
i

I '

unction
A School Mathematics Magazine

~ .

Volume 18 Part 4 AUgtlst 1994

Mathematics Department - Monash University

Reg. by Aust. Post Publ. No. VBH0171

bpolster
Rectangle



FUNCTION is a mathematics magazine. produced by the Department
of Mathematics at Monash University. The magazine was founded in 1977
by Prof G B Preston. FUN.CTlON is addressed principally to students in
the upper years of secondary schools, and more generally to anyone who is
interested in mathematics.

FUNCTION deals with mathematics in all its aspects: pure mathe
matics, statistics, mathematics in computing, applications of mathematics
to the natural and social sciences, history of mathematics, mathematical
games, careers in mathematics, and mathematics in society. The items that
appear in each issue of FUNCTION include articles on a broad range of
mathematical topics, news items on recent mathematical advances, book
reviews, problems, letters, anecdotes and cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and other
material for publication are invited. Address them to:

The Editors
FUNCTION
Department of Matheluatics
Monash University
Clayton, Victoria, 3168

Fax: (03) 905 4403
e-mail: function@maths.monash.edu.au

Alternatively correspondence may be addressed individually to any of
the editors at the mathematics departments of the institutions listed on
the inside back cover.

FUNCTION is published five times a year, appearing in February, April,
June, August, and October. Price for five issues (including postage):
$17.00*; single issues $4.00. Payments should be sent to the Business Man
ager at the above address: cheques and money orders should be made
payable to MOllash University. Enquiries about advertising should be di
rected to tIle Business Manager. -

*$8.50 for bona fide secondary or tertiary students.
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EDITORIAL

Welcome again to our read~rs! Here is a summary of what you'll find
in this issue of Function.

This time the front coyer demonstrates that mathematics is also a form
of art. The curve shown there is a product of th~ imagination of the
French mathematician Paul Levy; one of the first scientists to investigate
the figures that we now know as fractals.

We have two feature articles inthis issue. You will need to stand in front
of a mirror as you read the first article: in it, Paul Grossman examines the
question: "Why does a mirror interchange left with right, but not top with
bottom?" In -the second feature article, Ian Collings analyses an interesting
nu.mber problem that was suggested to him by a non-mathem~tician.

In the History of Mathematics section, Michael Deakin relates the origin
of the imaginary number i. In his usual lively style he tells us that altho~gh

.a widespr~ad belief is that complex numbers were "invented" to solve cer
tain quadratic equations, in fact they owe their origin to the process of
solving cubic equations.

Another pie~e of evidence that mathematics is also an art form can be
found in the Computers and .Computing section. This time pretty graphs
such as roses and butterflies are generated using a computer program based
on equations-expressed in polar coordinates.

. We also include news of ,a recent advance in the problem of filling space
with solid figures, and the usual problem section, with solutions to previous
ones and a few new problems to challenge your mind.

Happy reading!.

* * * * *
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THE FRONT COVER
Levy's Curve

Cristina Varsavsky, Monash University

The curve shown on the front cover is a product of the imag)nation° of the
French mathematician Paul Levy (1886-1971), one of the first scientists to
investigate the figures that were later called fractals. It belongs to a family
of fractal curves which includes the better-known Koch Snowflake.

The curve is constructed recursively starting from a line segment (Fig
ure 1(a) ). This is replaced by two segments which form a right isosceles
triangle with the old line segment as shown in Figure l(b). This process
is then repeated on each of the two new line segments, giving l(c); then
again on each of the four segments, l(d); then on each of the eight seg
ments, l(e); and so on. The first loop appears after the fifth iteration, l(f),
and becomes more- pronounced from then on.

(a)

(c)

(e)

, , , , ,
",

"

/
/

/0
/

/
/

/

(b)

(d)

(1)

Figure 1
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The curve on the front cover is the twelfth stage in the process described
above. Levy's curve is obtained as the limit of this process °as the number
of iterations tends to infinity. The limiting curve cannot -be drawn, but the
twelve iterations help us to picture it in our minds.

It is a simple exercise to work out the length of Levy's curve. Let I be
the length. of the segment we start with. Using the familiar Pythagoras's
Theorem we see that the lengt~ of each segment produced after the first
iteration is 1 x If, giving a total length of 1 x 2 X If = 1..;2. At the
following stage, the length of each segment is lox II and the length of the
curve is I x 4 x If = zV2i. In general, after n iterations we will have 2n line

. segments forming a curve of length l~. It is obvious then that Levy's
curve is infinitely long.

Levy's curve - or rather any stage in the process of obtaining it - can
also be constructed starting from one of the ends. Let us see this with
the curve obtained after four iterations, in which we number the sixteen
segments starting from the left end as in Figure 2.
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Figure 2

The wiggly curve is constructed with sixteen segments, all of the same
length, drawn one after another. After each segment is drawn, there are
only four possible directions - left, right, up and down - in which the
following one may be drawn. The rule governing the choice of direction is
related to the binary expression of the position of the segment (0 to 15)
within the curve. We can express this in algorithmic form·as follows:
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1. Express in binary notation the position of the segment with respect to
the starting point.

