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Functi?n is a mathematics magazine produced by the Department of
Mathematics at Monash University. The' magazine was founded in 1977
by Prof G B Preston. Function is addressed principally to students in the
upper years of secondary schools, and. more generally to anyone who is
interested in mathematics.

Function deals with mathematics ~ in all its aspects: pure mathematics,
statistics, mathematics in computing, applica~ions of mathematics to the
natural and social sciences, history of mathematics, mathematical games,
careers in mathematics, and mathematics in society. T.he items that appear
in each issue of Function include articles on a broad range of ,mathemat­
ical topics, news items on recent mathematical advances, book reviews,
problems, letters, anecdotes and cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and other
material for publication are invited. Address them to:

The Editors, Function
Department of Mathematics, Monash University
900 Dandenong Rd
Caulfield East VIC 3145, Australia
Fax: +61 (03) 9903 2227
e-mail: function@maths.monash.edu.au

Function is published five times a year, appearing in' February, April,
June, August, and October. Price for five issues (including. postage):
$17.00*; single issues $4.00. Payments should be sent to: The Business
Manager, Function, Mathematics Department, Monash University, Clayton
VIC 3168; cheques and money.orders should be made payable to Monash
University. Enquiries about advertising should be directed to the· Business
Manager ..

For I"D:0re information abollt Function see the magazine home page at
http://www.maths.monash.edu.au/-cristina/function.htm1.

*$8.50 for bona fide secondary or tertiary students.
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EDITORIAL

Welcome to the 99th issue of Function! We hope it brings something
for every reader interested in mathematics.

The figure on the front cover depicts a sequence of converging circles
determined by two touching circles of the same size; this sequ'ence has a
surprising connection with the sum of a well-known series.

The three feature articles included in this issue illustrate the use of
mathematics in e~eryday situations. If you are a Tattslotto player and you
tend to bet on a number that has not"appeared for a long while,. you should
read M Clark's article; he analyses the· problem of the time elapsed since a
given number was drawn and calculates the related probabilities. If you are
one of those newspaper readers who amuses yourself with, solving anagrams,
B Bolton explains some strategies based on the theory of groups. If you
would like to calculate a cube root but your calculator can only handle
square roots, M Deakin explains how you can still use your calculator to
obtain a reasonable approximation.

The History column follows the article in the last issue about the way
the Babylonians approximated the square root. It provides a closer look
at and analysis of the mathematical calculations that appear" in the clay
tablets· attributed to the Babylonians. In the Computers and Computing
column' you will find a program to draw the Pythagoras tree, which ,you
could use as a starting point to draw your own trees.

If you couldn't solve the problems proposed in the April issue, or if you
would like to compare your work, we include their solutions here. As usual,
we also give you a few more problems to try. You are most welcome to send
us your solutions.

The next issue of Function will be the 100th. We will celebrate it with
an' 'additional issue which will. include a bit of the history of Function, a
complete index of all articles published throughout the past 20 years, and
more. Stay tuned!

* * * * *
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THE FRONT COVER

A Sequence of Circles

Cristina Vatsavsky

Function 4/96

The figure on the front cover depicts a 'sequence of .touching circles
inscribed in the region determined by two bigger touching unit circles and
a common tangent line.

The radii of these circles form a sequence, Tl, T2, T3, • 0., Tn, 000' which
can be obtained" by using the formula

1
Tn = 2n(n + 1) , n ~ 1. (1)

Since the diameters of these touching circles add up to one, this sequence
provides a proof for the infinite sum

00 1 1 1 1 1fl n(n + 1) = 1 x 2. + 2 x 3 + 3 x 4 +4 x 5 + ... = 1.

1

1~
Figure 1

To prove equation (1) we refer to Figure 1. We draw a line from the
centre of each of the inscribed circles to the centre of que of the bigger
circles - sayC10 Applying Pythagoras's theorem to the larger right-angled
triangle, we have
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which, after expanding and collecting like terms, gives us

111

1
rl ="4"

Applying now Pythagoras's theorem to the right-angled triangle deter­
mined by the circle with radius r2, gives

This we expand

to obtain an expressio"n for r2 in ~erms of rl, namely

Similarly, we have for the triangle determined by the third circle (this is
not drawn in Figure 1),

This results in
[1 - 2(rl + r2)]2

r3 = "
4[1 - (rl + r2)]

A pattern emerges here: each radius can be defined in terms of all the
preceding radii according to the recursive formula

[1 - 2(rl + r2 +... + T n )]2
Tn+l = [ ( ] ·41- Tl + T2 + ... + Tn)

(2)

Now we only need to prove that (1) and (2) (together with Tl = 1/4)
define the same sequence. We do this by induction..

Equation (1) gives rl = 1/4, which coincide.s with our recursive defini­
tion .. If we assume that ric = 1/2k(k·+ 1) for all k $ n, then we have to
prove that equation (1) is also true for k = n + 1.

. First we observe that

111
k(k + 1) = k - k + 1 '

k~l
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which is useful to simplify

Tl + T2 + o •• + Tn-l + Tn

Function 4/96

=
2(n + 1)

Using this expression for the sum of the first n radii, we have

Thus, by induction, (1) and (2) define the same sequence of radii..

* * * * *

How far is the horizon?

If one is reasonably near the surface of the earth, observing, say, from an
elevatiQn h, then the distance d to the horizon is proportional to Vh, namely
d = kVh. The value of k depends on the units of measurement involved~ and
it so happens that if d is measured in .miles and h in feet, then k is the easily
memorable number 1.23.

It is not so convenient in the metric system. If d is measured in kilometres
and h in metres, then k = 3.58; or if d is measured in kilometres and h in
millimetres, then k = 0.113.

* * * * *
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ARE YOUR TATTSLOTTO NUMBERS

OVERDUE?

Malcolm Clark

The lottery game Tattslotto is by far the most popular gambling activity
in Victoria, with a.recent survey showing.that 66% of the adult population
play Tattslotto at ~east once a year. In the present form of Tattslotto, each
player makes at least four selections of 6 ~umbers from 1 to 45. These
selections are marked on a machine-readable card that has space for up to
12 selections.

In each Tattslotto draw, the winning numbers are selected by a me­
chanical randomisation device, in which 45 numbered balls are. mixed in a
spherical container. Eight of these balls are sele~ted without replacement,
the first six designated as winning numbers, the last two as supplementary
numbers. Those players who happen to select all six winning numbers share
the First Division pool, winning around $200)000 to $300,000 on average.
Lesser prizes are available under less stringent conditions; for example, a
player with any 3 of the 6 winning numbers plus either supplementary·
number wins a 5th Division prize, typically-around $20.

Some Tattslotto players select the same numbers week after week, often
based on the birthdays or ages of close··family members, or oth~r numbers
perceived to be "lucky". This raises the question: -how long (how many
draws) will it take before such a player wins, say, a 5th Division prize?

This question is too difficult to answer here. Instead, we consider a
simpler but related question: how long will it take for one specified number
to boe drawn by the Tattslotto machine?

We will assume, for the rest of this article, that the Tattslotto ma­
chine is a perfect randomisation device, in that at each draw, each of the
(~) = 215 553 195 possible subsets of 8 numbers from 45 has equal proba­
bility of being chosen, regardless of the outcome of all previous draws.

