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THE 'FRONT COVER

Michael A.B. Deakin, Monash University

Our cover diagram for this issue shows two sets of coaxal circles. The solid circles
ali have their centres on' the horizontal axis. The vertical axis is the so-called radical
axis (see Function, Vol. 15, Part 5) for any pair of solid circles.

- #<'

..........
.........-.......-

• ••• fi

The second, dashed set of circles also forms a coaxal set. In this case, the circles
intersect, whereas in the. previous case they do not. The dashed circles all have their
centres on the vertical axis and furthennore all intersect in the same two points. Call
these points (the ueyeballs" of the figure) (±a, 0). Any two circles in this second set
hav~ the. horizontal axis as their radical ~xis.

Circles in the frrst ~t have equations

(x _ k)2 + y2 =k2 _ a2
(1)

and each" value of k corresponds uniquely to some one circle of the set, and vice versa.
(Where we must have, for consistency, k ~ a or k ~ -0.)

Circles in the second set have equations

(2)

and each value of b (b ~ 0) corresponds uniquely to some one circle of this set, and
vice versa.

As the diagram indicates, wherever a circle of one set intersects .a circle of the
other set, they intersect at right angles.
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- This underlies an important physical application. Suppose,. e.g., a bar magnet is so
placed that its poles occupy the points (±a, 0). Then a magnetic .field is set up, and the
two lots of circles give two different ways of visualising this. The dashed circles show
the lines of force, 'the paths along which a minute magnetic monopOle would travel.
Commonly, and you may well have seen this in your science· class, they are m~de visible·by
means of iron filings. .

The solid circles show the contours of magnetic potential (similar to the more
familiar electric potential). Lines of force are indeed always perpendicular to contours
of potential, and vice versa.

As the radii of the 'solid circles get larger and larger, the value of k increases
and the circles get flatter. It is usual to include as a member of· the family th<.
limiting case, which is the vertical axis, and to say that this corresponds to k =00.

Similarly with the dashed circles, where the horizontal axis corresponds, by
convention, to b = 00.

Weare now in a position to notice an interesting fact~ Every point of the plane
corresponds, u~iquely to an intersection of a solid .circle and a dashed circle (or almost
every point;. the special cases (±G, 0) will be, dealt with later). Each intersection of.
a .solid with a dashed circle, however, corresponds to two points in the plane.

Let us see how this works. First suppose we are given a point (x, y). Then
Equations (1), (2) both hold.

We thus have two equations in the unknowns b, k, given that we are supposing that
x, y are known. We find, easily enough: .

222
k - x +Y +a

- 2x

b _ x2
+y

2
-a

2

- 2y

and thus, given (x, y), we may determine (k, b). The only difficulty. arises when either
x or Y = 0 and th~s is usually solved by putting k = 00 when x = 0, and' b = 00 when
Y = 0, in accordance with the convention outlined above.

Now consider the case in which k, b are known and we wailt to detennine x, y. This
means solving Equations (1), (2) as simultaneous quadratics. The result is:

x = (a
2
+b

2)k2 + b2
(k

2-a2
) ± b Mb(k

2-a2
)

k(b2+k2
) .

(4)

y =2b(e-a2
) ± khb(k2

-a
2

)

b2+k 2

and as we have b ~ 0 imd k2
~a2, the square roots exist. Notice that in most cases,

there are indeed two values for (x, y) given b, k.

We now come back to the troublesome points x= ±a, y =O. Here Equations (3) y~eld

k = ±a, b = 0/0. Now % is undefmed - it ·may have" any value (not necessarily 00).
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This correspond~ to the fact that all. the dashed circles, whatever the relevant value of
b, pass through these points. Conversely, put k =±a into Equation (4) to find the same
result.

The correspondence between (x, y) on the on~ hand and (b, k) on the other may be
used to construct an exotic coordinate system based on (b, k) rather than on (x, y).
(Our cover diagram for. Vol. 10, Part· 5 was based on another, different, such exotic
coordinate system.) Such -coordinate systems can be useful for special purposes, giving
simple forms to otherwise quite complicated expressions. For example, the complicated
cubic expression

has, in these new coordinates, the· simple equation

k = b.