2. Count the numbers of l's, p, in the binary expansion found in step 1.

3. Calculate the remainder, r, after division of p by 4.

4. If r = 0 move left. If r = 1 move down. ~f r = 2 move right. If r = 3
move up.

The following table shows the directions for 'the 16 segments in the
fourth iteration: .

n Bin~ry p r Direction

0 0 0 0 left
1 1 1 1 down
2 10 1 1 down
3 11 2 2 right
4 100 1 1 down
5 101 2 2 right
6 110 2 2 right
7 111 3 3 lip
8 1000 1 1 down
9 1001 2 2 right

10 1010 2 2 right
11 1011 3 3 up
12 1100 2 2 right
13 1101 3 3 up
14 1110 3 3 up
15 1111 4 0 left

The curve on the front cover, which consists of 212 segments (some of them
overlapping), was generated by a computer program based on this algo
rithm.

* * * * *
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MIRROR IMAGES

Paul U A Grossman

Someone once .asked me: "Why does a mirror interchange left with right,
but not top with bottom? There is surely no reason why it should affect
the imag~ differently in the horizontal and vertical directions." We soon
established that th~ questioner' had a specific case in- mind, namely a plane
mirror mounted vertically in which he was looking at himself. Is there a
p-aradox? Let us examine the effects produced by a plane mirror.

When a ray of light strikes a reflective surface, it continues its travel in
the plane that contains its incoming path and is normal to the surface. The
angle of reflection equals the angle of incidence. To the eye of an observer,
these reflected rays appear to come from a source behind the mirror.

Let us now show that the back projections of all rays emanating from
one point and reflected from a plane mirror intersect at one point behind
the mirror, giving a "virtual" image. Let us also determine the position of
this' image. We shall introduce a cartesian coordinate system with its origin _
in the mirror surface, x and y axes in the plane of the mirror and the z-axis
normal to it. Figure 1 shows the light source at point A with coordinates
(XA' YA, ZA) and two rays eJ?1.anating from it towards the inirror, one in the
z-direction, the other remaining in the plane with equation x == XA and
striking the mirror at a:p.gle <p to the normal.

y

A _-__--__- ..... --.---------"., AI
,,"

"""",,"
""""

z----."",£..-----4---------o

Figure 1
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The projected extensions of the reflected rays (drawn by broken lines) in
tersect at A'. The x- and y-coordinates of A' must be the same as those
of A, since both points lie on the same normal to the xy-plane. The two
tria~gles formed by the points of impact and respectively A and AI are
congruent, having a common side and two equal angles; hence ZA'==" -ZA ..'

The same arguments hold whatever the value of the angle 'P, therefore all
rays reaching the mirror from A in the plane with equation x == XA are
reflected such that their back projections pass through A'.

What about rays leaving A outside the plane with equation x == XA ?
Since we are free to choose the x and y directions arpitrarily, the above
result must hold universally, thus-

for all rays from point A that reach the mirror. Similar relations must hold
for rays from any other point with positive z.

Figure 2
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Thus my questioner looking into a vertical plane mirror facing" say,
north would see top and bottom unchanged in the image, .east and west
unchanged, but his nose would seem to point north instead' of south. Should
you wish to experience the effect of the reversal in the z-direction, try to
thread a needle while looking at it in a mirror.

In a horizontal mirror, whether it be the surface of a lake or a glass
mirror on a ceiling, the z-axis is vertical and therefore up and down are
interchanged.

So far we have checked only th~ position 'of the image in relation to that
of the object. Let us now investigate the orientation of both object and
image in relation to the observer. We shall limit the analysis to an object
parallel to the mirror, i.e. z = ZA for any point on the object. Let the
object be a thin circular pl~te. The eye of the observer may be in one of
three regions:

(a) further away from the mirror (Zobs > ZA),

(b) closer to the mirror (Zob.s < ZA), or
(c) at the same distance as the object (Zobs == ZA).

observer

image

mirror

Figure 3

(a) The observer further from the mirror, as depicted in Figure 2 and
shown diagrammatically in Figure 3, sees both the object and its image
while looking (essentially) in, the negative z-direction. If marks on the
circumference of.the plate are nU:p1bered clockwise, they will appear clock
wise in the ,image, too. The .only difference, apart from the size, is that
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the observer sees on the image the reverse side of the plate because of the
reversal in the z-direction. If the plate is transparent, then any writing on
it is equally readable on the image.

(b) An observer who is closer to t~~e mirror than the object is (Fig
ure 4) cannot see the object and its image without turning. He or she'
looks z-wards at the object and (-z)-wards at the image. Marks on the
circumference, numbered clockwise on the plate, appear antic~ockwiseon
the. image; letters face the ppposite direction.

observer'

object

mirror

Figure 4

image

The observer turning to look from object to image may rotate about any
axis but we are in the habit- of turning while standing upright, i.e. turning
·about a vertical axis. In the process w.e carry with us what we know as the
right and the left sides of our bodies. Unlike east, west, etc., left and right
do not denote an independent direction in space but are subjective. The
change from clockwise to anticlockwise direction is readily perceived as, an
interchange between left and right. If, in order to see the image; we stood
on our heads (which is a legitimate way of rotating our bodies) and we
kept calling the direction of our feet, "down" and that of our heads "up",
then we would argue that a mirror turns top to bottom but retains .left and
right.

(c) An observer at the same distance as the object cannot see the object,
only its image. This 4appens when we look at o:ur eyes in the mirror ,and
this is how my questioner first thought there was a paradox. While we
cannot see our eyes, only their image, we know which is left and which is
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right and we imagine what they would look like to someone facing us. Thus
we· place ourselves into the. shoes of an observer in position (b) listed above
who looks in the positive z-direction to see us but would 'have to rotate to
see the image.