To be definite, suppose that our specific number of interest is number 13.
First, what is the probability that number 13 will be "drawn", Le. will be
one of the 8 chosen numbers? Since all possible selections of 8 ntlmbers
from 1 to 45 are equally lIkely, we simply·need to worl{ out how many of
those selections contain number 13. To do this, imagine that we put the
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8 selected numbers into 8 boxes. We know that one of the boxes must
contain numb.er 13; the contents of the remaining 7 boxes must be chosen
from the remaining 44 numbers (see Figure 1).

.Figure 1

Hence the number of selections which contain number 13 is (~4) .. Therefore
the probability, p, that number 13 will be drawn is

number of selections containing 13
p =

Total number of selections

(~) 44!37!8! 8
= (~) = 37! 7! 45! = 45' (1)

Now let X denote the number of draws until number 13 appears as one
of the 8 drawn numbers. At each successive draw, number l3 will appear
with probability p, and will ~ail to appear with probability q == 1 - p,
independently of what happens in other draws. Hence the probability that
it will take x draws until number 13 is drawn is

P(X = x) = pqx-l= 4
8
5 G~r-l ,x = 1,2, 3, ~.. . (2)

This is simply the probability that number 13 fails to appear in the first
x-I draws, and that it does appear in the x-th draw. We multiply the
probabilities because we are assuming that the Tattslotto draws are inde­
pendent in the probability sense.

The probability distribution given by (2) is known as the. geometric dis­
tribution. Although there are infinitely many values of x, the probabilities
nevertheless add up to 1. To see this, note that

p + pq + pq2 + pq3 + .. 0 = p(l + q + q2 + q3 + ...)
= -P--E-1l-q-p- ,

using the geometric series

2 3 1 I1 + q + q + q +.00 = -1-' for ql < 1.-q
(3)
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The dots here indicate that the summation,continues indefinitely.

On average, how many draws does it take until number 13 first appears?
To compute this, we find the mean or expected value jJ of the random
variable X by multiplying each possible value of X by its probability, and
summing up. In symbols,

J.l = p + 2pq + 3pq2 + 4pq3 + .
= p(l'+ 2q + 3q2 + 4q3 + )

Even though there are infinitely many terms in this summation, the mean
value J.l is a finite number. To see this, we differentiate the geometric series
(equation (3)) with respect to q, obtaining!

(4)

Hence
1. 1. 45

J.l = p · 2 =. - = - = 5.625.
p p 8

This result agrees with intuition. Since 8 of the 45 numbers are drawn
each week, we would expect to wait 45/8 weeks on average for any specific'
number (e.g. number 13) to turn up.

Similarly, we can easily compute the probability P(X :5 x) that num­
ber 13 wi.ll be drawn in no more than x draws. The complementary event is
that number 13 fails to be drawn in the next x draws; this has probability
qX. By the rule for complementary events,

P(X~x)=l-qX, x=1,2,3, ... (5)

Two important points should be noted. First, the preceding arguments
apply for any specific number, e.g. number 1, number 2, number 3 and so
on, not just number 13. Secondly, the same result holds if we count time
backwards rather than forwards. For example, we could equally well ask:
how many draws is it since number 13 was last drawn? The answer is given
by the same probability distribution (2) by exactly the same argument.
Note that x = 1 corresponds to number 13 being drawn in the last (most
recent) draw.

IThe term-by-term differentiation used to derive (4) from (3) appears intuitively obvious,
but it requires some advanced mathematical theory to justify it. See -also the front cover
article in Function, Vol 20, Part 3 for this type of series.
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This leads us into a mor~ interesting question. Each week, Tattslotto
publishes a table giving the past history of Tattslotto results. In particular,
it gives, for each number from 1 to 45, the number of weeks (draws) since
that number was last drawn. Each count starts from zero, rather than 1,
as we did in deriving (2) and (5). Hence, eight of those entries are zero,
corresponding to the 8 numbe~s drawn in the last clraw. But some entries in
this table are surprisingly large. For example, after Draw 1511 (13 January
1996), number 1 had not been drawn for 23 weeks of Saturday draws (see
Figure 2). This was the most "overdue" number out of the 45, with the
maximum number of "weeks since last. drawn". Since this is much larger
than the average J.t, this might suggest, at first glance, that the Tattslotto
machine is faulty. Alternatively, could such an extreme result happen just
by chance? The answer is "Yes'.', as we now ~how.

SATURDAY TAnsLOTTO FIRST DRAW R'ESULTSHISTORY
AT 1.3 JANUARY :1996· DRAW 1.5:U

NO. OF WEEKS SINCE EACH NO. DRAWN NO. OF TIMES EACH NO.DRAWN SINCE-413

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
23 0 0 11 0 1 1 1 110 101 110 ~ 00, 89 104 119

19 10 11 12 13 14 15 16 9 10 11 12 13 14' 15 16
0 11 0 8 5 4 2· 0 104 88 101 92 00 00 102 g)

17 18 19 20 21 22 23 24 17 18 19
2~OO

21 22 23 24
12 2 2 14 1 1- 3 18 00 93 108 ~ 91 107 S3
25 26 27 28 29 30 31 32 25 26 27 28 2'9 3'0 31 32
5 2 3 0 0 6' 7 4 101 -gJ. 84 94 g) 88 l04 84

33 34 35 36 37 38 39 40 33 34 35 36 37 38 39 40
1 2 6 11 5 8 13 2 ~ 101 1a5 $ 00· Q3 n 104

41 42 43 44 45 41 42 , 43 44 45
13 4 1 8 2 108 101 108 ~ ~

Figure 2

We need some extra notation first. For each integer j froin 1 to 45, let X j

denote the number of draws since number j was last drawn. For example,
"X13 = 5" means that it is 5 weeks since number 13 was last drawn. Also,
let Y = max(X1,X2, .•• ,X45), so that Y is the n~mber of weeks since the
"most overdue" number was last drawn. In Figure 2, Y = 23. What is the
probability of this happening by chance, i.e. assuming that the Tattslotto
machine is perfect?

Since all the Xj'S are random, so too is their maximum Y. It turns
out that it is easier to compute the cumulative probabilities for Y, rather
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.than the direct' probabilities such as P(Y = 23). The argument is quite
ingenious, and goes as follows.

For any positive integer y, the maximum, Y, of the 45 Xj'S is less than
or equal to y if each of the Xj'S is less than or equal to y, and vice versa.
Hence both "events"must have the same probability. In symbols,

P(Y ~ y) = P(X1 ~ Y,X2 ~ y, ... ,X45 ~ y)
= P(X1 ~ y)P(X2 S y) ... ,P(X45 ~ y) (6)

assuming that the Xj'S are all independent of one another. Each of the
45 factors on the right-hand side of (6) is given by (5), with x replaced by
y + 1. So, assuming that the Xi's are independent, we find

Hence

P(Y S y) = (1- qY+l)45, Y = 0,1,2, ... (7)

P(Y = y) = P(Y ~ y) - P(Y ~ y - 1)
= (1 - qY+l)45 - (1 - qy)45, Y = 1,2, ...

and P(Y =0) = p45. (8)

In fact, the Xi's are not independent. As already noted, eight of the
Xi's must always be zero (not the same eight each time!). In contrast,
our derivation from (6) to (7) does not rule out the possibility' that all 45
Xi's could be simultaneously zero. So equation (7) must be regarded as an
approximation.

