and radius length BN, draw an arc to intersect AB at P so
MP =~ units and hence AP = (i + f-) units·= 1+2VS units. Hence AP
has the length of the diagonal of a regular pentagon with side length AB.

A
p

Figure 4

Note: From the ratio of equation (1), viz ~~ = ~~, we obtain

FC x

AP=l

When a point F divides a segment AC in this way, Le. the ratio of the length
of the larger part to that of the smaller part is equal to the ratio of the length
of the whole to the larger part, we say that F divides AC in a golden ratio
which is v'\+1. The diagonals of a regular pentagon which intersect in the
interior of the pentagon divide each other in gol4en ratio.

Reference: H S M Coxeter, Introduction to Geometry,. John Wiley &
Sons, 1961, Chapter 11.

* * * * *
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SPECIAL· IRRATIONAL NUMBERS

Michael A B Deakin

This article is a follow-up to my earlier articlel "Number Patterns and
Wythoff's Game". For the reader's convenience, some of that earlier article

will be summarised here. Let a = 1 +2.J5, and multiply a successively by 1,
2~ 3, 4, ... . This gives rise to the numbers:

1.618 ... , 3.236 ... , 4.854 _.. , 6.472 , 8.090 ... ,

9.708 ... , 11.326 ... , 12.944 , etc.

However, in each case, we take only the integral part: 1, 3, 4, 6, 8, 9, 11, 12,
... _ We now use these numbers to build up a table.

n 1 2 3 4 5 6 7 8 9 10 11 12 ...
an 1 3 4 6 8 9 11 12 14 16 17 19 ...
bn 2 5 7 10 13 15 18 20 23 26 28 31 ...
en 1 2 3 4 5 6 7 8 9 10 11 12 ...

The .numbers an are the integral parts just formed. This is expressed
as an = [na], where the square brackets are the symbol for "integral part
of". The numbers bn are just those integers that are skipped over in the
line above. However, they may also be generated in another way_ If we put

f3 = a + 1, and as can be verified ~ +~ = 1, we find (nf3] = bn • Finally, we

have en = bn - an- But we also have en = n.

This is a quite remarkable property of the number (l, and indeed 'a is the
only number for which this property holds.

If, however, we use another, but again special, value of Q, namely v'2,
something rather similar happens, except that this time we get en = 2n. The
previous article ended with a problem: to find values of 0' for which en =3n,
en = 4n~ and so on. No.;.one sent us a solution, but I had a go at it myself
and found something quite remarkable.

lSee Function, Vol 19 Part 4.
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Suppose we distinguish between the various values of a and write
1+V5

al = 2 ' a2 = -12, etc. In general, we will have a number am (say) and

1 1
we also define another number Pm by -(3. + - = 1. Then we want

. m am

[n,Bml - [naml = mn. (1)

(2)

The answer to the problem that was set is not all that difficult to find,
although the proof that it is correct is somewhat technical, as is the proof
that no other number will do. The answer is

( m) 'm2

am = 1-2" +~4+1.

The justification is given in the Appendix.

But· the thought that occurred to me is that, in one way of looking at the.
matter, 0;'1 is the very simplest irrational number there is.2 This seemed to
me to square with the fact that 0'1 satisfies the very simplest case of equation
(1). So 1 asked the question: is there a sense in which we can regard 0'2, Le.
..[(2), as the second simplest irrational number and a3 as the third simplest,
and so on?

Well, I found that there was, although the answer was not quite as
straightforward as I would have liked. To see how this work~d, let us back
track for a minute.

The reason that Ctl may be regarded as the very simplest irrational num
ber is that we have:

1
al = -·------=-1----

1+---~1~--

1 + --~l::O--

1+ 1
1+-

1+ ...

(3)

where the "..." indicates that the process indicated continues ad infinitum.

The right-hand side of equation (3) is an object known as a "continued
fraction" 3.

2For more on this, see Function, Vo116 Part 5, pp. 133-139.
3Por more on continued fractions, see Function, Vol 4 Part 4, Vol 11 Part 2. The

particular continued fraction (3) appears in Problem 4.2.1.
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(4)

A continued fraction is any expression of the form

b
a+ d
c+---~

e+ !
h

g+-.-
z +.o.

where the letters represent integers. It may terminate or it may (as in the
cases here being considered) go on forever. In the case where the numerators
(i.e. b, d,!, h, ...) are all equal to 1, the expression is said to be a "simple
continued fraction".4

I decided to look at "very simple continued fractions". In the very sim
plest case (equation (3) above), all the numbers involved are equal to 1. So
this was what I set out to generalise. Here is how it goes.

Let f(m) be given by the following expression, where once again the "..."
indicates that the process indicated continues ad infinitum. -

1
m+ 1

m+ 1
m+ . 1

m+--m+ ...

We then have f ~m) =m+ f(~)' fairly clearly. This is a quadratic equation

in fern), namely [f(m)]2 - mf(m) = 1, which we solve for f(m). Its positive
solution (obviously the one we want) is given by

m~
f(m)=2+~4+1.

SU'btracting (5) from (2), we find

1
am = f(m) + 1-- m =. 1 +----~-.1

m+ 1
m+ 1

m+--
m+ ...

(5)

(6)

very like the form (4). So there is indeed a close relation between the numbers
am and the very simple continued fractions f(m).

4 A continued fraction terminates if one of its numerators is zero.
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Something similar happens if we look at (3m instead of am". The result is

Pm = f(m) + 1. (7)

So neither 13m no;r am is exactly the mth simplest irrational number as I have
defined it~ although both are very closely connected to it. For example, when
n = 2, we find f(2) = .J2+1 as the second simplest irrational number, while
02 =V2 and 132 = .J2+ 2.

Finally, we may compare equations (6) and (7) and 50 find

(3m =m+am • (8)

This equation is interesting in its own right and will come in useful in the
technical discussion that follows.

Appendix

We here show that the form given by equation (2) indeed satisfies condition (1) and
that no other value will do.

First up, note that

{3m=~.
Om -1

(AI)

Equation (1) is rather hard, so we will first simplify it. So we consider equation (1), but
simplify it by leaving out its most difficult feature - the square brackets. This gives us

Pm - am = m

and from (AI) .