In summary, we have seen that in the directions parallel to the face of
the mirror the .image is unchanged" from the object. This confirms what my
questioner tried to say in his second statement, although he did not express
it precisely. The fallacy in his first question arises from the fact that left
and right, unlike top and bottom, do not define a direction in space, but
depend on the orientation of the .observer.

* * * * *

Paul UA Grossman is a physicist who has retired from. the position of
Principal Research Scientist with the CSIRO. His main research interest
was rheology (the study of deformation and flow of materials). His hobbies
include music and he is also active in Amnesty International.

* * * * *

But was it Really Cheating?

The Cambridge mathematician John Littlewood (1885-1977) recal~ed

how he had once "cheated" in an exam. After unsuccessfully attempting
to answer one of the questions, he left his seat to get some more paper.
On the way, he noticed that another student had· placed a mark beside
that question to indicate that he had done it. Knowing that this particu
lar student was one of the less capable ones, Lit.tlewood inferred that the
question must be amenable to a simple solution. On trying it again, this
time specifically looking for a simple way of doing it, he was able to solve
it. "The perfectly highminded man would no doubt have abstained from
further attack", he wrote later: {C! wish I had done so, but the offence does
not lie very heavily on my conscience" .

* * * * *
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DIFFERENCES OF SQUARES

Ian Collings, Deakin University

Function 4/94

Some time ago I received a letter from an "ordinary Australian" who.
obviously enjoyed playing with numbers. He had noted that every natural
number could be expressed as the difference between two squared rational
numbers, where the smaller number was between 0 and 1.

For example, the number 5 could be written as

Other examples he presented were 63 == 82 - 12 and

100 895 598 169 == ..(317 640 428, 569) 2 _ (428, 569) 2
, " '635,280 635,280

I thought his results were interesting, so I decided to explore whether
this holds for any natural number. The question is: given a natural number
N, is it possible to find x and y such that

·N == (x + y) 2 _ ·y2

with x a natural number, and y a fraction, 0 ::; y ::; 1 ?

Perhaps it is simpler to have N expressed as

N==x(x+2y) (1)

which of course follows from the previous expression after. expanding the
square and simplifying.

Three simple cases follQw after a quick inspection of the equation (1):

1. N == x 2 for some natural number x. In this case y == O.

2. N == x(x + 1) for x a natural number, for example 56 ::::; 7 x 8. In this
case y. == .! and therefore

3. N == x(x + 2) for x a natural number, for example 63 == 7 x 9. Here
y == 1 and then
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(2)

Then it follows that

3. !V == x(x + 2) for x a natural. number, for example 63 == 7 x 9. Here
y == 1 and then

For a general value of N, we could proceed as follows.

Let x be the largest natural number such that x 2 ~ N. 'Wewrite

N == x 2 + (N - x 2
)

= X (x + 2
N

2x x
2

)

which is in the sameform as (1) with y == N"2xX2
• The number y is evidently

a non-negative. rational nuinber. But is "it less than or equal to I?

Let's see. Because of the way x has been chosen, we have

N«x+l)2

therefore
N < x 2 + 2x + 1

and because N and x are natural numbers, we have

N _x2

---<1.
2x -

If we take, for example, N == 513, we have 222 == 484 :s; 513 and
232 == 529 > 513. Then x == 22 and y == 5123;22;2 == ~, which gives us

A related question you might consider is whether it is possible to write
any natural number as the difference of the cubes of two rational numbers
where the smaller number lies between 0 and 1.

* * * * *



108

HISTORY OF MATHEMATICS

Laputa or Tlon71

Michael A BDeakin

Function 4/94

My title gives two possible answers to the question: "What kind of
dream-world do you mathematicians inhabit?" We sometimes find our
selves relegate<i to "Cloud Nine", "off the planet", etc. Some of the public
- even the influential public - see Pure Mathematics as consisting of airy
fairy flights of imagination indulged in by a few rare nuts of a freakish turn
of mind. Such a view places us in Laputa. Some of you may know of it. Af
ter Gulliver had left the mini-micro world of Lilliput, and had done with the
super-dooper extra Texans of Brobdignag, he visited several places, among
them a land of airborne floating islands, peopled by impossibly impractical
researchers. This was Laputa.

This land does not exist, being a product of Jonathon Swift's embittered
and satiricalmind. Nonetheless, it is very real, for it stands as a symbol
of impractical and dilettantish research. Laputa lives on as an image of
the most convolutedly abstract, narrowly academic, deliberately useless
thinking that mankind can produce.

Mathematicians do not, outside the realms of fiction, inhabit Laputa.·

We live, in fact, in Tlon - a world at once much more dreamy and
abstract, much more here and now, and much less known to the average
reader of this article. Tlon is a fictitious .land, the invention of the here
siarchs of Uqbar, a country which also does not exist. Uqbar was the resv.lt
of a conspiracy by a secret society known as Orbis Tertius - itself a fiction
invented by the Argentine writer Jorge Luis Borges who, you will by now
be pleased to hear, was a real person.

Tlon is thus a fiction cubed, and yet it is our reality, for it is Borges's
symbol of the way in which intellectual frameworks affect our perception
of the world. (I shall not, in an essentially mathematical article, enter the
controversy over the metaphysics or the theology of Tian.) Mathematics
in its development affects and is affected by the intellectual framework we
inherit.

1Dr Deakin is currently overseas. We reprint here an edited text of a schools' lecture he
gave in 1979, and which also appeared in Functi'on, Vol. 3, Part 5.
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Had Swift been told in 1726 that mathematicians were investigating the
square root of -1, he would undoubtedly have relegated ~hem to Laputa.