Nevertheless, it is a very good approximation. To check the accuracy of
(7) and (8), I wrote a computer program which simulated a total of 50 000
Tattslotto draws·' (roughly equal to 1000 years' of Saturday draws!). After
each draw, the program automatically computed the number of draws since
each number was last drawn. After every 50th draw, the program recorded
the actual value of Y (the maximum number of draws since last drawn).
From these 1000 simulated values of Y, it was then possible to estimate
the probabilities of various values of Y, without making any assumptions
about the Xi's.

Figure 3 compares the approximate probability distribution (8) (solid
curve) with the simulated one (dashed Ctlrve). As can be seen, both graphs
have the same shape, with the approximate distribtltion shifted slightly to

.the left relative to the simulated distrib1.1tion.
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The probability that the most overdue number has not been drawn for
23 weeks is 0.0567 by (8), or 0.066 by the simulated prQbabilities. However,
this does not answer the real question: how unusual is such an outcome? To
answer this, we compute the probability ofY being 23 or greater. This turns
out to be 0.395 by (8) or 0.427 by simulation. Sinc'e the total probability
of all possible Y's is 1 (represented by the area under the smooth curve
in Figure 3), our observed value of Y = 23 must be near the centre of the
distribution of Y-values, as can be confirmed by the vertical dotted line
in Figure 3. In other words, the observed result could well have arisen by
chance alone, and there is no reason to suspect that the Tattslotto machine
is faulty.
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Figure 3: Approximate and simulated" probabilities

Some Tattslotto players believe that the most overdue number is more
likely to come up in the next draw thaD: other numbers. This is a false
belief. Unlike the players, the Tattslotto machine has no memory, and
the most overdue number has exactly the same probability of being drawn
as all other numbers. Being a maxImum, the number of weeks since _the
most overdue number was last drawn is bound to be large. Figure 3 and

. equations (7) and (8) indicate how large it can be, by chance alone.

* * * * *
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ANAGRAM GROUPS: A "CRYPTIC" PIECE OF

MATHEMATICS

Bert Bolton, University ·of Melbourne

The crossword, puzzles of the daily newspapers in Australia, such as
The Age and The Australian, are popular with re.aders. They seem at
first sight to attract readers who are more literary than mathematical or
scientific, but there are some mathematical problems concealed in them.
Here is 'one which uses a knowledge of group theory. .

Groups are concerned with a set of objects {a, b, c, ...} and there can
be a finite or an infinite number of the· objects. In the problems that we
will discuss .there is a finite number of objects, and each is an "operator"
which produces changes in the order of letters in a word.

A set G of elements is a group if and only if it is possible to define a
binary operation which associates with every pair of elements a, b of G an
element ab so that

1. ab is an element of G (it is said that G is closed under the binary
operation),

2. a(bc) = (ab)c for all elements a, b, c (associative law),

3. G contains an identity operator E such that for each element a of G,
Ea = aE = a,

4. for each element a of G, G contains an inverse a-I such that a-1a =
aa-1 = E.
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in the United Kingdom and is traditionally one of the hard puzzles. The
word has an odd number of letters and we concentrate on odd-numbered
·anagrams. Words with even numbers of letters are not so readily treated.

The clue from the puzzle is as follows:

In time apt perhaps to get irritable (9).

A nine-lettered 'word is sought and the word "perhaps" in the clue gives
a lead. The first three words of the clue have 9 letters and "perhaps"
suggests that the order of these 9 letters should be rearranged to make a
.word meaning '''irritable''. This is so; the answer ~as "impatient~'. As the
puzzle proceeds, some letters are known from completed clues at right an­
gles. If, for example, it is already known that the" 9~lettered word ends
in -E-T, the solver can be tempted to try the ending MENT or 'lENT
and the "light can dawn". One of the difficulties of an anagram is to
avoid the distracting pattern of letters already in the clue and there is
a classic method of doing this. The letters of the anagram are arranged
in a circle as in Figure 1. This helps the solver to start with any let­
ter. There are many arrangements of 9 letters; if all letters are different
from each other, the number of arrangements is the factorial of 9, that is
9! = 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 362, 880. But the phrase "in time
apt" has two letters i and t that are repeated. Interchanging only the two
letters i or the two letters t leaves -the arrangement unchanged and then
the number of arrangements is 91/2!21 =90,720. Not all of them make a
recognisable word.

Anagrams of 15 letters are sometimes given; the grid of squares in the
crossword is 15 x 15. The first circular arrangement such as in Figure 1 often
does not yield the answer .~equired. New patterns of letters can certainly
be found by random interchanges' but one systematic method is to rewrite
the circular pattern as follows. Take the first letter, omit the second, take
the third, omit the fourth, take the fifth, etc. round the circle twice, and
the pattern is given in Figure 2. We call this result the action of a "hop
operator" , and because the first letter is placed beside its second neighbour,
we call it the "hop two" operator. The idea can be extended to a "hop
three" operator and so on, but for the moment we restrict the discussion to
hop two operators. This method of rearranging the letters can be repeated
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starting with Figure 2.

T

N

E

T

Figure 1

M

A

p
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We now examine this procedure in more detail. We choose a five-lettered
'word' ABCDE to make the diagi:ams easier. They'are given in·Figures 3
and 4, equivalent to Figures 1 and 2 respectively. We denote by 0 the hop
two operator which changes the circular pattern from Figure 3 to Figure 4.
The letter 0 will be used for the equivalent hop two operator in further
patterns. There is no need to draw the letters in a circle so they will
be used in a straight line, remembering that the 5 letters are repeated to
represent the action of going twice around the circle. The consequence of
the operator on ABCDE is then

O(ABCDE) = ACEBD.

Using the operator 0 again gives 00 which is written 0 2 , and

02(ABCDE)"= O(ACEBD) = AEDCB.

Further,
03(ABCDE) = O(AEDCB)"=ADBEC

and finally
04(ABCDE) = O(ADBEC) = ABCDE

which is the starting pattern~ Further uses of 0 will only repeat what
has already been found. We see that the operator 0 4 restores the starting
pattern. If we keep the concept of an operator, we can define the identity
operator E tllat preserves the pattern on which i~ operates, and we can
summarise the above by saying that for a word of 5 letters, there are 4
operators E, 0, 0 2,03 , with 0 4 = E. The letter E comes from the· German
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word die Einheit, unity. Confusion between E as an operator and E as a
letter can be minimised by noting the context.

E

A

D

Figure 3

c

B o
A

B

Figure 4

E

c

IIi general, let n be the number of letters and m be the number of
operators; Table 1 shows the relationship between m and n for a few values
of n.

n 3 5 7 9 11 13 15 17
m 2 4 3 6 10 12 4 8

Table 1

The set of m operators for n letters is a group and the nu~berm is called
the order of the group. As with so many branches of mathematics ttat
look "pure" when discovered, group theory has proved to be very powerful
when applied to new problems. Groups have helped with problems in the
geometry of 2 and 3 dimensions and also with problems in advanced ideas
in the physics of fundamental parti~les.