Qm
am -1 - am = m, (A2)

an equation with two solutions: one positive and the other negative. The ppsitive root is
given by

(A3)

and we may now use equation (AI) to show that with this value of am, equation (8) holds.
We next need to show that this value also satisfies equation (1). .This is not difficult; in
fact, it follows immediately from equation (8). We have: .

[n.Bm.l - [nam ] = [nm + nQrn ] - [nQml = nm + [nam ] - [nQml =nm.

(The second equality holds because nm is a positive integer.)

So the value of Om given by equation (A3) is a solution to equation "(1). All that remains
now to prove is that it is the only one.
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Suppose we tried to replace am, as given by equation (A3), by some other value, am +e,
let us call it. Then Pm will have to be replaced by some other value, Pm + 1], say, where

1 1--+--=l.
am +e 13m + 1]

We now want
[n(Pm + 1])] - [n(am+e)] =nm

and, by the same' process as was used above, we may reduce this equation to

[n(am +11)] - [n(am +e)] =o.
This last equation must hold for all values of n. Now unless TJ = e, there will always be
some (perhaps very large) value of n for ~hich this equation will fail (because the difference
between am + e <and am + '17: even though it may be very small, can be made to amount
to more than 1 if it is multiplied by a sufficiently large number - indeed, by choosing very
large values of n we may make the left-hand side as large as we please).

Thus we require e = 7]. The only reasonable solution of this equation is e = o. (This
follows from the derivation of equation (A3) or it may be discovered directly by means of
some rather tedious algebra; the details are omitted.)

This then completes the proof.

Note

My editorial colleague Peter Grossman has drawn to my attention an
interesting- article on the subject matter of my earlier" articl.e. It is Chap
ter 12 of Ross Honsberger's book Ingenuity in Mathematics (published by
the Mathematical Association of America as· Volume 23 of their New Math
ematical Library). Honsberger is a prolific writer of popular mathematics,
some of whose work has appeared in Function. A theorem similar to that
proved i~ the earlier article is there proved and given the name "Beatty's
Theorem", after a Professor Sam Beatty, one of Honsberger's teachers and
the first to state the theorem (although the first published proof was by
Ostrowski and Aitken5)."

His article goes on to provide much more detail and a list of further
reading; it is recommended.

* * * * *

5 Aitken was the principal subject of the History of Mathematics column in Function)
Vol 19 Part 4. .
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THE "RULE OF 72"

Peter Grossman

Function 3/97

. "

In an article by Jessica Mathews on population growth, printed in the
Washington Post and reproduced in- The Age (13/6/96), there appeared a
reference to a formula known as the "Rule of 72". The author began the
article by quoting some figures for the annual population. growth rates of
various countries. She then continued:

"To fi~d some concrete meaning in these abstractions, apply the
invaluable Rule of 72 (to find the doubling time of anything that is
growing, divide its rate of increase into 72)."

Where does this rule come from?' Is it correct?

In order to answer these questions, we need to examine how the size
of something increases as a function of time if it is growing at a constant
rate. One example of this type of growth which you are probably familiar
.with is compound interest, but the same principles apply to anything with
a constant growth rate.

Let us suppose, then, that we have something with an initial size of Po.
For compound interest, Po is the principal (the amount initially invested),
while for population growth, Po is the initial size of the population. Suppose,
furthermore, "that the growth rate is r percent per annum. (For compound
interest, r is of course the interest rate.) After one year, the original amount
will have increased by a factor of 1+ l~O' so the size at the end of the one-year
period, Pl, will be Po(l + l~O)' After tWo years, the size will have increased
again by a factor of 1+ l~O' giving a size of P2 =Po(l+ l~O)2. In general, after
n years, the size will be given by the familiar compound interest formula:

Pn = Po(l + l~Ot.

The Rule of 72 states that the time in which the size doubles, or in other·
words, the value of n when Pn equals 2Po, is 7; .. Let~s see what happens if
we substitutePn = 2Po in the compound interest formula and solve for n:
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2Po = Po{1 + 1~Or

:.2 = (1 + l~O)n
r

:. log2 = nlog(l + 100)

log 2
.·.n =

log(i + l~O)

(The logarithms could be to any base.)

This is certainly not the Rule of 72! However, the possibility remains
that th'e Rule of 72 might be a good approximation to the correct forniula.
We can test this ~laim by tabulating values of n given by the exact formula
and the Rule of 72, for a range of values of r. This is done in Table 1, which
was generated using a spreadsheet package.

2 35,.00 36.00 2.8
4 17.67 18.00 1.9
6 11.90 12~OO 0.9
8 9.01 9.00 -0.1
10 7.27 7.20 -1~O

12 6.12 6.00 -1.9
14 5.29 5.14 -2.8
16 4.67 4.50 -3.6
18 4.19 4.00 -4.5
20 3.80 3.60 -5.3.

o Exact IRule of 72 I% error ~

Table 1

By examining the table, we see that the Rule of 72 provides an overesti
mate" of the true value for smaller values of r and an underestimate for larger
values of r. (The crossover point is the value of r for which the Rule of 72 is
exact, and the figures in the table suggest that this occurs for r just less than
8. As an exercise, you might like to calculate a better numerical approxima
tion for this critical value of r.) The rule is reasonably accurate over most
of this range of values, although we see it is starting to lose accuracy for the
larger values of r in the last few lines of the table. 'For growth rates up to
-about 14 percent, the Rule of 72 appears to be accurate to within about 3
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percent, which is good enough to be useful for many practical purposes. For
higher growth rates, we need to exercise caution, as the Rule of 72 becomes
increasingly inaccurate as r increases. When r =100, for example, the exact
answer is n = 1 (obviously), but the Rule of 72 gives n = 0.72, which is in
error by a considerable amount.