You may care to see what curve this represents.

WINNING TATTSLOTTO - TWICE!

Malcol~ Clark, Monash University

. Introduction

In February 1991, Mr Ray Williams of Albury became the first person to win the top
prize in Tattslotto twice. He won the First Division prize, by correctly choosing all six
winning numbers out of the 45 numbers. He had the same success back in 1984.

Most people would regard winning Tattslotto twice as a one-in-a-billion chance.
There are 8,145,060 ways of selecting 6 numbers from 45, and so the chance of winning

Tattslotto just once in a single game is 1/8,145,060 ~ 1.22 x 10-7
• Since succ~ssive

Tattslotto draws are presumably independent in the probability Sense, the chance of

winning Tattslotto twice ,must surely be "the above number squared, that is, 1.51 x 10-14 or
about 1 in 66 million million. .

This naive intuitive calculation is fundamentally flawed, on three grounds. First,
many Tattslotto players have multiple entries or system entries, so that their chance of

winning once is considerably higher than 1.22 x 10-7• Secondly and more importantly, it
is not valid here to multiply probabilities, as when finding the probability of two or
more independent events. Such multiplication would only be valid if you wanted to find
the probability that a particular person, specified in advance, will win twice.

Thirdly, we would be ~ven more amazed to find several two-time winners, or even a
person who had won more than twice. So it is more appropriate to consider the probability
that at least one person will win more than once, over a given number of Tattslotto draws.
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The Birthday Problem

Before answering this question, we consider the related and well-known uBirthday

Pr:oblem".t Suppose that N people are selected at random; what is the probability that
two people in this group have the same birthday (day and month, ignoring year)?

Once again, we need to be more precise. Presumably, if'we found, say, five people in
our group of N with the same birthday, we would be even more surprised than if we found
just two. Hence what is of interest is the probability that at least two out of the N
randomly selected people have the saine birthday.

The easiest way to compute this probability. is to consider the complementary event.
If it is not the case that there are at least two birthdays the same, then all IV
birthdays must be different. Ignoring leap-years, there are' 365 possibilities for the,
birthday of the fIrst person in our sample. Once· that is chosen,there are only 364
choices out of 365 for the next birthday, then 363 out of 365 for the next, and so on.
Assuming that all 365 days are equally likely to be birthdays, then the probability that
all N birthdays are different is

365 x 364 x 363 x x (365-N+l)
365 x 365 x 365 x x 365

The numerator and denominator are both the product of N numbers.

Since this calculation refers to the complementary event, the probability we require
is given by

P _ l' 365 x 364 x 363 x x (365-N+l)
N. - - 365 x 365 x 365 x x 365 .

Numerical values of this probability are much higher than what most people expect.
For example, with N_= 23,

P23 =0.5073.

Hence in a group of just 23 randomly-chosen people, there is just over a 50:50 chance that
at least two people will have the same birthday. .Note that we do not specify what day of
the year that common birthday is.

Suppose, instead, that we had specified the day. For example, what is the
probability that iIi a random sample of N people, at least two would have· been born on
New .Year's Day?

Once·again we consider the complementary event, that at most ..one, of the N people
was born on New Year's Day. There are two possibilities: either (i). nobody ~as "born on
that day, or (ii) just one of the N pe<?ple was, but we don't know which person it was.

In case (i), there are 364 choices for thefrrst person's birthday, then 364 again
for the second, 364 for "the third, and so on. Thus the probability that all N birthdays
are different from New Year's Day is

t See Function, Vol. 6, Part 4, pp. 12-16 (1982).
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In case (ii), there must be (N-1) birthdays different from New Year's Day, and
there are N different ways of getting such an arrangement amongst the N people. So
"the probability for case (ii) is "

N( ~)(m(-1.
Hence the probability that" at least two of the N persons were born on New Year's Day is

[364 ]N (1] (364 ]"N-l
1- 305 -N 303 :J05 .

For N = 23, this probability. is 0.00183. By specifying in advance which day is to
be the common birthday, we have specified a relatively rare event.