We need to find 0-1, the inverse operator of a in the group. We find
it by noting that 9 is telling us h9W to advance through the pattern of n
letters; "the operator 0-1 defines a retreat through the pattern. These ideas
of advancing and retreating suggest the interpretation of 00-1; a retreat
followed by an advance should leave the pattern unchanged, or in the new
language

00-1 = E.

Recalling that 003 = E for the discussion of n = 5, we can guess what
0-1 must be. We have
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and the letters A, B, C, D and E are now arranged .just one letter apart
from the initial pattern. For instance, A and B are separated by D which
could be achieved by starting at A and omitting the 2 letters Band C
to put D next to A. Once the pattern AD ... is started, omit the next 2
letters EA'to get B and the pattern builds up ADB ... and so on. Then

O(ADBEC) = ABCDE = E(!!BCDE)

or 00-1 = E.

It is straightforward to confirm that 0-10 = E.

The generalisation of this method of defining 0-1 for any n letters is to
note that

0-1(ABC ... ;n) = A(omit (n ~,l)/2)a(omit (n - 1)/2)(3 ...

where a is the letter separated from A by (n ~ 1)/2 letters and (3 is the
letter separated from a by (n - 1)/2 letters, etc. Then

OO-l(ABC ... ;n) = A,.; ..

The letter I is separated from A by (n -1)/2 +1+ (n -1)/2 letters which
is n letters and I is then B, independent of n.

The ~implest way to see 40w geometry is brought within the scope
of groups is through the representations of the operators. For the group ,
{E, 0, 0 2, 0 3}we draw a unit cir.cle and label the ends of two orthogonal
diameters 'as in Figure 5. The operator E is represented by a poiI\t on the
circle. The operator 0 is represented by a 90° rotation from E to the end
of ,the vertical diameter marked o. Then 0 2 must involve a rotation of
180°, 0 3 a rotation of 270° and 0 4 = E, a rotation of 360° which is just
the starting point E. Such a group is known as cyclic.

The 'group in question is the cyclic group of order 4, and for general n,
there is a cyclic group of order m.

The discussion of Figure 5 is equivalent to the more familiar expressions
either that the figure has four-fold symmetry or that rotating the pattern
by 90 degrees' leaves it invariant. Examples are found in many places.
The benzene molecule C6H6 has a carbon atom at each,vertex of a regular
hexagon with a hydrogen atom radially outwards from each vertex. The
chemical properties of the benzene molecule relate to the properties of a
group. Chllrch and decorative windows are often found with 3, 4, 5, 6 and
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8-fold symmetries. The swastika, made so unpopular in recent history, has
four-fold rotational symmetry.

o

.·E

Figure 5

The grids of crossword puzzles have symmetries. The grids, can have
2-fold or 4-fold symmetries and sometimes they have a further reflection
symmetry about a horizontal or vertical axis. This is a problem distinct
from the cyclic groups arising- from the anagrams. Occasionally the printer
makes the mistake of putting the wron.g grid with the verbal clues and then.
the solver has to construct the pattern of black and white squares from the
symmetry given by the clues, before attempting to find the answer to each
clue.

So far we have confined the representations to two-dimensional patterns,
but symmetrical patterns 'also occur in three dimensions. The crystals and
their symmetries that ·are found in nature or grown in laboratories have
been classified according to group theory and group representation. The
quartz crystal, whose vibrations regulate ~"electronic" watch or clock,
was grown' under careful conditions and such crystals always h~ve the same
symmetries and properties. .

* * * * *
I have traveled the length and breadth of this country and talked

with the best people, and I can assure you that data processing is a
fad that won't last out the year.

- From the editor in charge of business books
for Prentice Hall, 1957

* * * * *
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HOW TO CALCULATE CUBE ROOTS

WITH SQUARE ROOTS

Michael A B Deakin

Of course, if you have any sort of sophisticated calculator at all, then
it is a simple matter to calculate the cube root of any positive number N
by raising 'it to the power l. However, if you don't have this then other
measures are needed. Here is one approach that I learned from a calculator
salesman about 25 years ago. I can still use it on a small pocket Tandy
that I bought some time back then. This is very basic, but it does possess
a vi (square root) button and a single memory. For the method to work,
the first is essential, the second helpfuL

The key to the method is·to take an approximation, Xo let us call it, and
to improve on this. The improved approximation, Xl say, is the fourth root
of the product of Xo and N. This can be calculated as vlvI(xoN). Once Xl

is found, then we can use it to produce an even better approximation X2,

and so on.

Here is how I got a value for the cube root of 2 on my little Tandy. I
indicate the Memory button by M and the Recall button by R.

2MvI Enters 2 into the memory
and uses V2 as xo, giving Xo = 1.4142135

xR = vIvi Multiplies xoby the 2in
memory and takes the fourth
root, giving .XI = 1.2968395

xR = vivi Repeats the previous step,
giving X2 = 1.2690509

X12 = 1.2599210

and this is the best approximation this calculator can give.
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First up, let's see how the method works. We have
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1 1 1 . 11 1
Xl = (XON)i, X2 = [(XON)4N]4, X3 = {[(xON)iN]iN}4, and so on.

Each successive approximation is the product of a power of Xo and a power"
ofN.

The exponents of XQ are successively ~,C~)2, (~)3, ... , (~)n, and so on.
These exponents approach the limit 0 as n tends to infinity, and xoo = 1.
(Start with any positive number and t~e s~ccessive fourth roots, or for
that matter square roots, and you will find that the numbers approach 1,
although it can sometimes happen with some calculators that this limit is
not exactly achieved.) So, whatever positive number we begin with, we
end up with a limiting' value of 1 for this part of the answer.

. The exponents of N are successively ~,~ + Ci}2, i + (~)2 + C~)3, ... ,
~+C~)2+ ...+Ci)n, and so on. These are the successive sums of a geometric
series with first term and common ratio both equal to i. The limit of these
sums as n ten4s to infinity is 1, as you can easily check. So the limit of the

powers of N is Nt, and this will be the limit of the product because the
other factor approaches 1.

We can also find out how the successive approximations improve on
each other. Suppose th"e .exact value 6f the cube root is x and that one
of our approximations gives a value x + c, where c is a small error. Now
because x is the exact value of the cube root, we h.ave N = x 3• Thus the
next approximation is [x3(x + £)]1. That is to say, [x4(1 + c/x)]!, and this
works out to be x(1 +c/x)l. Now if h is small and n not too large, then
(1 +h)n is very close to 1 +nh. We can apply this result here to find that
the new value is approximately x + ic. In other words, each step in the
calculation reduces the error by a factor of 4. .

As approximations go, thi~ is a rather slow· approach to the true value,
and for serious numerical work other methods would be employed. Nonethe­
less, the simplicity of the method and its ease of application make it a nice
example to explore.