In point of mathematical nicety, as subtraction is a simpler operation
than division, negative numbers, arising from the former, logically precede
fractions, which owe their genesis to the -latter.

None of which, of course, reflects the actual sequence of historical ac
ceptance. The Greeks of Pythagoras's time had used not only fractions,
but 'irrational numbers. Yet 23 centuries later, Euler regarded negative
numbers as "imaginary quantities". The pojnt is that I can visualise (for
example) ! of an apple, without undue mental strain. To imagine -1 apple,
however, involves my envisioning some sort of "hole" in the fabric of the
universe.

In discussing the square roots of such quantities, we ent~r a world of
unreality that daunted our mathematical forebears. To this day, we speak
of "real numbers" and "imaginary numbers" - the latter being those that,
when squared, give rise to negative (nowadays respectably real) numbers.
A "complex number" is the sum 'of a real and an imaginary number.

Now you may have been told, or you may have imagined for yourself,
that complex numbers were invented because of some aesthetic need for
completeness. The equation x 2 ~ 1 = 0 has two solutions, while x2 + 1 = 0
has none. We are being unfair to the second equation.

Life was never so simple. The point is rather different, insofar as histo
rians have been able to piece it together - and this 'is a difficult matter.

Consider the quadratic equation

ax2 + bx + e = O.

You and I k~ow that we can solve this, if all else fails, by using the formula

1
x = 2a(-b±vb2 - 4ac),

if b2 ~ 4ae.

This much .was known to the Greeks of antiquity. It was the genius of
Renaissance Italy to solve the next problem in line - to wit

ax3 + bx2 + ex + d = O.

It is possible simply to write down a formula (a very messy one) for the
roots of tllis equation. But no understanding lies that way. Let us first
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simplify the' problem. Observe, to begin with, that we can divide through
by a (unless, of course, a = 0, a trivial case).

This gives, with change of notation,

x3 + Ax2 + Bx + C = o.
This form of the equation may be simplified yet further. 2

I will deal with two specific examples:

x 3
- 3x2 + 6x - 8 = 0

x 3'+ 6x2
- 9x ~ 14 = O.

,To simplify equation (1), put x = Y + h. This yields

y3 + (3h - 3)y2 + (3h2 - 6h + 6)y + (h3 - 3h2+ 6h - 8) = O.

N6w choose h = 1, to make the coefficient of y2 equal to zero:

A similar process applied to equation (2) gives (with h = -2)

y3 _ 21y + 20 = O.

(1)

(2)

(3)

(4)

You may check that equation (3) has the single root y = 1 (i.e. i == 2),
and 'equation (4) has three roots y = -5,1,4 (i.e. x = -:..7, -1,2). '

We may similarly reduce all cubic equations to the standard form

y3 + 3Hy + G = O. (5)

The solution of equation (5) is nowadays widely' attributed to the Ital
ian mathematician Tartaglia (1500?-1577), although there is some dispute
about this among historians of Mathematics.

The.key insight now is the observation that

y3 _ 3pqy + (p3 + q3) = (y + p + q)(y2 _ [p + q]y + [p2 + q2 - pq]). (6)

(You can check this factorisation by expanding the brackets.) From (6) it
follows that the equation

(7)

2·These processes were discussed in Function, Vol. 17, Part 2.
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may be solved. One root is y == -(p + q). The others (if present) may be
found by setting the quadratic factor equal to zero.

Now compare equations (5) and (7). Equation (5) may be solved if we
can determine p and q to satisfy

pq = -H, p3 + q3 = G,

or
p3q3 = _H3, p3 + q3 = G.

Thus p3 and q3 are the roots of a quadratic equation

t2
- Gt - H 3 = o.

(This holds because (t - p3)(t- q3) == t2 _ (p3 + q3)t +p3q3.)

It follows that

Applying this procedure to equation (3), for-which H == 1, G == -4, we
find, after some work,

p = (VS - 2)1/3, q == -(VS + 2)1/3.

We may now check that p = !(v'5 - 1), q == -!(v'5 + 1). As the root y is
-(p +q), we find

as expected.

Turn noW to equation (4). In this instance H == --:7, G = 20, so that we
reach

p == (10 + gV="3)1/3

q == (10 - gH)1/3.

We can proceed no further, as our formulae involve the dreaded square
roots of negative numbers. '(This is all the more maddening, as we know
that three perfectly respectable real roots are there waiting for us in the
wings.)
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The decisive step seems to have been taken by another Italian mathe
matician, Bombelli (1526-1572). Writingi for H, without thought as to
whether or not i exists, we may discover

1 3J3.
p== -2+ -2-z

1 3J3.
q == -2" - -2-z,

results which may be checked by cubing and writing -1 in place of i 2,

wherever it occurs.

Now we put y == -(p + q) == ~ - ¥i + ! + ¥i == 1, which is one of
the three roots. Note, however, that to find this real root, we had to have
recourse to complex numbers. (It is a theorem, and you can pr.ove it from
the formulae given in this article, that this is always the case when a cubic
has three real roots.) Bombelli passed through the valley of the shadow
and emerged unscathed. To re-enter reality, he had to travel through Tlan.

But once Tlan has been sighted, be it ever so briefly, there is no turning
back. Like all early voyagers, he left confused maps and log books. "1 have
found", he wrote, "a new sort of cube root, easily distinguished from the
others". What he had found (haven't we just been saying it?) wa~ a new
sort of square root.