Incidentally, you might wonder why the number 72 was chosen, rather
than some other number. We can see that the Rule of 72 gives goodapprox
imations for growth rates that are typical of interest rates (and this is the
context in which the rule was .orIginally formulated). A "Rule of 70" would
be more accurate than the Rule of 72 for lower growth rates, but less accu
rate for higher rates, as you may check; indeed, some older accounting texts,
perhaps written at a time when interest rates tended to be lower, quote just
such a rule. Clearly, any number around the value 70-72 will give a reason
able rule, and 72 was probably chosen because it has many divisors (thus
allowing the calculation to be performed easily in one's head for anumber
of different rates).

If you are familiar with the use of a spreadsheet, you may wish to replicate
the figures in Table 1 and extend them tO

q
a greater range of values of r. You

could also use the· software to draw graphs of the exact and approximate
values as a function of r on the same pair of axes. You should be able to
see how the two curves match closely for smaller values of r, but diver"ge for
larger values.

The popula~ion growth rates in Jessica Mathews's article ranged from
3.2 percent to 4.9 percent. These rates fall well within the range of values
for which the Rule of 72 provides a good estimate. Given that population
growth rates are estimates anyway (and that they are unlikely to remain con
stant for very long) ~ the use of the rule in the article is perfectly reasonable.
Nevertheless, the author's assertion that the Rule of 72 applies to "anything
that is growing", without any further qualification, was-just a little careless.

* * * * *

Newton was the greatest genius that ever existed, and the most
fortunate, for we cannot find more than once a system of the world to
establish.

- Joseph Louis Lagrange

* * * * *
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HISTORY OF MATHEMATICS

Ethnomathematics

Michael A B· Deakin

A few months ago I came across an interestin..g story that I would- like to
share with my readers, but it also brought back into D;lY mind other matters
that have concerned me for some time and I want also to use this column to
raise some of these more general issues.

10 A Somali Poem

I recently learned via the Internet of a 'Somali poem that has a mathe
matical flavour ~o it and which in particular can be related to the notion
of a limit, so' central ~ to calculus. To reach the relevant site, first go to
< http://www.dejanews.com/forms/dnq.html>.Adialogue box will then'
appear and under "SEARCH OPTIONS" click on. "All" for the Keywords
Matched and "Old" for the Usenet Database. Then, in the Search For
box, type somali fox calculus. This will give you eight news items on
the matter. The first part of this article is based on these postings, most
especially the fourth, seventh and eighth.

They are concerned with a poem called Qayb Libaax, written in Somali,
and associated with the Dervish movement.! The story line of the poem runs
like this.

The family of wild animals killed a camel and set about dividing
the meat for their consumption. The lion (king of the beasts in
Somali tradition as well ~ in our own) ordered the hyena to· make
a fair division. The hyena apportioned the flesh as follows: "One
half for the king [lion] and the other half for the rest of us". This
division displeased the lion, who punished the hyena, injuring its
eye. The lion then asked the fox to take on the task - the fox
being associated with cunning and opportunism in Somali tradition
(again as also in our own). The fox produced a modified version
of the' hyena's apportionment: "One half of the camel meat for the

IThe Dervishes are a branch of the Sufic (or mystic) stream of Islamic religion. They
arose in the 12th and 13th centuries, and Dervish communities are still to be found today,
despite the disapproval of mainstream Islamic thought. One of the postingsdescribes the
poem as "one of the last poems of the Dervish movement". I'm not quite sure what this
means, but it may refer to the 13th century_
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king [lion]; from the remainder, again one. half for the king and so
on". The lion then asked the fox "When' did you learn this fairness
and justice?", to which the fox replied "When I saw the injured eye
of the hyena" .

The mathematical point, of course, is that the lion gets everything. This
can be discovered by summing a geometric series:

(1)

and this is the route taken by some of those posting the various discussions.

What leaves me a little uneasy, however, is the somewhat exaggerated
claims that some commentators seem -to make for this fable. Among other
things it is presented as an independent discovery of the paradoxes of Zeno.2

. This seems to me to claim far too much. In the first place, these latter
constitute an elaborate and subtle argument as to the nature of Space and
of Time. Are these.. to be thought of as continuous, and hence infinitely
divisi1ble, or else as composed of atom-like "places" and "instants"? There
are four possibilities (each of Space and Time mayor may not be infinitely
divisible) and the fOUf paradoxes are designed to show the impossibility of
all of them. The conclusion we are invited to draw -is that Space and Time
are illusions.3 - .

Thus the primary purpose of the Zeno analysis is metaphysical rather
than mathematical; the mathematics is incidental, although import~t to
the argument.Nonetheless~it is there, and at one point it comes very clos~

to the point of the Somali poem.

The particular parad'ox in question is the first, known as the Dichotomy.4
This takes· Space to be infinitely divisible, in order to arrive at a contra
diction. It may be presented in its starkest form by considering a journey.
Before we can· reach our destination, we must first reach the halfway point,
and before we· can reach this, we must reach the quarter-way point, etc. How
could we ever get started? Now of course if we add up the half, the quarter
and so on, then we get equation (1), and the .sum of all these fractions (as
an infinite series) is 1, the entire journey.

2The paradoxes of Zeno were discussed in this column of Function, Vol 14 Part 3 (June
1990).

31\ similar point may be made in respect of a Buddhist version of one of these paradoxes;
again see my earlier article.

4Meaning "division in two".
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The important mathematical point, however, is that while we may as$.ign
the sum 1 to the series ! +1+ 1+ ft + ..., in a very important sense its
sum is not 1. I remember puzzling over exactly this point as' a· child, and not
ever managing to resolve "it. For no matter how many terms of the series we
take, we always fall short of 1.

The actual mathematical resolution of the question of the sum is quite
subtle. If we take (say) n terms of the series, we may show that the sum
is 1 - 2-n

. (I leave the proof to the reader; the actual arithmetic is quite
simple.) We never do sum infinitely many terms. Such a task would be
impossible. Rather, we note that we can, in only finitely many steps, get 'not
to 1. itself, but arbitrarily close to it. So then we say that we assign the value
1 to the infinite case. No value short of 1 will serve (and of course no value
greater than 1 would·make sense.) But this is a completely new sort of sum,
and we've only had such sums for something less than 300 years. Certainly
Zeno never considered this subtle logic; nor does the Somali poem.