It is often particularly instructive to explore cases where you already
know the answer. For example, if N = 8, we··know that the answer we
seek is 2. If we start with XQ = v'8, we find Xs = 2.0006769, and stlccessive
approximations after this are 2.0001691, 2.0000422, 2.0000105, etc. The
rllie of ~ is quite evident.
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For large numbers, ffi is not a particularly good initial approximation.
Nevertheless, this is not a major problem. As an example, I looked at the
case N = 1 000 000. The true value of the cube root 18 of course 100, and
if we start with the approximation ffi, then we have XQ = 1000, which is
10 times too big. However, .things soon s,ettle down; the next approxima­
tions are in order 177.82794100, 115.47819847, 103.66329284, and already
we are only a bit more than 3% out. After this, we get 100..90350448,
100.22511483, 100.05623126, 100.01405485, and so op.. Notice the "~ rule"
here again. It becomes established quite quickly..

* * * * *
Mathematician at work

An engineer 'and a mathematician are in a room with one door. .Both of
them are asked (one at a time) to go into the next room, where they will find
a pot of water and a stove, and boil the watero

The engineer goes into the next room, sees the pot of water sit~ing on a
table, puts it on the stove, turns on the stove, and waits until it boils.

A little bit later (the room is reset for ,the mathematician), the mathemati­
cian goes into the next room, sees the pot sitting on the table, puts it on the
stove, turns on the stove, and waits until it boils.

Now both of them are asked to do it again. However, this time the pot of
water is on the floor. The engineer sees,the pot of water on the floor, puts it
on t"he stove, and then waits until it boils. -.

The mathematician, however, sees the pot of water on the floor, puts 'it on
the table and procl'aims "The problem is now reduced to one which has been
previously solvedo"

* * * * *
Where a calculator on the ENIAC is equipped with 10 000 vacuum

tubes and weighs 30 tons, computers in the future may have only
1 000 tubes and. weigh only one and a half tons.

- From Popular Mechanics, 1949

* * * * *
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HISTORY OF MATHEMATICS

More on Babylon

Michael A B Deakin
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In our last issue, Benito Hernandez-Bermejo wrote about the Baby­
loni~ tablet' YBC 7289 and th~ inference that the ancient Babylonians
calculated square roots by "means of an averaging process. In an earlier
issue (Volume 15, Part 3), we also encountered the ancient Babylonians:
in this case their listing of Pythagorean triples. Quite -coincidentally, as

- the editorial board was looking over the article on square roots, a flurry of
email arrived directly on these--matters.

The "bible" on ancient Babylonian mathematics may be said to be
the worl( of Neugebauer and Sachs. In English there is their co-authored
book Mathematical Cuneiform Texts and it was from this that we took
the illustration that the editors appended to Hernandez-Bermejo's article.
However, this book was published in 1945, and' so is quite old by now. The
same point therefore applies with even more force to Neugebauer's earlier

. Mathematische Keilschrift-Texte, a three-volume effort published over the
period 1935-1937. Although this pioneering work was of an exceptionally
high quality, modern researchers have gone beyond it to discover more.
And, as always, to raise more questions.

Contemporary workers like Jens H0yrup and Eleanor Robson have re­
evaluated much of the older work, especially jn the light of more recent ev­
idence. The rest of this article depends on some recent postings by Eleanor
Robson to a select newsgroup on the history of mathematics, together with
some very pertinent comments by David Fowler from ~he same newsgroup.

In the first place, we are not just talking of Babylon, the city, but using
the term rather loosely to apply to quite a large area of what is now Iraq,
Syria and Iran. Indeed, we have no archaeological evidence of Babylon itself
during the relevant (early) period (around 2000-1600 Be); excavation of
the relevant levels is both technically and politically impossible. The early
tablets (those described in works up to about 1945) were dug up (rather
than scientifically excavated) and often collected by tourists who bought
them at street markets and the lilre. They made their way to Europe
and eventually into the museums where they ar~ held today, but they lack
what scholars call "provenance" - because of the manner in which they



lVlore on Babylon 129

made their way to their present locations, we have no direct evidence as to
:where they originally cam.e from and when they were made.! .

However, we now have thousands of clay tablets with mathematical
calculations and tables from this general area and time. They are classified
into various types. The largest group is that of the "table texts"', which,give
products, reciprocals, squares, cubes and other powers, as well as listing.
conversions between the two systems of number representation that were
in. lise.2 Then there were "problem texts" , which in. essence were teaching
aids. The next categQry are student "workbooks". These three categories
account for nearly all of the known tablets. Three further but much smaller
categories (which will not concern us here) make up the remainder.

The tablet known as YBC 7289 '(and briefly discussed in Hernandez­
Bermejo's article) is an example of a student workbook tablet. It is usually
described as depicting a square of side 30 with its two diagonals drawn.
Along one diagonal is the cuneiform number which today we would write
as (1; 24, 51, 10). This has to be interpreted as

24 51 10
1 + 60' + 602 + 603 '

which works put to be 1.414212963, a number very close to v'2, whose value
is more exactly 1.4l4213562. However, (1; 24, 51, 10) is the best approxi­
mation to be had using three places after ·the semicolon in base sixty.

Underneath this number is another, which is normally interprete4 as
(42; ~5, 35), and this is the p~oduct of 30 and (1; 24, 51, 10). So the usual
interpretation of the tablet is that the student, having been given an ap­
proximate value of v'2, was asked to calculate the diagonal of a square of
side 30.

This is one view of the matter, but it is complicated by the fact that
the tablet nowhere employs any equivalent of the semicolon - the way in
which we today distinguish the integral part from the .fractional part. (In
bas.e ten this function is performed by the decimal point.) Thus, David
Fowler suggests that the ..30 may in fact be (0; 30), which is the Babylonian
equivalent to our !. On this interpretation, the (42; 25,35) is not to be
so interpreted but rather as (0; 42, 25,35), the Babylonian equivalent of

lThis is why the date of the tablet known as Plifl.lpton 322 and described in Function,
Vol 15, Part 3 is so uncertain.

2Here we will only be concerned with the so-called "scientific" system; the one using base
sixty.
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1//2. This has the merjt of making the two numbers (1; 24, 51,10) and
(0; 42, 25,35) a reciprocal pair: their product is 1. It is known that the
Babylonians were very interested in' reciprocal- pairs. (They were needed
for division.) So Fowler's reading is very ,attractive, although we have no
way of proving it definitively.

It was on the basis of YBC 7289 that Neugebauer and Sachs suggested
that the Babylonians found square roots by using the aver~ging cJgorithm
- the one described in Hernandez-Bermejo's article. Apart from the nu­
merical value itself, there was very little evidence for the suggestion, and
there are other algorithms that could have been used to produce the same
value. Thus it was only a hypothesis that this' was how they proceeded.

, However, we now have some further evidence that makes this hypothesis
much more likely, although that evidence remains a little shor~ of beirig
fully convincing.

There is another tablet, known as VAT 6598, which supplies much of
the m~ssing evidence.3 VAT 6598 is actually only a fragment of the original;
a large part of it has broken off. However, a few years ago, one of the cura­
tors of the British Museum collection realised that one of their fragments
(known as BM 96957) was in fact part of the missing piece.4 It is known

.that this tablet is over 3500 years old and thought very likely that it comes
from Sippar, near Baghdad. In any case, weare now able to read much of
the tablet and to follow the calculations on it.

Eleanor Robson has translated it into English, and here is her version.