The matter depends on how you see it. We look back on Bombelli's
achievement with four centuries of cheaply inherited wisdom. Naturally he
had discovered cube ro.ots. After all, they cropped up in connection with
cubic equations.' Any old fool can write i 2 == -1, and even invent. a play
algebra around it. He will inhabit Laputa and never sight Tian. To qualify
for resi<;lence in TIon, one needs not only to entertain zany ideas, but to
know what to do with them, and how to take them to human purposes.

Let us take a simple cubic - a very simple one - namely x 3 - 1 == o.
This is readily factorised to give

(x - 1)(x2 + X + 1) == 0

and we recover the solitary root x == 1, as we should expect. But now we
have the possibility that

x 2 + X + 1 == O. (8)

We cannot shirk it, as our earlier excuse, that square roots of negative
numbers do not exist, no longer holds water. We have ourselves gainsaid
it.
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We apply the formula to equation (8), to find

113

- 1 VS.
X=--±-2.

2 2

We may write w = -! + :i!-i and check that w2 == -! - :i!-i· and w 3 = 1.
Also, (w2)3 ="1, as we may verify the matter by calculation.

A similar analysis may be applied to the quadratic factor in equation
(6) .. This now factorises into

(y + wp +w2q)(y + w2p + wq).

Equation (7) has two other roots besides y == -(p + q). They are
y = -(wp + w2q) and y == -(w2p + wq). I lea.ve it as an exercise to you,
the reader, to check that in equation (4), th~se produce for us y == -5 and
y == 4, the two other roots whose whereabouts may have troubled you.

Our picture is still unsatisfactory, however. It is still possible to ob
ject that· all this is very fine, but that these calculations involving i are
disreputable and suspect, because i ·does not exist. The objection is, in
essence, that, thinking to find Tlon, we have drifted off to Laputa. What
is required is a proof that the imaginary numbers are every bit as real as
the real numbers.

We need to show that it is possible to represent complex numbers and
their properties entirely in .terms of the properties of the more familiar
real numbers. The first successful. proof along these lines was due to Carl
Friedrich Gauss (1777-1855), who is often regarded with Archimedes and
Newton as one of the very greatest mathematicians of all time.

Modern texts, however, tend to follow. a later and simpler treatment,
due to Hamilton (1805-1865). On this account, complex numbers are pairs
of real numbers [a,b] that add and multiply according to the laws

[a, b] + [e, d] == [a + e, b+ d] .

[a, b] . [e, d] == [ae - bd, ad + be].

The imaginary numbers are those pairs [0, b], for which the first number
is zero, and i is an abbreviation for [0,1]. We may now calculate i 2 as
[0,1] . [0,1], whose value is found quite readily to ~e [-1,0].

This is not exactly the real number -1, but is so close to it in behaviour
that we abbreviate it to -1. A similar convention applies in the case of any
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other complex number whose second member is zero. These numbers are
referred to as "real", although there is a slight misuse of language involved
here.

The point of these manoeuvres is that they demonstrate conclusively
that there is no mystery to the complex numbers, after all. We can happily
use them, as Bombelli did, and know we're not talking nonsense. We will
be safe living in Tlan.

That we have come to live there is perhaps best indicated by the fact
that those eminent realists, the electrical engineers, treat alternating cur
rents and voltages as complex .quantities, and combine the resistance, in
ductance and capacitance of a circuit into one complex quantity - the
impedance. yCI is here to stay.

Further Reading

Gulliver's voyage to Laputa is described in Book Three of Gulliver's
Travels, which should be readily accessible to the reader. Tlan is described
in the short story Tlan, Uqbar, Orbis Tertius, which is less widely available.
The best English translation is to be found in the collection Labyrinths,
edited by D A Yates and J E Kirby and published in the ~enguinModern
Classics series.

My account qf complex numbers and the solution· of cubic equations
is based on that given by C V Durell and A Robson in Modern Algebra,
Vol. II, published in 1937. Modern treatments of complex numbers are
easily accessible. There are not so many good treatments of cubic equa
tions. However, College Algebra, by.J R Rosenbach, E A Whitman, B E
Meserve and P M Whitman (published by Ginn) has a good account.

My treatment of the history of these matters is based on J N Crossley'~

The Emergence of Number and on P LRose's The Italian- Renaiss~nce of
Mathematics.

The uses of yCI in electrical engineering are to be found in almost any
standard text on AC circuit theory. In this context, i represents current
and yCI is denoted by j. Note that w is angular frequency, and hence is
not used to abbreviate (-1 + H)/2.

* * * * *
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COMPUTERS AND COMPUTING

About Polar Coordinates and
Pretty Graphs

Cristina Varsavsky

We usually locate a point P in the plane by quoting 'its coo~dinates (x, y)
.with respect to two p~rpendicularaxes. The number x is the distance
of the .point from the vertical axis, while y gives the distance from the

. horizontal axis. The intersection of the two axes is the origin 0; distances
are measured horizontally from left to right and vertically from bottom to
top. We call (x, y) the cartesian coordinates of the point P.

Another way of rep:t;esenting points in the plane is by polar coord~nates.