Simplified Tattslotto

We return to. the Tattslotto problem and start by considering a simplified. version of
the problem. Let us assume, for' the moment, that there are N players in each of m
successive Tattslotto draws, and each player has the same probability, p, of. winning fIrst
prize on any draw. We are assuming that there is a fixed pool of N players, draw after
draw. Our aim is to find a fonnula for the probability that at least one of N players
will win more than once in the m draws.

As in the Birthday Problem, we consider fust the complementary event, that is, the
logical opposite of what we are interested in. This complementary event is that all N
players- win at most once. "

We derive the subsequent .fonnulae by first defming N random variables

VI' V
2

, ..., VN , where, for each i = 1,2, ..., N

Vi = number of times that the i-th player has won fIrst prize

in the m draws.

Clearly, in each week, the i-th player either has a "success" (he wins fust prize)
or a "failure". The probability of getting a "success" in any particular week is p,
in~ependently of what might have happened in all other weeks. In other words, if the
i-th player happens to win in a particular week, his chance of winning again in the very
next week is still p. This remains true, even if that player chooses the same 6 numbers
week after week, since the Tattslotto machine presumably acts independently from draw to
draw.

We now recognize V. as the number of "successes" in m "trials", and so under our
" 1...

assumptions each Vi has the Binomial distribution, with parameters m and p.

Hence the. probability that the i-th player wins at most once in m draws is

qJn =Pr(Vi ~ 1) ::: Pr(Vi =0) + Pr(Vi = 1)

In m-1= (~ - p) + p(1 - p)

Note that this probability is the same for every one of the N players.

(1)



(2)

11

We now make. the additional assumption that at each draw the N players make. their
selections of 6 numbers out of 45 independently of one another~ This means that it is
valid to multiply probabilities when computing the probability of joint events. It also
means that the V's are independent.

For example, suppose we wanted to compute the probability that both player 1 and
player 2 win at most once in the m draws. In our previous notation, we require the
probability of the event that both Vi ~ 1 and V

2
~ 1 simultaneously. Then

Pr( (Vi ~ 1) (l (V
2

.~ I)} = Pr(V
l
~ 1) X Pr(V

2
~ 1),

since the events (VI ~ I) and {V2'~ -1} are independent.

With the above notation, our complementary event is that all N Vi's take values 0

or 1. The probability of this happening is

8m =Pr(V
1
~ 1, V

2
~ 1, ..., VN ~ 1)

=Pr(V
t
~ I)Pr(V

2
~ 1) ... Pr(VN ~ 1)

(since the V's are independent)

=(Pr(V. ~ l»N
1

(since the V's have the same probabilities)
N=(qI11) •

Finally, the probability Pm that at least one player wins more than once in ·m

draws is
N

Pm =1-8m =1-(qm) . (3)

Since p is very small, m moderately large and N very large, it is possible to
obtain simple but accurate approximations to the above formulae. By the Poisson

approximation to the Binomial distribution,t

q ~ (A + l)e-A, with A= lnp. (4)
n1.

Rearranging (3) and taking logarithms,

In(1 - Pm) =N In(q,n) ~ N In«A + l)e-A)

= N(ln(A, + 1) - Al.

It can be shown that for A close to zero, In(A + 1) ~ A - ~A2, taking just the frrst two

terms of the logarithmic. series. Hence

.In(1 - P ) ~ N{(A - .!.A?) - A} =- .!.m} =- .!.m2Np2m 2 2 2'

t See Function, Vol. 8, Part 5, pp. 14-18 (1984).
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leading to

(5)

Some Numerical Values

What are reasonable values of N and p to use in the above fonnulae? For
simplicity, we will consider only Saturday draws of Tattslotto, in which typically 2.3
million tickets are sold, comprising ·a totaltumover of about $7.8 million. To enter
Tattslotto, a player must make at least four selections of 6 numbers (and at most 12
selections) per ticket. Thus the chance that any regular Tattslotto ticket will be a
winning ticket is a~ least 4 times the much-quoted 1 in 8,145,060.

Roughly 45% of Saturday' Tattslotto entries are "regular" entries (in which the player
makes up to 12 selections of 6 numbers), 330/0 are "Quick-Pick" entries (12 selections
generated by computer), and 22% are "system" entries. The majority of regular entries
contain 12 "games".