Rather we, from a more informed standpoint, find this implicit in Zeno
as also in the fable of the shared camel. If we are to do-this with the latter,
it is perhaps more useful not to consider the geometric series at ~l, but
instead to proceed from a much more elementary consideration. There is
no proVision for any of the other animals to get any of the meat; this is the
simple reason why the" lion gets the lot. (At one point in the poem, the
other animals complain to the fox on this very account.) If we want to put
a "mathematical spin" on this insight, we may do so. After a finite number
of meals, the lion has eaten 1 - 2-n of the camel and 2-n remains. No other
animal has yet eaten, nor may any do 50 now, for half of what remains is the
lion '5. This applies' whatever the value of n. At no point may any animal
other than the lion touch the carcass.

But notice that this mathematical analysis is my interpretation of the
situation; there is no vouch for it· in the text of the poem. If we are to
understand what that is saying, then ,we need other background. Now I
know next to nothing of Somali history and culture, so what I am about to
say is offered only very tentatively.

But it seems to me that the poem is making not a mathematical point,
nor a metaphysical one (as Zeno was when he queried the nature of Space
and Time); rather the point of the poem is moral. It con~erns '1airness
and justice". I see it as a (somewhat -rueful) recognition that "might" can
take precedence over "right" in this imperfect real world we inhabit. (The
other animals complain, surely with justice, about the unfairness of the fox's
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ruling.) Even if this interpretation is not strictly correct, I would hold that
some such point is the main thrust of the poem; its purpose is not primarily
mathematical at all. (In the original Somali, the "mathematics" occupies
only s~me 7!% of.the total., The rest is concerned with the situation itself,
the actual happenings, the dialogue on "fairness and justice" and then with
applications of the story to other situations.)

I give this story in detail in part because it is interesting and the poem
certainly not widely known, partly because it gives me the chance to explain
once again some very central mathematics, and also because it is a convenient
springboard to the discussion of a more general question: the validity of
"ethnomathematics" .

20 Ethnomathematics

Much, and to be quite frank most, of today's mathematics is a clear
product of Western c~lture as that culture ~as developed since (say) the days
of Newton and Leibniz (around about 1700). Of course the work of these tWo
great mathematicians and their contemporaries and successors elaborated an
already rich tradition: Euclid, Archimedes and the other mathematicians of
ancient Greece. This is the clear pattern of the main' lines of mathematical
endeavour.

However, the tapestry of mathematics is richer than this simple descrip
tion allows. There was early work in aabylon and in Egypt, in China and in
India. Other cultures (Hebrew, Japanese, Javanese, Korean, Mayan5, Per
sian and Tibetan) also reached high levels of numeracy, but without having
major influence on the mathematics of today.

Possibly there are others we could add to this list.6 And certainly spe
cial mention should be made of the Arab mathematicians7, who not only
preserved much of the ancient Greek heritage, but also added to it in many
meaningful ways (and whose influence has been felt in the mathematics we
learn today).

All these traditions are clearly mathematical in that lengthy, involved
and precise arguments are advanced by means of symbolic techniques, either
written or embodied in some type of hardware.

SSee the cover story in Function, Vol 12 Part 4.
°For instance, many people might include as mathematics the wonderful navigational

feats of the Polynesians.
7See my History of Mathematics column in Function;, Vol 15 Part 2.
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I will refer to these cultures in what follows as "cultures of high numer
acy". But it then follows that there are other cultures that are not of high
numeracy. Some people find this'a disturbing conclusion. I don't, I'm afraid.
Rather, some cultures had·a need to develop (applied) mathematics; others
even had the leisure to go on to develop pure mathematics. But these factors
are not by any means universal.

Thus the mathematics involved in establishing calendars is very impor
tant once a society becomes re~onably complex. For' example, of the groups I
mentioned above, the Javanese and the Mayans showed their greatest math
ematical prowess in this area. However, if the society has a less complex
structure, then accurate calendars are less important to it ~nd may well not
be developed.

It is the same with other areas of mathematics. We define concepts as we
need .them..So when I read that the Ormu8.word for "nine" prior to outside
contact was nen-rohi-fraja-nitje·ma, I deduce that the Ormu made little use
of the 'concept "nine". Evidently their traditional way of life had little call
for it.

However, this has disturbed some people and they see such analyses as
this as demeaning to groups such as the Orrn,u. They feel that (e~g.) the
Ormu must have had a mathematical tradition and that if we think other
wise, the fault is ours for not recognising it. This is one origin of the rise of
Ethnomathematics. It has become very fashionable in recent ye~s.

What researchers in this area present for our consideration are various tra
ditional customs and artifacts that have a strongly "mathematical" flavour.
These may be games, intricate patters and designs, numeration devices,
methods of keeping trade tallies, clan systems regulating who mayor may
not marry~ and probably other such aspects of the cultures involved.

There is, for example, a ga~e called Mancala (Arabic for "transferring")
which may be found in one form or another in many African countries. It
is deceptively simple to describe but extremely difficult to play· welL Many
even uneducated Africans excel at it.

Then again, many cultures have intricate geometric art. For example,
the Malekula of Vanuatu have intricate sand-patterns which are to be drawn
without lifting one's finger from the sand.' We may analyse this endeavour in
terms of graph theory9 which deals with exactly such questions. See Figure 1

8A language from Irian Jaya.
9See Function, Vol 13 Part 1, pp. 20-27.
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which shows a Malekula design produced by the four-fold replication of the

element shown to the right of the full pattern.

.Figure 1. A Malekula sand-drawing (left), and (right) the basic

unit which is replicated. It may be traced by following the direction of

tHe arrow. (Adapted from a diagram in the article iCEthnomathematics"

in the Companion Encyclopedia of the History and Philosophy of the

Mathematical .Sciences. )

What I find unconvincing about such cases is the way they are presented.

We may analyse Malekula sand-art in terms of graph theory, but there is

little evidence presented that the Malekula themselves ~o. There is a basic

theorem of graph theory. dealing exactly with the question of when a line

drawing may be traced in one movement, and there is no evidence given at

all that the Malekula are familiar with it. Certainly they must have -found

many intricate and appealing designs that may be drawn in this way, but

this is not the same thing.'