The polar coordinates of Pare r, the distance of the point P from the
origin, and <p, the angle between OP and the positive horizontal axis, mea
sured in the anticlockwise directi0J?, as shown in Figure 1. We call r the
ra'dial distance and <po the polar angle, which we'll measure in radians. For
example, the point with polar coordinates (2, 7f / 4) is at a distance 2 from
the origin and 45 degrees anticlockwise from the horizontal axis. This is
represented in Figure 2.

y

o

Figure 1

p

x

y
(2, 1t/4)

2

1t/4

0 x

Figure 2

It is convenient to allow rand <p to take negative values: negative polar
angles are measured clockwise; negative radial distances are measured in
the opposite direction..· For example, (3, 1r/2) represents the same point as
(-3, -1r/2) or (3, -31r/2).
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From Figure 1, we can see that the relationship between the cartesian
and polar coordinates of a point is given by

x = r cos<p

y = r sinrp (1)

You have certainly learnt how to. represent equations graphically, using
cartesian coordinates. Take, for example, the equation

y = 3x2
- 2x +24 (2)

The graph is the collection of p~ints (x, y) in the cartesian plane satisfying
the mathematical equation (2).

Similarly, equations could be expressed in polar coordinates; such equa
tions are called polar equations. Examples of these are: r· = 4, r =
2sin(4<p) , r = 2<p + 1 and <p = r 2.

What do. the graphs of polar equations look like? Let us start with the
first, namely r = 4. Any point on the graph of this equation is at a distance
4 from the origin, and since <p is not present in the expression,all angles
from 0 to 21r are possible. Hence this expression represents the circle with
its centre at the origin and radius 4.

Sketching polar equations is not always as easy as it was in the previous
example. A simple computer program could be a very helpful tool tv
obtain the graphs. We will design one such program in QuickBasic to plot
the polar equation r = 2 sin(4<p).\

What do we need to do? For a sufficiently large number of angles in the
range from 0 to 21r, we need to calculate the corresponding radial distances
and plot those points on the screen. To describe location on the scr~en

in the same way we do with cartesian coordinates, we will include the
statement

window (-a, -b) - (a, b)

This allows us to locate any' point on the screen by giving its x- and
y-coordinates with -a" < x < a and -b < Y < b. The point (0,0) is in the
middle of the screen, (-a, -b) is at the bottom left corner, and (a, b) is at
the top right corner. The rlllmbers a and b have to be chosen in such a way
that the graph fits on the screen, and also in a ratio that would make a
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square appear as a square rather than a rectangle. In our case we choose
. a = 4 and. b = 3. (This works fine in my IBM compatible computer with a

VG·A- monitor, but you may need to change this ratio for your screen.) The
whole graph will fit on this screen: this is because the sine function takes
values only between -1 and 1, and therefore the radial-distance could not
be any larger than 2.

To obtain. the graph of the equation, we need to ·plot some points on
the graph and join them with lines. These points must be taken at suffi
ciently small intervals to make the graph look reasonably smooth. So we
take angles from 0 to 21f at intervals of 0.01. Determining the cartesian

. coordinates of these points is straightforward if we recall equations (1):

x = r cos <p = 2sine4<p) cos <p

and

y = r sin cp = 2 sine4cp) sin cp

The program follows:

.REM Polar Plots
SCREEN 9
pi = 3.,1416

REM This sets the window size
a = 4: b = 3
WINDOW (-a r -b) - (a r b)

REM This draws the cartesian axes and the ticks on them
LINE (0, -b) - (0, b)
LINE (-a, 0) - (a r 0)
For i = -a TO a: LINE (i, -.05) - (i, .05) : NEXT i
FOR i = -b TO b: LINE (-.05, i) - (.05, i) : NEXt i

PSET (0,0)
FOR phi = 0 TO 2 * pi STEP .01

'x = 2 * SIN(4 * phi) * COS(phi)
y = 2 * SIN(4 * phi) * SIN(phi)
LINE - (x, y)

NEXT phi
END
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Now everything is ready for us to obtain the graph of the polar equation
r == 2 sin(4<p). As we run the program, we see how an eight-petal r9se forms
on the screen (see Figure 3).

Figure 3

To plot any other polar equation you need to change the ~xpressions for x
and y in the program. We could explore what happens if a small change
is made to the previous polar expression. Say we have r == 2 sin(2<p). How
does the graph change? The computer output, a four-petal rose, is shown in
Figure 4. So a 2 in the argument of sine produces four petals, a 4 produces
eight petals. How many petals will we get with a 6, or with a 3? Can you
find a pattern?

Similarly, let us explore the number multiplying the sine. What if we
had r == sin(4<p), or r == 3sin(4<p), or r-== (lj2)sin(4<p)? How does the
graph. change?

Another possibility is to use different numbers in the definitions of x
and y. Figure 5 shows the graph for the following equations:

x == 2 sin(5<p) cos <p

y == 2 sin(6<p) sin <p
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while Figure 6 shows the graph for the equations

x == 2 sin(8<p) cos <p

y = 2sin(8cp) sin(3cp)

Figure 4

Figure 5
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Figure 6

Function 4/94

Many other striking curves can be obtained through simple polar ex
pressions. Try the following with all the variations you can think of:

r == 1 + cos <p

r 1 + sin(2<p)
r == 2 + sin(3<p)

You may need to change the window settings' for some of them. Also,
observe that in the above program, we start from the origin (PSET (0,0)).
Since the point (0,0) does not belong to the graphs of the equations listed
above, you will need to change the starting points.