To get· some idea of the order of magnitude of P , let us ignore system entries form .'
the time being, and assume that there are 2.3 million players, each entering one regular

entry of 12 "games'" per week. So N = 2.3 x 1(f, p =12/(8,145,060), and let us set
m = 260, corresponding to five years of Saturday draws. With these very crude
assumptions, we fmd

A. = 3.8305 X 10-4

and

Pun = 0.1557.

So with these assumed values of N and p, there is about a 1 in 6 chance that at
least one person will win ·frrst prize in Saturday Tattslotto more than once in the next
five years.

The following graph shows how the probability Pm depends on m, the number of weeks

considered, anq N, the number of players.

0.35

0.30

Number of Players (Millions)

Number of

Years

- - - - SIX
---- FIVE
--- FOUR
--- THREE
-,- -TWO
--ONE
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A more realistic a~proach

In the real-life Tattslotto, it is not the case that every player has the same
probability of winning. Systems entries, conlprising about 22% of all ~ntries, are
"effectively multiple entries, and so _have a much higher probability of· winning. For
example, in a System 9 entry, the player selects 9 numbers out of the 45 available. The

Tattslotto computer automatically generates all ( ~) = 84 possible choices of six

numbers out of those nine. So a single System 9 entry is "equivalent to 84 individual
games, and has probability of 84/(8,145,060) of winning fIrst prize. It is also about
84 times as expensive as a single game!

" In fact, there are 21 different types of entry to Tattslotto, ranging from the
minimum of four selections of six numbers to a System 20 entry costing $11,802. The
corresponding, probabilities of winning are easy to calculate u"sing combinatorial methods,
and range from 4 in 8,145,060 up to 38,760 in '8,145,060.

The preceding .formul~e can be readily adapted to this situation. We notionally
subdivide the N players into 21 categories, corresponding ~o the 21 types of entry, and
suppose that in category k, there are Nk players and each has known probability Pk of

winning any given' draw (k = 1, 2, ..., 21).

If there are no multiple- winners in m successive draws, then there must be no such
multiple winners in each category. To derive the relev~t probabilities, we apply the
argument leading to (2) to each category in tum. So combining (2) and (4) and writing

Ak = mpk' the probability Qk that no player i~ category k wins more than once in m

draws is

(6)

Hence the probability that at least one player in at least one of the categories wins
more than once in In draws is

(7)

Applying exactly the same arguments which led to (5) as our approximatipn to (3), (7)
can, be closely approximated by the formula

* -SPm = 1 - e (8)

Notice how (8) reduces to (5) when there is just one category.

*Expression (8) shows clearly how the probability Pm depends on m, the number of

draws, and the Nk's and Pk's. The Pk's are known, but the Nk's, the number of

players in the different categories, must somehow be estimated.

Michaela Smale, a 1992 Honours student in Statistics at Monash University, derived
various estimates of Nt' N

2
, ..., N

21
, using in part information given by Tattslotto (on
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.I the numbers of winners in different categories in 1990-91 and ,numbers of transactions in
different groups). By allowing in this way for different categories of player, the
probability of there being a multiple winner increased dramatically. Fot example,
.Michaela estimated that the probability of at least one person winning more than once in 5
years of Saturday Tattslotto draws was 0.95!

Formula (8) is still a simplification, in that its derivation assumed that each
player only made one entry per draw. Clearly, many people make multiple entries,' possibly
of "different types, and do not do the same every week. Nevertheless, the probability
given by (8) is likely to be of the right order of magnitude.

Coincidences (such as Mr Williams' double win) are not as remarkable as most people
think. In .fact; they will happen to someone, somewhere, some time. But if you expect to
be the one to win Tattslotto twice, then the ·originally-given. odds are more realistic.
Don't hold your breath while you are waiting!

TRIGONOMETRIC SOLUTIONS TO'
QUADRATIC EQUATIONS

Richard Whitaker, 4 Gowrie Close, St. Ives, N.S.W.

ax2 + bx + c =0 (1)

be a quadratic equation whose roots A and B are real and have the same sign. We may
write Equation (1) as

x2 +£x+£.=Oa a
or as

(x - A)(x - B) = O.