(problem xviii) A gate, of height! ( a rod ), 2 cubits and
br~adth 2 cubits. What is its diagonal? You: square 0; 10, the
breadth. You will see 0; 01 40, the base. Take the reciprocal of
0;.40 (cubits), the height; multiply by 0; 01 40, the base. You will
see 0; 02 30. Break in half 0; 02 30. You will see 0; 01 15. Add
0; 01 15 to 0; 40, the height. You will see 0; 41 15. Its diagonal is
0; 41 15. The method.

(problem xix) If a gate has height 0; 40 (cubits)5 and diagonal
0; 41 15, ~hat is its breadth? You: take 0; 40, the height, from

3The tablet is in the National Museum in Berlin and the VAT stands for Yorder~siatische

I.ontafelsammlung (i.e. Near Eastern Clay Tablet Collection). 6598 is its number in their
catalogue.

4Sadly, about a third of the original is still missing!
5This actually me~ns (0; 40) rods, or 8 cubits. The expression has been rather confusingly

abridged.
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0; 41 15, the diagonal. 0; 01 15 is the remainder. Double 0; 01 15.
You will see 0; 02 30. Multiply 0; 40, the length, by 0; 02 30, the
factor that you saw. You will see 0; 01 40. What is the square'
root? 0; 10 is the square root. The method.

(problem xx) The breadth is 2 cubits, the diagonal is 0; 41 15.
What is the height? You: no (solution) .

. Let us now see quite what all this means. The cubit was an old unit
for measuring length. It was based on the· length of the human forearm
and so its actual size varied quite considerably; however, a rough modern
equivalent is 50 em. 12 cubits made a rod. So if we look at problem xviii,
~e find that the height of the gate i~ ~ a rod plus 2 cubits, atotal of 8
cubits, which is i of a rod. We now have i =.~, so the height in rods is
(0; 40), about 4 metres. Similarly the breadth in rods is (0; 10), about 1
metre.

In what follows, I'll avoid using the actual numbers involved in the prob­
lems (all dealing with the sanie rectangle, as we shall see), but rather use
algebraic symbols. This is so as to assist our. 20th Century understanding,
of course; it wasn't how the ancient Babylonians would have worked.

So for the height of the gate I will write h. For its breadth I will put b
and for its diagonal I will have d.So in the first .problem (xviii) the number
we seek is d, and the value will be (exactly) Vb2 + h2• Now let us follow
the instructions on the tablet, and as we do so translate them into modern
mathematics.

S~e also the figure (based on a diagram actually shown on the tablet,
but here we use more modern pictorial conventions).

Square the breadth

Take the reciprocal of the height

Multiply by the base

Break in half

.Add this to th~ height

1
Ii
b2

h
b2

2h

h b2+ 2h'

(called the "base")
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~his is given as the value of d.

h

I b
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Figure 1: A modern version of the right-angled triangle of VAT
6598' (viewed side-on as in the original).

Now let us compare this value with that obtained by the method ex­
plained by Hernandez-Bermejo in his article. Take h as the first appr~x­

imation to the value of d. This will be an underestimate (quite clearly).
Now consider b2th2. This will be an overestimate of v'b2 + h2, the value
we seek. So take the average of the underestimate and the overestimate,
! (h + b2th2) , which simplifies to h+ ~~, the v81ue found on the tablet.

We can readily check how accurate the approximation is. In our notation
b = t and h = i, so the actual value of d is tv'I7, or about 0.6872. The
vaIue given on the tablet is (0; 41,15), which is 0.6875, so we have quite a
good approximation, produced very easily.

Now let us look at ·problem xix. Clearly this (and also the aborted
problem xx) refer to the same rectangle. Here the value sought is that of
b, and the true value is v'd2 - h2• We follow the steps as in the previ.ous
case.

Take the height from the diagonal d - h

Double the remainder ,,2(d - h)

Multiply this by the length (height) 2h(d - h)

Take the square root J2h(d - h).

(the "remainder")

This is actually a reasonable approximation to the true value, because b
is considerably less than h. Numerically, we have d =*(this is the value in
our modern notation of (0; 41,15) in base sixty) and h = ~. Thus the correct
value for b is abOtlt 0.16796, where the value given i~ i, or 0.16666.... The
solution on the tablet has J2h(d - h)., or J(h + h)(d - h), whereas correct
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is J(d +h)(d - h). It happens that the value found for 2h(d - h) is an
exact square (Babylonian (0; 01,40) is our 316)', and so the square root is
exact~ It would appeatthat it must have been either memorised or found
from a table of exact square roots,·as no method is given for finding it.6

The evidence for the "averaging algorithm" therefore depends on prob­
lem xviii. It is not quite as strong as we might like. In the first place, the
averaging is not direct, althougp. the answer that is produced is the same
answer that is obtained by averaging. But all we really have is that h+ ;~ is
a good approximation to Vb2 +. h2• This could in fact have been pro,duced
in several ways. One quite good.one is to.use the "binomial approximation"
(1 + k)O: ~ 1 + ak, where k is small and a not overly large. It works like
this:

Vb2 + h2 = h2 (1 + ~:) = h (1+ ~:) 1/2 ~ h (1+ 2~2) = h + :~.

In the context ,of this problem, we have k = t~ = 1~' which is reasonably
small, and so the method works, but it may not be how the Babylonians
got the approximation.

Another possibility is to take x as an approximation to -IN, and seek
to improve it. Suppose the better approximation is x +c. But then we
have N = (x + c)2 ~ x2 + 2xc, as c is small and thus c2 is very small.
So c = N;x2

, as used in problem xviii. Mathematically, this method, the
binomial approximation and the averaging technique are all equivalent to
one another7, but psychologically they are not, and so historically they are
not. They use 4ifferent i'f1:sights although they reach the same answer.

The second objection comes from one of David Fowler's postings, and
it i~ this: that there is no hint of the approximation's being improved by
applying the method a second time. In H~rnandez-Bermejo'sarticle, there
was the very clear idea of iteration, that is to say of using a process over and
over again to improve accuracy. There is no suggestion of this in the present
case. In the three algorithms considered above, the averaging technique and
the third approach lend themselves readily enough to iteration but this is
not quite so apparent with the binomial approximation.

6It will be noted that the value discovered for b is in fact the exact value given in problem
xviii, whereaS the formula that produced it -is only an approximation. This is because the
value of d is not itself exact. It may also be noted that if the' same method were to be
applied to problem xx, the error would be much larger. (It is one sexagesimal digit.)

7 And to other techniques as welL
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So it would see~ that we are not entirely sure that the Babylonians
actually used the algorithm that is often attributed to them. Th-at they
did is one hypothesis - an attractive one, but the evidence for it is hardly
compelling.

In my next column, I will look again at another tablet, Plimpton 322.
It is a pleasure to thank Dr Robson for her constructive contributions to
both these articles.

* * * * *

A precise statement

It is often imagined that the love of precise detail in mathematics makes it
cold and inhuman, but this need not be so.

The town of Ross lies almost in the centre of Tasmania and is one of the
more historic towns of that island state. It is pretty enough but cold and
windswept; its cemetery and the few remains of a women's prison bespeak a
harsh past.

Perhaps one notices most the graves of children, tiny plots saying "died
aged 3 months" and so on. Two children in one family both died on the same
day. Infant mortality seems to have been high.