Although in the previous examples expressions were plotted for <p be
tween 0 and 21f, there is no real reason to restrict'<p to that range. Take
for example the graph of the polar equation '

r == eCos<p -2cos(4<p) + sin3(cp/12)

It's depicted in Figure 7. The complete butterfly appears if we take cp
between 0 and 131r.
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Figure 7
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NEWS

Of Bees and Peas: A Recent Advance In a
Close-Packing Problem

A recent issue of the journal Nature (Vol. 367,17 February 1994) carries
a report of an advance in an old problem.. The problem is: how can 3
dimensional space be filled with solid figures without leaving gaps, in such
a way that all of the figures have a given equal volume, and their surface
areas are as small as possible?

The analogous problem in two dimensions is- rather easier, and the so
lution is known. In this case, the problem is to fill the plane with figures of
an equal fixed area, so that their perimeters a;re as small as possible. The
figure with the smallest perimeter for a given area is a circle, but of course
you ~an't fill the plane with circles without leaving gaps. Of the regular
polygons, only the equilateral triangle, the square and the regular hexagon
can fill. the plane, and of these the hexagon has the smallest perimeter for
its a:rea. The problem does not require the figures to be regular polygons 
in fact, it doesn't even say that all of the figures must be congruent - but
it turns out that the hexagon is indeed the solution. Bees exploit this fact
by building their honeycomb cells in a hexagonal pattern so as to use the
smallest amoun~ of wax for a given cross:-sectional area of the cells.

In three dimensions, matters become a lot more complicated. The
sphere is the solid figure with the smallest surface area for a given vol
ume. It is not possible to fill space with spheres, but you might imagine
that an initial arrangement of spheres could .be "squashed" to obtain the
answer. This idea must have occurred to Stephen Hales,one of Isaac New
ton's contemporaries. In an ingenious.if somewhat unorthodox attempt to
solve a pure mathematical problem by carrying out a physical experiment,
Hales filled a barrel with peas and squashed them down.· He found that
the peas were deformed into various irregular shapes with 13 or 14 faces, a
result which didn't shed a great deal of light on the problem.

The only one of the five regular polyhedra that fills spac~ is the cube, and
it is certainly not the solution. A rather better candidate is a solid known
as a truncated octahedron. A truncated octahedron is a solid figure with six
square faces and eight hexagonal faces; it can be produced by starting with
a regular octahedron and slicing off. each vertex at the appropriate place
(see Figure 1). Truncated octahedra do fill space, and in fact crystals with
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a" truncated octahedral structure are known in nature. A little·· over one
hundred years ago, Lord Kelvin showed that by subtly curving the faces of
a truncated octahedron in a certain way, the surface area" could be slightly
reduced while the volume stayed constant, and the resulting solid would
still fill space."

Figure 1

The recent advance, by D Weaire and R Phelan, is a modest improve
ment on Kelvin's long-standing result. Weaire and Phelan, working with
the aid of a computer graphics package, foun~ ail arrangement of figures
which reduces the surface area by 0.3 per cent compared with "Kelvin's ar
rangement. As in the earlier arrangement, the figures are slightly modified
polyhedra, but unlike Kelvin's arrangement, the new arrangement uses fig
ures of two different shapes: one with 12 faces and one with 14. Whether
this really is the solution to the problem remains to be seen.

* * * * *
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LETTER TO THE EDITOR

Telecom 1~94'Australian Mathematical Olympiad

Following the publication of the Telecom 1994 A~stralian Mathematical
Olympiad problems in Function, Vol. 18, Part 2 (April 1994), we received
the following letter from J C Barton of North Carlton.

Dear Editors,
To keep my hand in, so to speak, I tried some of the problems

of the Telecom 1994 AMO given to the schools on 8/9 February
1994.

There are answers to Nos. 1, 2,3, 6, 8 and a few comments
thrown in. I found them quite challenging.

I find it hard to rake up any interest in questions like Nos. '5
and 7.

For No.4 I would hope that those candidates who gave as their
sole answer that, by inspection, f(t) equals t squared is a solution
would get the majority of the marks.

Yours faithfully,
J C Barton

Enclosed with the letter were detailed' solutions to Problems 1, 2, 3, 6
and 8, which are too long for us to reproduce here. Any reader who is
interested in obtaining a copy is invited to contact one of the Editors.

If you have solved some of the problems in Function and would like to
share your solutions with other readers, or if you have some new problems
or anything else of interest, let us' know by writing to the Editors at t~e .
address inside the front cover. .If you prefer to communicate electronically,
note that our new e-mail address...function@maths.moIiash.edu.au... is
now· available.

* * * * *
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'PROBLEM CORNER

SOLUTIONS

In Probl~ms 18.2.1-3, ABC is a triangle in which the sides opposite the
vertices A, Band C have lengths a, band c respectively. The lengths of the
medians from A and B are denoted respectively by rna and mb. The length
of a median is related to the side lengths by the equa~ion4m~ = 2b2+2c2-a2

(and similarly for mb); see the article "Means and triangle medians" by
·K R S Sastry in Function, Vol. 18, Part 2, where this result is derived.

PROBLEM 18.2.1

Is there an isosceles triangle ABC with a == c in which rna == a?

SOLUTION

Yes. Substituting" m a == a and c == a in the ~quation above yields:

4a2 ~ 2b2 + 2a2
- a2

Solving this equation" for b gives b == J!a. The answer can be written in
the form (a, b, c) == (y!2k, V'3k, -12k), where k is any positive real number.
Note that 2y!2k > V'3k, so the sides do form a triangle.

PROBLEM 18.2.2

Is there an isosceles triangle ABC for which rna == ~(a + b + c), the
arithmetic mean of the lengths of all three sides?