Multiply the factors in Equation (3) to fmd

x2 -"(A.+ B)x + AB = 0

and compare this with Equation (2). We find

AB =£.a

(2)

(3)

(4)

(5)

and
A+B=-£.

a (6)

Because the roots A, B have the same sign, AB must be positive. Thus £. is
a

positive, which means that a, C are either -both positive or both negative. In either
case, we must also have

ac > O. (7)
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Equation (6) suggests that we set

(8)

as this will automatically satisfy Equation (6). If <p can be determined, A, B will be
found. .

To detennine <p, substitute from. Equations (8) ~to Equation (5). This gives

b2
. 2 • 2 C- cos <p sm cp =- (9)

a2 a

which may be written

b\2 sin <p cos cp)2 = 4ac,

that is to say
• 2 2 4ac

SIn cp =- .
b2

But now

cos 4cp = 1 - 2 sin2 2cp

-(10)

and so Equation (10) becomes

i.e.

cos 4cp = 1- 2[~~J

. b2-8accos 4<p = _.-2- .

b
(11)

This equation will have solutions if

_b2 ~ b2
_ 8ac ~ b2

and this reduces to two inequalities:

which is the requirement for the roots of Equation (1) to be real, and

ac ~ 0

which is Iriequality (7) with the further possibility that one or other root is zero.

Thus Equation (11) may be solved and the roots expressed in the form given by
Equations (8).

. [If Equation (1) has real roots of opposite signs, then Equations (8) do not apply.
In this case, it is possible to use functions akin to the trigonometric functions and
write
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A =- ~ cosh
2

<P }
(12)

B = + ~ sinh
2

<p

where cosh and sinh. are so-called hyperbolic 'functions. This, however, lies outside
the scope of Function.]

Consider as an example

x2
- 4x + 3 = O.

Here a = 1, b = -4, c = 3. Equation (11) has a solution <p = ~ and this gives (check as

an exercise!) the roots A = 3, B = 1.

COMPUTERS AND COMPUTING

EDITOR: CRISTINA VARSAVSKY

Solving Mathematical Problems with a Spreadsheet

Computers are becoming more and more accessible th.ese days. If you do not own a
computer you certainly have access to a PC in your school. Perhaps you find them
attractive because of the many interesting games you can play (some of them very
challenging indeed). Of many other computer applications you have most certainly seen a
spreadsheet. It would have been one of the many available in the market: LOTUS 123,
EXCEL, QUATTRO, VP-PLANNER, VC_CALC AND OTHERS.

A spreadsheet is like a big electronic table which is used for presenting and
manipulating data. In one sense, it is a programming language. It is usually considered
a business tool because it is very useful for the manipulation of numbers organised in a
table: adding colunms or tows of numbers, working out the average, combining contents of
two or more colu!JlI1s, graphs, etc.

I have noticed that too few students (and teachers) appreciate its potential as a
tool to explore mathematics. Spreadsheets are very useful when· solving some mathematical
problems, specially those involving a repetitive task. This article will show some
problems that could be solved smartly and quickly with a spreadsheet. .

Let us fust have a short introduction to spreadsheets' (or revision) because you need
to be able to use them effectively before you actually start solving problems with them.

As I mentioned "before, a spreadsheet is a big electronic·· table consisting of many
cells (many more than we usually use). The address of each cell is detennined by a letter
(or two) followed by a number, indicating the column and the row respectively. . Text, a
number, or a formula can be stored in each cell. To enter or change the content of a cell
you need to move the cursor to. that cell -<using either the mouse or the arrow keys), type
the content, and hit the ENTER key..For example, enter the number 234.5 in Al and the
number 672.1 in A2. In A3, enter

+ Al + 3* A2
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(the "+" sign at the front means that what follows is a formula, not text). Your
spreadsheet should look like Figure 1.

! A 8 C
1 234.5
2 672.1
3 2250.8
4
5
6

Figure 1

A 8 C
1 234.5 23
2 672.1 10
3 2250.8 53
4
5
6.