When the mathematician Euler was presented with a puzzle about whether

the bridges of the town Konigsberg could be traversed in a certain way (equiv

alent to drawing a pattern in one movement), he solved the matter by proving

the theorem in question and then applying it to this particular case. He thus

showed that the task was impossible. That is mathematics; -to consider all

the possible ways one might try to do the task and thus to eliminate all of

them is not really mathematics~ and Euler didn't do things that way.

The same point could be made in respect of (say) the clan structure of

some societies, for example the }\.ustralian Arunta. i\.n article in Function by
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Hans Lausch10 analysed this in terms of group theory, a branch of abstract
algebra. But again notice that it was the author of the article who supplied
"the mathematics. We may find it implicit in the clan structure of the Arunta,"
but this is not the Same thing as saying that the Arunta are engaging in group
theoretical discourse.

One much studied and often cited case is that of the Inca quip·u. A quipu
is a form of physical representation of number. made from knotted cotton
cords. A quipu may be very intricate, with as many as' 2000 separate cords
and with a sophisticated hierarchy of knots and a pleasing design of different
colours. Essentially each quipu records data as one or more numerals. Again,
I don't really count this as mathematics, except ill: the sense that counting is
mathematics. I find no evidence (or even claim) that any operation beyond
simple addition was ever recorded by this means.

There are essentially two thrusts to the movement for ethnomathematics.
The first is the wish to give dignity to cultures not normally regarded as cul
tures of advanced numeracy. I too regard this as an important and laudable
aim, but I think its application misguided: all cultures have" dignity and we
do not enhance it by assigning to some of their aspects a significance they
cannot really bear.

The second thrust is educational. With this I am·entirely in sympathy. If
one is teaching, say, graph theory in Vanuatu, then it makes eminent sense
to use local examples and knowledge. Not only will it hold the students'
attention the better, sh.ow that one does respect the local culture and provide
good non-trivial examples, but it also makes use of the specialist knowledge
the students already have.

Further Reading

There is a lot of mate'rial on Ethnomathematics. M Ascher's ethnomath
ematics: A Multicultural View of Mathematical Ideas is perhaps the fullest
single account~ M and R 'Ascher wrote the article on ethnomathematics in
the Companion Encyclopedia of the History and Philosophy of the Mathemat
ical Sciences. In this same collection is C Zaslavsky's article on mathematics
in Africa: Explicit and Implicit. Both these sources give many further refer
ences. There is also a nice "Interchapter" on mathematics around the world
in V Katz's A History' of Mathematics.

* * * * *
10Function} Vol 14 Part 3, pp 22-27.
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COMPUTERS AND COMPUTING

The Search for a Pattern

Cristina Varsavsky

Every '~ay, loads of infor~ation come to us via the Internet, CD-ROMs,
and computer .disks, which is stored in large text and graphics files. These
days we spend more time than ever searching through Web browsers, elec
tronic encyclopedias, data bases, e-mail folders, and text documents.

A widely used type of search is for a pattern within a text file - a long
string of letters, blanks, numbers, and other special characters. Even the
simplest word processors include a pattern matching editing feature.

Some search programs we use today, either independently or within a
word processor, are still based on the very simple brute force pattern match
ing algorithm. The algorithm scans the text string, usually from left to right,
checking at each position of the text whether the pattern actually matches
the text. This is illustrated in Figure 1 where the pattern, FUNCTION ~ is
slid from left to right till the match is found.

l!

AFMFURISTMFUNCTIONIFUNTRSMLKJHGFIO
EUNCTION

FllNCTION
EUNCTION

FUNCTION.

EUNCTION
EUNCTION

EUNCTION
EUNCTION

EUNCTION
EUNCTION

FUNCTION
AFMFURISTMFUNCTIONlFUNTRSMLKJHGFIO

Figure 1

m n
1 1
3 2
3 1
6 3
5 1
6 1
7 1
8 1
9 1
10 1
18 8
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You may wish to implement the following algorithm in your preferred
programming language, provided you know how to open, close, and read
files.

SIMPLE SEARCH

1. m:= 1 ; n := 1
2. While m $ M and n ::; N

3.

REM M = t~ string length
'REM N = pattern length

2.1. If string(m) =f. pattern(n) then
2.1.1.m := m - n + 2 ; n := 1
else.
2.1.2.m := m + 1 ; n := n + 1

If n =N + 1 then
3.1. Output" Pattern· found at position" m - n

In the brute force approach, the program keeps a counter, m, for the
position within the text string and another one, n, .for the position within
the' pattern, counting from left to right. in both cases. For each pair (m, n),
it compares the corresponding character in the text (string(m)) with the
character in the pattern (pattern(n)). If the characters match, then both m
and .n are incremented. If the two characters do not match, then n is reset
to 1, which corresponds to the beginning of the pattern, while m is set to
the next character of the string to be compared with the first character in
the pattern. Th.e algorithm stops when either a match is found or the right
end of the text string is reached.

~ The algorithm is traced in Figure 1, where bold is used to indicate match
ing characters, and underlining for t'he pattern .characters that cause a mis
match. A new line is started each time 2.1.1 is executed; the values of m
and n at the time of the mismatch are displayed on the right.

The largest number of comparisons this algorithm performs is M N; the
.worst case occurs when n always reaches the 'value N but the l~t character
in the pattern mismatches the text string, forcing'm to be backed up. But
this rarely occurs in ordinary text;. in our example, n is 1 most times and the
number of comparisons is 21. In fact, testing the algorithm Ylithordinary
text indicates that the average number of comparisons needed to find a match
in the ith position within text is usually around lJ + i.