SOLUTION

Yes. We begin by looking for solutions in which the two equal sides are
band c. In order to find all such triangles, we need t9 solve the equation:

4 [~(a + b+ b)f = 2b2 + 2b2
- a2

Upon expanding the brackets and collecting terms, we obtain:

13a2 + 16ab - 20b2 == 0

The equation. can be factorised as follows:

(13a - lOb)(a + 2b) == 0

Only the first factor gives positive solutions for both a and b. Therefore
the answer is (a, b, c) = (10k, 13k, 13k) for any positive real number k.
These side lengths clearly form a triangle.
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A se~ond set of answers to the problem can be found, corresponding to
the case where the side with length a is o~e of the two equal sides.. We
can assume without loss of generality that a == b. Proceeding in a similar
mannel: as before, we obtain (a, b, c) = ((-8 + 9V2)k, (-8 + 9v2)k, 7k).
Checking that these side lengths form a triangle amounts to showing that
2(-8 +9V2) > 7. This inequality can be checked numerically on a calcula
tor; alternatively, it can be established more rigorously by noting that it is
equivalent to 18V2 > 23, which is true because (18V2)2 == 648 > 529 == 232.

PROBLEM 18.2.3

Under what circumstances (if any) is it possible to have a triangle ABC
in which rna = -v1X. and mb == ..;ca ?

SOLUTION

In his article, Sastry proved that rna == -v1X. if and only if a == V2lb - cl.
-Therefore, if rna == -v1X. and mb == ..;ca then a == V2\b-cl and b == V2lc-'al·
We may assume vyithout loss of generality that· a ::; b. Three cases now
arise.

Case 1: a ~ c ::; b. Then a = V2(b - c) and b = V2(c - a). Elirrlinate
b from these equations to obtain a == 2-(2c. Now substitute this result

into the expression for .b to obtain b == 2+(2c. The answer is therefore
(a, b, c) == ((2 - V2)k, (2 + V2)k, 3k) for. any positive real number k. It is
easily checked that a + c > b, so the sid~s form a triangle.

Case 2: a::; b::; c. Then a = V2(c- b). Proceeding as before, we obtain
the answer (a,b,c)== ((2- V2)k, (2 - V2)k, k).

Case 3: c ::; a ::; b. Then a = V2(b - c) and b == V2(a - c). The answer
is ((2+V2)k, (2+.V2)k, k).

PROBLEM 18.2.4

Express each integer from 1 to 100 in terms of an equation involving all
four digits 1, 9, 9, 4 (in that order) and any other m'athematical symbols.

SOLUTION

This problem and a solution to it were submitted by R b Coote and the
Year Eleven Three Unit class at Katoomba High School, NSW. The, class
came up with a complete list from 1 to 100 in less than a week.

The. expression "any other mathematical symbols" could mean different
things to different people, depending on how many symbols they happen to
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be acquainted with! The class at Katoomba used the operations of addition,
su~traction,multiplication, division, negation (i.e. forming the negative of
a number), raising to a power, square root, and factorial, together with
juxtaposition of digits (i.e. writing one digit after another, as in "19"), and
the use of brackets.

There is probably no practic;al way of solving this problem systemati
cally; it is a I?atter of using trial and error, and applying some ingenuity!
The complete list of answers is too long to reprodlice here, so we just list

.some of the more difficult ones to find.

29 == 1 x .J9 x 9 + J4
51 == 1 + (.J9)! x 9 - 4
65 == -1 + (.J9)! x (9 + J4)
70==(-1+9)x9-J4
93 == -19 + 94

42 = 1 x 9 + 9 + 4!
61 == 19 x .J9 + 4
69= [-1 + (.J9)!] x 9'+4!
89 == 1 - (.J9)! + 94
100 = 1 + 9 x (9 + J4)

R D Coote points out that the year 1994 lends itself very well to this
'problem because the digits are all perfect squares, allowing t~e square root
to be used in many of the expressions.

PROBL'EMS

PRO'BLEM 18.4.1 (Ian Collings. Deakin University)

What scores are possible in an Australian Rules footb.allmatch -in which
the number of goals multiplied by the number of behinds equals the number
of points (e.g. 7,7, 49)? (1 goal = 6 points, 1 behind == 1 point.)

More generally, what scores satisfying this condition are possible in a
game in which each goal is worth p points?

PROBLEM 18.4.2

The fraction ~ is unusual aJ;Ilong the fractions ~ith two-digit numerators
and denominators, because it can be simplified to the correct answer, ~, by
"cancelling" the 6's, even though the cancellation is not a mathematically
valid operation. Find all fractions with this property.

If you want a more challenging and open-ended problem, you might like
to explore the possibilities that arise if the numbers are permitted to have
more than two digits. .
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PROBLEM 18.4.3

Function 4/94

The guests at a party are each asked how many of the other guests they
know. Every guest gives a different answer. Prove that at least one of the
guests must be lying. (Assume that "knowing someone" is symmetric, i.e.
if A knows B then B also knows A.)

* * * * *

MATH.EMATICAL NURSERY RHYME

Over the water and over the lea,
All the world over, technicians agree
One formula transcends all formulae :-
E equals M times the square of C,
Found by that wondrous Albert E.,
Who showed how atomic energy
Derives from mass and light's velocity....;.
Strange truth that may shape man's' destiny.

From: The Surprise Attack in Mathematical Problems
by L A Graham (Dover, 1968)

* * * * *
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