But surely the most moving headstone of all records the passing of Martha
'Bacon on the 23rd of May, 1862, aged 14 months and one day.

Someone cared enough to be precise.

* * * * *

Music is the pleasure the human soul experiences from counting
without being aware that it is counting.

- Gottfried Wilhelm Leibniz

* * * * *
CbXpP
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COMPUTERS AND COMPUTING

The Pythagoras Tree

Cristina Varsavsky .

In this column we have previously showed several pI:"ograms to draw
fractals on the screen. This time we present the Pyth~gorastree. The basic
step in its construction uses the representation of Pythagoras's theorem for
right-angled triangles. This is depicted in Figure 1: the. sum of the areas
of the two smaller squares generated by the two adjacent sides equals the
area of the larger square determined by the hypotenuse.

c

Figure 1

1

Figure 2

The representation of Pythagoras's theorem for an isosceles right-angled
triangle is the basic repeating motif - on an ever reduced scale - of the
Pythagoras tree. Figure 2 shows the first four steps of its construction. We
start with the square labelled as 1, then we construct the two squares 2
and 3 so that they meet at 90 degrees. Th"e third step consists of repeating
the same procedure for the square 2, to obtain squares 4 and 5; and to the
square 3, to obtain the squares 6 and 7. The process is repeated for each
of these four new squares to obtain the squares 8, 9, 10, 11, 12, 13, 14, and
15. The Pythagoras tree is the figure obtained as this iterative process is
performed infinitely many times.

Here is how we write a computer program to draw this tree - or rather
its first few branches. First we observe that the number of sqtlares drawn
at each successive stage is 1, 2, 4, 8, 16, ... respectively; then at the



136 Function 4/96

p-th stage we draw 2P squares (note that square 1 corresponds to p = 0).
Each square is one of the two squares supporting the same triangle, one
to its left, the other to its right. From Figure 2 we observe that all even
numbered squares are to the the left of the cor:responding triangle, and
the odd numbered squares are to the right. Since the Pythagoras tree is a
binary tree, we can use the binary representation of the numbers to draw
the corresponding square. For example, the binary representation of 13 is
1101, and this sequence.of ones and zeros tells us how to traverse the tree
to find the position of the square 13. A "I" simply means "turn right",
and a "0", "turn left". So we start from square 1, then we traverse the tree
to the right (second 1. in the 1;:>inary representation), then left (the 0)" and
then right again (the last 1).

The QuickBasic program that follows uses this binary repres~ntationof
the position of each square within the tree. Figure·3 shows the correspond­
ing output.

REM Pythagoras Tree

SCREEN 9: WINDOW (-8, -3)-(8, 9)
pi = 3.1416
order = 8: DIM array(order)
x = 0: y = 0: z =1: w = 1

FOR i = 0 TO order
FOR j =2 A i TO 2 A (i + 1) - 1

s = j
x = 0: y = 0
length = 1: angle = 0
FOR m = 0 TO i - 1

array(i - m) = s MOD 2
s = INT(s /-2)

NEXT m
x =.0-: y = 0

FOR m = 1 TO i
IF array(m) = 0 THEN

x =·x - length * (COS(angle) + 2 * SIN(angle))
y = y + length * (2 * COS(angle) - SIN(angle))
angle = angle + pi / 4: length = length / SQR(2)
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x = x + length * (COS(angle) - 2 * SIN(angle))
y = y + length * (2 * COS(angle) + SIN(angl~))

angle = angle - pi/ 4: length = length / SQR(2)
END IF
NEXT m
z = length * (COS(angle) + SIN(angle))
w = length * (COS(angle) - SIN(angle))

LINE (x - w, y - z)-(x + Z, Y - w)
LINE -(x + W, Y + z)
LINE -(x - z, y + w)
LINE -(x - w, y - ~)

NEXT j
NEXT i
b$ = INPUT$(1)
END

Figure 3

There are several ways you can modify the .program to obtain more
sophisticated trees. One such way is to start with a right-angled triangle
witll unequal sides.

* * * * *
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SOLUTIONS

PROBLEM CO'RNER
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PROBLEM 20.2.1 (modified from a problem in Alpha, a German mathematics
magaz,ine, September 1995)

It is known that the teachers for classes 5A to 5E will be Mr Brown,
Mrs Green, Mr Black,. Mr Gray. and Ms White, but it has not yet been
announced which teacher will be in· charge of which class. The table below
shows the predictions by two students. The first student made two correct
guesses associating teacher and class, and the second made three 'correct
guesses. Who is the teacher for each class?

Class
1st stude~t's guess:
2nd student's guess:

SOLUTION

5A 5B 5C 5D 5E
Black Green White Gray Brown
Brown Black Gray White Green

The two students did not agree on any teacher. Thus, a correct guess by
the first student means that the second was wrong twice, first by giving the
particular teacher the wrong class, and then by choosing the wrong teacher
for the particular class. If the other correct guess by the first student did
not refer to the teacher and class already shown to be wrongly assigned
by the second, the second student would have made more than two wrong
guesses. The first student must therefore have picked correctly the teachers
for classes 5C and 5D, which the second student had interchanged while
guessing all·the others correctly.

PROBLEM 20.2~·2' (modified from a problem in Alpha, June 1995)

"It's curious," says Karen. "I decided to select the PIN for my Bankcard
by dividing my year of birth by the street number of our house and choosing
the last four digits shown on my calculator. They turn out to be 1996."

"How many digits does your street number have?" asks Melissa.

"Two."

"In that case you made a mistake or your calculator is not operating
properly. YOll cannot get the digits 1,9,9,6 in sequence among the decimal
places when you divide an integer by a two-digit integer.".
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Prove that Melissa is right.

SOLUTION
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(1)

(2)

Let a and bdenote respectively Karen's year of birth and street number.
Then we can write the decimal expansion of ~ as N.XIX2 .•. x n 1996xn+5 . .•.

Now multiply by lon+l:

lon+la .
--b- = NXIX2 ••• x n l.996xn+5····

where the left-hand side is written with the usual conventions of algebra,
and the right-hand side is a decimal expansion.

The integer part of the right-hand side of equation (1) is NXIX2 ••• xnl;
call this number k, and subtract it from both sides:

10n+1a - bk
b = 0.996xn+5. ~ 0

The left-hand side is a fraction whose denominator is less.than 100. The
right-hand side is just less than 1. But the largest fraction less than 1
with a denominator less than +00 is ~, which hM a decimal expansion of
0.989898 ... , clearly less than the right-hand side of equation (2). Therefore
the sequence 1, 9, 9, 6 cannot occur among the decimal places when an
integer is divided by a two-digit integer. (In fact, essentially the same
argument shows that the sequence 9, 9 cannot occur.)

PROBLEM 20.2.3 (from Alpha, June 1995)

Let ABCS be a regular pyramid with base ~ABC and apex S. Let
the angle at S in each side face be c¥. Let M be a point on a side face at a
distance 1from the apex. Determine the length of the shortest closed path
through M and enclosing S, if it exists..