It is interesting to note that more efficient algorithms have been intro
duced only recently. One of them was developed by D E Knuth, J H Morris,
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and V R Pratt" and was published in 1976. These mathematIcians observed
that m does not need to be decremented at all: when a mismatch occurs after
a few text string characters match the pattern, we should use this informa
tion rather than backtracking over all those characters we already know.
This is shown in 'Figure 2, where each time a mismatch is found, the pat
tern is shifted to the right past the last string character inspected, yielding
the match with only 18 comparisons. But this will not work with a pat
tern that partly matches itself in some characters. This is easily seen in the
example shown in Figure 3, where the first eight characters in the pattern,
MATHEMATICS, match the text: if we slid the pattern to the right past the
mismatch caused by H, we would miss MATHEMATICS which starts within
the string of matching characters. This is because the pattern repeats its
first three characters within itself.

AFMFURISTMFONCTIONlFUNTRSMLKJHGFIO
EUNCTION

FllNCTION
FUNCTION

.EUNCTION

EUNCTION
.fUNCTION

:E"QNCTION
FUNCTION

AFMFURISTMFONCTIONlFUNTRSMLKJHGFIO
Figure 2

The Knuth-Morris-Pratt algorithm sets up a table for the pattern, which
indicates how far to move the pattern depending on the position within the
pattern where the mismatch occurs. In our case, the table for the pattern
MATHEMATICS will always indicate a move to the right by the whole length
of the pattern if the mismatch occurs before the seventh character or after
the ninth, but it will indicate a slide of only 5 positions to the right if the
mismatch occurs at the seventh, eight~ or ninth position within the pattern.

ANMATHEMATHEMATICSSLKRSTULBNMOPSTM
MATHEMA~1.CS

MATHEMATICS
ANMATHEMATHEMATICSSLKRSTULBNMOPSTM

Figure 3
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Around the same time as this algorithm was being developed, R S Boyer
and J S Moore came up with another clever idea for improving the efficiency
of pattern matching. The innovative idea consists of scanning the pattern
from right to left and ~oving it along the text from left to right. When the
last character in the pattern mismatches the character in the text string, the
pattern is moved to the right by its whole length, unless the mismatching
text cha,racter appears somewhere else within the pattern.

Let us illustrate this with the search for FUNCTION in the first example.
As shown in Figure 4, proceeding from right to left, we ,first compare the S of
the text string with every pattern character; since no match occurs,we move
the pattern by its full length to the right. Then we see if the I in the text
string is within the. pattern; we find it and y/e slide the pattern so that the I
in the pattern matches the I in the text string. Making 8 more comparisons
we find that the pattern actually matches the text at position 11.

AFMFURISTMFUNCT~ONlFUNTRSMLKJHGFIO

FUNCTION
FUNCTIOH

FUNCTION
AFMFURISTMFUNCTIONIFUNTRSMLKJHGFIO

Figure 4

However, the algorithm designed by Boyer and Moore does not make as
many comparisons as we show in the example; to avoid the comparison of the

, text character with every pattern character, the algorithm constructs a table
which associates with each letter of the alphabet found in the string, the
number of places the pattern should be shifted to the right if that character
causes the '·mismatch. This table only depends on the pattern, and it is easy
to construct.· If a character is ~ot in the pattern, then the corresponding
entry in the table will be the length of the pattern. If a character appears
in the pattern, the' table entry will correspond to the rightmost position,
counted from the right end, of that character within the .pattern.

On top of this improved efficiency achieved by scanning from right'to left,
Boyer and Moore also incorporated in their algorithm the idea developed by
Knuth, Morris and Pratt, that is, the setting up of right-to-Ieft version of
their skipping table in addition to the first table~ choosing in each case the,
longer skip.
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- It, is easy to see that the number of comparisons this algorithm makes to 
find a match in the ith position does not exceed i + N; however, extensive
testing shows that in practice the performance is much better: for reasonably
long alphabets and short patterns, the average number' of comparisons is
around i/N.

Despite all improvements achieved in the design of algorithms for spotting
a pattern within a text, th~ search for a simpler and,faster algorithm con
tinues. An important contribution was made by R M Karp and M 0 Rabin
in 1980, who designed an algorithm as simple.as the brute force algorithm,
but with the worst case number of comparisons being only M + N.,

You can find out more about these and other algorithms in Data Struc
tures, Algorithms, and Software Principles. in C by Thomas A Standish,
p'ublished by Addison-Wesley in 1995.

* * * * *

To solve:
(x+3)(2-x)=4

"Either
x + 3 = 4, in which case x = 1

or
2 - x = 4, in which case x = -2.."

The reasoning is of course incorrect~ but rather surprisingly the answers
are ·right.

The problem is discussed in E A Maxwell's Fallacies 'in Mathematics
(pp 88-89). Maxwell points out that the "method" works in very many (in a
certain sense, all) cases. Consider a quadratic equation with roots p, q.. Then

(x - p)(x - q) = 0,

so that
x2

- px - qx +pq = 0

and so

1- p + q ='1 + q - x - p - pq + px + x + qx - i 2 = (1.+ q - x)(1- p + x).

So if we now say: "either 1+q - x = 1 - p+q or 1 - p + x = 1 - p + q", we
get x = p in the first case and x = q in the second!

* * * * *
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PROBLEM CORNER

SOLUTIONS

PROBLEM 21.1.1

Show that it is possible to find an arbitarily large finite set of points in
the plane such that the points are not all collinear and the distance between
any. two is an integer. (Rather than trying to do thi~ in one step, you may
find it easierif you first look for sets of points for which the distanceobetweoen
any two points is a rational number, and then rescale.)

SOLUTION

Many solutions are possible, but one of the simplest begins by placing
one point at the origin of the x-y plane and another .. point at (0,1). The

remaining points are placed on the positive x-axis, with x~coordinatesn22: 1'

n = 2, 3,4, ... ,m, where m is as large a number as we wish to choose. Then

the distancefrom (n22: 1,0) to (0,1) is: .

~ ( 2n)2 °

-- +12
n2 -1

which simplifies (after some algebra, as you may check) to the rational num-
2 °

ber :2=~. The distances between all other pairs. of points are obviously

rational. Therefore we can find an arbitrarily large number of points such
that the distance between any two is a rational number. It remains only to
scale up the coordinates of all the points by the lowest common denomina
tor of all the rational distances between the points, and we have obtained a
solution to the problem.