SOLUTION-

The simplest way to solve the problem is to unfold the pyrami~! Figure 1.
shows the three side faces of the pyramid after they have been flattened
out, togetller with a second copy (shown dashed) of the face containing M,
with the copy of M denoted by M'. Provided that a < 600

, the line M NI'
corresponds to a closed path on the pyramid, through M and enclosing So
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From the diagram, we see that the length of this line is 21 sin 3;.

s

Figure 1

If a ~ 600
, the proplem has no solution, as all closed paths through M and

enclosing .8 have length greater than 21, and paths of length arbitrarily
close to 21 can be found.

PROBLEM 20.2.4

Let P be a point inside a triangle ABC. Let D, E and F be on AB,
AC and Be respectively, such thatPD..LAB, PE..LAC, and PF ..LBC (see
Figure 2). It is required.to choose P so as to minimise PD + PE + PF.
Show that if ~ABC is not isosceles then P must be situated at a vertex.
What happens if 6ABC is' (a) isosceles; (b) equilateral?

A

B-----~-------~CF

Figure 2
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Begin by observing that the area of the triangle with vertices at A, B
and P is !AB . PD, the are~ of 'the triangle with vertices at A, C and
P is !AC . P E, and the area of the triangle with vertices at B, C and P
is ~BC . PF. Thus the total area of the triangle ABC is !(AB o'PD +
AC 0 PE + BC . PF), irrespective of how P is chosen.

Now suppose that ~ABC is not isosceles, and that AB > AC > BC.
Then:

~AB(PD+PE +PF) > ~(AB · PD +AC· PE+ BC · PF) (1)

unless PE and PF are both zero, in which case the two sides are equal.
Therefore PD + PE + PF is minimised if PE = P F = 0, so P coincides
with C, the vertex opposite the longest side.

If !::1ABC is isosceles with AB > AC = Be, the same argument applies,
and P is again the vertex opposite the longest side. If, on the' other hand,
l::::..ABC is isosceles with AB = AC > BO, then both sides of (1) are equal
whenever PF = 0, so P may be any point on the sideBC.

Finally, if ~ABC is equilateral then AB = AC = Be, so the area of
the triangle is !AB(PD + PE + PF). Hence P may lie anywhere on or
inside the triangle. .

PROBLEM 20.2.5 (from Mathematical Digest, July 1995. University of Cape
Town)

Exactly one of the following five statements is true. Which one?

(1) 'All of the following.

(2) None of the following.

(3) Some of the following.

(4) All of the above.

(5) None of the above.

SOLUTION

(1) and (4) are clearly false. If (3) were true then (5) would be true,
which would lead to a contradiction. Hence (3) is false. If (5) were true



142 Function 4/96

then (2) would be false, and this would yield a contradiction. Therefore
(5) is false. This leaves (2) as the true statement. It is easy to check that
this assignment of truth values ((2) is true, the other four statements are
false) is consistent.

PROBLEM 20.2.6 (from Mathematical Mayhem, Vol 8, Issue 3, University of
Toronto)

Show that the sum of any 1996 consecutive integers cannot be a power
of an integer with exponent greater than one.

SOLUTION by Derek Garson

Let S denote such a sum. Let T(n) denote the sum of the first n
consecutive integers. Then S can be written in the form T(n+ 1996) -T(n)
for some value of n. It is well known that T(n) = !n(n + 1). Hence

1 l'
S = 2"(n + 1996)(n + 1997) - 2"n(n + 1)

1
= '2(n2 + 1996n + 1997n + 1996 x 1997 - n 2

- n)

1
= 2"(1996 x 2n +1996 x 1997)

= 998(2n + 1997)

= 2 x 499(2n + 1997)

[The same result can be obtained in other ways. In particular, it follows
directly from the formula for the sum of an arithmetic series. Eds.]

Since 499 and 2n + 1997 are both odd, 2 appears exactly once in the
prime factorisation of S, so it is clear that the claim is true. (More formally,
if S = m t , then, since 2 IS, we must have 2 Im. If t ~ 2 then this would
imply that 4 IS, so 2,1 499(2n + 1997), which is clearly false.)

Solution to an earlier problem

The problem below, by K R S Sastry, appeared in the April 1991 issue.
(We ha~e reworded it slightly for clarity.) A solution has not previously
appeared in Function.

PROBLEM 15.2.3

A triangle is called self-median if two of its sides are in proportion to two
of its me'dians. More precisely, if AD and BE are meclians of 6ABC then
the triangle is self-median if ig = ~~. Let AD and BE be medians and G
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the centroid of ~ABC.Prove that if LDGC = LBAC and LeGE = LAJ;3C
then ~ABC is self-median.

SOLUTION

The situation is depicted in Figure 3.

A

B
c

Figure 3

LDGC = LBAG and LeGE = LABC (given)

LDGE = LBAC + LABC (adding the angles)

LDGE + LACB = LBAG + LABG +·LACB = 1800

(sum of the angles of ~ABC)

LCDG + LCEG = 1800

(since the angles of the quadrilateral CDCE sum to 360°)

LCDG + LBDG = 1800 and LCEG + LAEG = 1800 (straight angles)

LGEG = LBDG and LCDG = LAEG

6.ABE and ~CDG are similar (2 common angles) .

and 6ABD and l:::,.CEG are similar (2 common angles)

CG CD CG EC
AB = BE and AB = AD

CD EC
BE= AD

lBG lAC
_2_=_2_
BE ·AD
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AC Be
AD = BE·

Therefore 6ABC is self-median.

PROBLEMS

Function 4/96

Readers are invited to send in solutions (complete or partial) to any or all of
these problems. All solutions received in sufficient time will be acknowledged
in the ne~t issue but one, and the best solutions will be published.

PROBLEM 20.4.1 (K R S Sastry, Dodballapur, India)

Show that the graph of the polynomial p(x) = x4 - 2x2 .+ 2x + 2 has a
_common tangent line at two distinct points on it.

PROBLEM 20.4.2 (from Yidiot Achronot newspaper, Israel; posted on the
·Internet by Greg Barron)

Useeach of the numbers 1, 5, 6. and 7 exactly once, together with the
four basic operations of arithmetic (+, -, x, /) and parentheses, to obtain
an 'expression equal to 21. The numbers may be used in any order, and
there is no restriction on the- number of times each operator may be used.

PROBLEM 20.4.3 (Claudio Arconcher, Sao Paulo,Brazil)

Let ABCD be a convex quadrilateral.. Let P be a point inside ABCD.
From P, draw perpendiculars to the sides of ABCD, extending them O:It­
side the quadrilateral: PI 1. AB, P2 1. B~, P3 .1 CD, and P4 .1 D A. Let QI
be a point on PI outside ABeD. Construct Q2 on P2 with BQI = BQ2, Q3
on P3 with CQ2 = CQ3, and Q4 on P4 with DQ3 = DQ4.

(a) When this construction is possible, is it always true that AQ4 = AQl?

(b) Investigate what happens if QI moves along PI towards AB until one
of Ql"Q2, Q3 and Q4 reaches the quadrilateral. Under what conditions
on the quadrilateral do all four points reach the quadri~ateralsimulta­
neously?

PROBLEM 20.4.4, (Juan-Bosco Romero Marquez, Universidad de Valladolid,
Valladolid , Spain)

Find positive integer solutions to the eqtlation x + y + xy = x 2 + y2.
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