PROBLEM 21.1.2 (from the °Germanmathematics magazine Alpha, May/June
1996)

Solve the equation x3 - 3y =2 in natural numbers.

SOLUTION

Write the equation as x3 = 3y + 2. If x is divisible by 3 then ,so is
x3 ,. so this is impossible. If x = 3n + 1 for some integer n 2: 0, then
x3 = (3n + 1)3 = 27n3 + 27n2 + 9n + 1 =3(9n3 + 9n2 + 3n) + 1, so this
is impossible also. Finally, if x = 3n + 2 for some' integer n 2:: 0, then
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x3 = (3n+ 2)3 = 27n3 + 54n2+36n+8 = 3(9n3+18n2 + 12n+ 2) +2. There
fore x Ill:ust qe of th,e form 3n + 2, in which case y = 9n3 + 18n2 + 12n + 2.

PROBLEM 21.1.3 (Claudio Arconcher, Sao Paulo, Brazil)

Let a and b denote real numbers. Find necessary and sufficient conditions
over a and b such that:

ax + bLxJ= ay + bLyJ if and only if x = y

where lxJ denotes the greatest integer less than or equal to x.

SOLUTION based on the solution by Carlos Alberto da Silva Victor, Brazil

If x = y then obviously ax + bLxJ= ay + blyJ, regardless of the values of
a and b. It remains to find the conditions under which ax+ bLxJ = ay+ blyJ
implies x = y. The implication is not valid if a =0, because we cou~d choose
x and y to have the same integer part but different fractional parts. Assume
a =f; O. Let x = LxJ+O and, y = lyJ+cp, where 0 :5 8 < 1 and 0 ~ <p < 1. Then
ax + blxJ= ay +blyJ is equivalent 'to a(LxJ +0) +blxJ= a(LyJ + cp) + bLyJ,
which in turn is equivalent to (.a +b)( LxJ-lyJ) == a(cp - 9). If a+b= 0 then
we cannot dedu.ce that x = y, only that cp ~ 0, i.e. that the fractional parts
of x and yare equal. Assume a + b =1= O. Then LxJ ~ LyJ = ~b(cp - 8). If

a+
t~e right-hand side of this equation is demonstrably·less than 1 in modulus,
and only then, we mus~ have x = y, because lxJ and LyJ are integers. Now
-1 < <p - e< 1, so the right-hand side must be less than 1 in modulus if

la : bl ::; l,but need not be if this condition is not satisfied. The conditions

on a and b that we are seeking are therefore that a =1= 0, a + b -# 0 and
lal ::; la + bl· The condition a+ b '# 0 can be omitted, since it is implied by
the other two conditions.

Note that lal :::; la + bl can be written more simply asll + ~l ~ 1. This

in turn is equivalent to b/ a 2:: 0 or b/ a ~ -2, so these inequalities, together
with a ¥= 0, are the required conditions.

.PROBLEM 21.1.4

Let 6ABC be a triangle with AB i= AC. ;Let D be the point of intersec
tion of the angle bisector of A and the perpendicular bisector of Be. Prove
that D is on the circumcircle of ~ABC.

SOLUTION

Let E be the point where the pe~pendicularbisector of Be meets the
circumcircle~ as shown in Figure 1. We will show thatD = E by showing
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that E is on the angle bisector of A. It is clear by symmetry that the angles
BeE and GBE are equal. But'LBGE = LBAE (since the angles subtend
the same arc), and similarly LGEE = LCAE. Therefore LBAE = LCAE,
so E is on the angle bisector of A. Hence D = E.

A

E

Figure 1

PROBLEM 21.1.5

Let f(x) be a cubic,polynomial with three distinct real roots: a, band c.
a+b

Let v = -2-. Prove 'that the tangent to f(x) at v passes through (c,O).

SOLUTION

The problem could be solved by using calculus to find the equation of the
tangent to f(x) = k(x - a )(x - b)(x - c) at x = v, and verifying that (c,O)
lies on the tangent. Another method, which gives more insight into why the
result is true, runs as follows. Consider an arbitrary lin~, y =px + q, which
could intersect the cubic f(x) at 1, 2 or 3 points. These cases correspond
respectively to f(x) - (px + q) =°having 1,2 or 3 real roots. In particular,
if the line is tangent to f(x) at x = v, then f(x) - (px + q) = °has two real
roots, one of which is a repeated root at v. Thus we can write:

k(x - a)(x - b)(x - c) - (px + q) = k(x - v)2(x - r)

where r is the other (nonrepeated) root. Upon equating the coefficients of x 2

on both sides of this equation, we obtain a+b+ c = 2v +r. Since 2v = a +b,
we deduce that c = T. Therefore the line intersects the cubic at x = c. But
f(c) = 0, so the line passes through (c,O).

Carlos Alberto da Silva Victor, from Nil6polis, Brazil, submitted soluti?DS
to all of the problems.
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More on some earlier problems

Function 3/97

. .

The proposer of Problem 20.4.3, Claudio Arconcher, has written to us
to point out that we made a mistake when we paraphrased his solution in
the February 1997 issue. The condition for the fOUf points to reach the
quadrilateral simultaneously is not that ABCD is a cyclic quadrilateral, but
rather that A~CD has an inner tangent circle (a circle to which all fOUf sides
are tangent), with P at its centre. In this case, Ql,Q2,QS and Q4 reach the
quadrilateral at the points of tangency. We apologise to readers and to Mr
Arconcher for the error.

The following problem appeared in the August 1990 issue of Function,
where it was described as "very hard". It was taken from a Hungarian
mathematics competition known as the Kiirschak competition. Although we
invited solutions from readers at the time, we didn't receive any,- and we
haven't published a solution because the editors have only just now been
able to solve it!

PROBLEM 14.4.7

Two lines, e and f, do not intersect the circle C. Find a construction for
the line g, parallel to f, and intersecting C and e at the points A, B, E in
order to make the· ratio AB/ BE as large as possible.

SOLUTION

Construct 0, the centre of C. ·Construct a line through 0 perpendicular
to f, intersecting e at ··P. Construct the two tangents to .C passing througn
P. Denoting the points of tangency by A and B, the line AB is the required
line. Denote by E the point where this line intersects e. Denote the midpoint
of AB by D. (See Figure 2.)

E

E'

e

C

Figure 2
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Observe that showing AB/ BE is a maximum is equivalent to showing that
EAjAD is a minimum, since BEjAB = (EA + AB)jAB = 'EA/AB + 1
='EA/2AD + 1. Consider a line parallel to AB intersecting C at A'and
B', and meeting e at E'. Let D' be the midpoint of A'B', and let F be
the point where AlB' intersects the tangent to C at A. From similar tri
angles, EA/AD = E'F/PD'. Now E'F < E'A' and PD' > AID1

, so
E'F/FD' < E'A'/AID'. Hence EAJAD is minimal, as required. (Note
that the argument carries through irrespective of which side of AB we put
A'B'.)

PROBLEMS

Readers are invited, to send in solutions (complete or partial) to any or all of
these problems. All solutions received by 11 August 1997 will be acknowledged
in the October issue, and: the best solutions will be published.

PROBLEM 21.3.1

Does the pattern observed in the following sums continue?

1+2=3

4+5+6=7+8,

9 + 10 + 11 + 12 = 13 + 14 + 15

PROBLEM" 21.3.2 (from a British television game show; submitted by Prof H (
Bolton, University of Melbourne)

Use each of the numbers 3,6,25,50, 75, 100 exactly once, together with
the four basic operations of arithmetic (+, -, x, /) and parentheses, to obtain
an expression equal to 952. .

(Professor Bolton writes: "By the nature of [the ,problem's] origin, it had
to be solved in 30 seconds, and one contestant did so ... '1. However, we will
not impose a similar time limit on our readers!)

PROBLEM 21.3.3

Prove that XXyY 2 xYyx for all positive real values of x and y, with equality
holding only if x =y.

PROBLEM 21.3.4

Prove that sin(cosx) < cos(sin x) for all realvalues of x.
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PROBLEM 21.3.5 (from Mathematical Digest, Uniyersity of Cape Town)

Find all real numbers x for which 3% + 4% = 5x •

PROBLEM 21.3.6 (from Mathematical Spectrum)

A polynomial function of degree n is-such that p(x) 2: 0 for all x. Prove
that

for all x.

* * * * *

OLYMPIAD NEWS

The Ninth Asian Pacific Mathematics Olympiad

The Asian Pacific Mathematics Olympiad (APM0), an annual competi
tion, was started in 1989 by Australia, Canada, Hong Kong and Singapore.
Since then the number of participating Pacific Rim countries has grC!wn to
nearly twenty. Moreover, Argentina, South Africa, and Trinidad and Tobago
were accepted into the APMO last year. In Australia, 22 students sat this
four hour examination on 11 March:

Time allowed: 4 hours. No calculators to be used. Each question
is worth 7 points.

1. Given

\ 1 1 1
8=1+--1 + 1 1+"'+ 1 1 . 1

1 + 3 1 + 3 + '6 1 + 3 + '6 +.·.+ 1993006

where the denominators contain partial sums of the sequence of recip
rocals of triangular numbers. Prove that S > 1001.

2. Find an integer n, with 100 ~ n ~ 1997, such that 2
fi

+ 2 is also an
n

. integer.

3. Let ABC be a triangle inscribed in a circle and let
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where rna, mb, me are the lengths of the angle bise~tors (iriternal to the
triangle) and Ma, Mb, Me are the lengths of the angle bisectors extended
until they meet the circle. Prove that

la Ib lc 3
sin2 A + sm2 B· + sin2 C 2:

and that equality holds if and only if ABC is equilateral.

4. Triangle A1A2AS has a right angle at As. .A sequence of points is now
. defined by the following iterative process, where n is a positive integer.
From An{n 2:: 3), a perpendicular line is drawn to meet An-2An-l at

An+I -

(a) Prove that if this process were continued indefiriitely, then one and
only one point P is interior to every triangle An-2An-lAn, n 2: 3.

(b) Let Al and As be fixed points. By considering all possible locations
of ~2 on the plane, find the locus of P.

5. Suppose that n persons A}, A2, .... An (n ~ 3) are seated in a circle and
that Ai has ai objects such that al + a2 + .. _+ an = nN whereN is
a positive integer. In order that each person has the s~e number of
objects, each person Ai· is to give to or receive from its two neighbours
Ai- 1 and Ai+1 a certain number of objects, where An+I means Al and
Ao means An. How should this distribution be performed so that the
total number of objects transferred- is minimal?

Australians at the

XXXVIII International Mathematical Olympiad

The performance of students at the APMO as well as at the Australian Math
ematical Olympiad (AMO) in February was used in selecting twelve candi
dates for the team, which is to represent Australia at this year.'s International
Mathematical Olympiad (IMO). Also twelve .highly gifted students with at
least 'one more year of secondary education ahead of them were singled out

. for further training.

These 24 students participated in the ten day Team Selection School of
the Australian Mathematical Olympiad Committee. Following a tradition,
the School was held in Sydney. Participants had to undergo 'a day and
evening programme consisting of tests and examinations, problem sessions
and lectures by mathematicians. Finally, the 1997 Australian IMO Team
was selected.
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Mar del Plata (Argentina) is, the venue of the XXXVIIi IMD scheduled

for July. There the Australian team will have to cC?ntend With six problems

during 9 hours spread equally over two days in succession. The Australian

team is:

Norman Do, year 12, Melbourne Grammar School, Victoria;

Stephen Farrar (11), James Ruse Agricultural High School, NSW;

Justin Ghan (11), Pembroke School~ South Australia;

Jonathan Kusilek (12), Hurlstone Agricultural High· School, NSW;

Thomas Lam (12), Sydney Grammar School, NSW;

Daniel Matthews (12), Scotch College,.Victoria..

Reserve:

David Varodayan (11), Sydney Grammar School, NSW.

Good luck to them all!

* * * *.*

Inspired by our Computers and Computing column article about

Bezier curves, our long time reader Julius Guest (Bentleigh, Victoria)

wrote a program to produce this attractive figure.
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