Figure 2

, Notice that if you now change 178.45 to 234.5 in Al the content of the cell A3
changes accordingly.

One of the most powerful features of a spreadsheet is the .copying of formulae
containing references to other cells, like the formula we stored in A3 which adds to the
content in A1 three times the content of A3. This fonnula is actually interpreted as
follows:

add to the content of the cell two rows above three times the content
of the cell immediately above. .

Before actually copying the formula, let us store the number 23 in Cl and the number
lOin C~. 'Now copy the formula you have in A3 to the cell C3~ ,

from.the main menu select COPY, then highlight the cell A3 (range to be
copied) and hit ENTER; move the cursor to C3 (range to be copied to)
and press 'ENTER.

What happened? The cell C3 now contains 53, which is the content of CI (two rows above)
added to the ,triple of the number in C2 (immediately above). See Figure 2. This is why
the references to Al and A2 in the fonnula we have in A3 are called relative references.
If we wanted to copy that formula to keep the references to Al and A2 regardless of the
position' to be stored to, we would have used the dollar sign ($) in front of the column
and the row, meaning absolute reference to that cell. '

Let us now go to some examples where we 'use tI,lis. concept of copying formulae
containing relative references to other cells.

Generating sequences

Do you remember the Fibonacci sequence? The fIrst two terms are 1, and then the
subsequent terms are generated by adding the two previous terms:

1st term =1
2nd term =1
3rd term =1st term + 2nd term = 2
4th tenn =2nd term + 3rd term = 3
5th term =3rd term + 4th term = 7
etc....
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A spreadsheet is an ideal tool for generating this sequence, as we only need to enter
the fust two terms, then a fonnula for the third which is to be copied as far as we want

to go. So, start with a blank spreadsheett and store I in Al and another 1 in A2. Now,
the content for A3 must be the sum of the two previous ones, that is:

+ Al ~ A2 (Don't forget the + sign at the front!)

You should see 2 in cell A3. The formula in cell A3 is the one to be copied· as many times
as sequence tenns we want to generate. This is done as follows:

select COPY, highlight the cell A3 and hit ENTER, then go to cell A4
and highlight the column A as many rows down as you want, say up to

row 20; hit ENTER.tt

In just a blink you have the fust 20 terms of the sequence on the screen as in Figure 3.

A B
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34

10 55
.11 89
12 144
13 233
14 377
15 610
16 987
17 1597
18 2584
:19 4181
20 6765
21
22

Figure 3 .

A B C
1 1
2 1 1
3 2 2
4 3 1.5
5 5 1.666667
6 8 1.6
7 13 1.625
8 21 1.615385
9 34 1.619048

10 55 1.617647
11 89 1.61'8182
12 144 1.617978
13 233 1.618056
14 377 1.618026
15 61.0 1.618037
16 987 1.618033
17 1597 1.618034
18 .2584 1.618034
19 4t81 1.618034
20 6765 1.618034
21
22

Figure 4

You may remember that the quotient of two consecutive terms had an important
characteristic: it converges to ~e golden. ratio. Let lis check this by startiqg a new
column, say C. In C2 we enter the fonnula

+ A2/AI

t Call the menu (in most spreadsheets, the "f' key) and select WORKSHEET, then ERASE, or
BLANK. .

tt Some spreadsheets may require to "anchor" the first corner of the range meaning you
need to type the period (.) before moving down the column.
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Copy that fonnula from column C down to row 20. What do you see? Two consecutive tenns
of the 'new sequence are closer as we move down the column C, indicating that ~e sequence
of consecutive quotients converges approximately to 1.618034, known as the golden ratio.
(See Figure 4.) Although this is not a rigorous proof, it certainly gives a good
approximation to the answer.

Here you have' two exercises along the same lines:

Exercise 1: Change the values for the' two frrst terms of the Fibonacci sequence. What
happens to the sequence of the quotients?

Exercise 2: Generate some terms of the sequence defmed as follows:

1 2
Xl = 1 ; X2 =2" ; Xn+I =Xn·

Make a co~jecture about its convergence.

Finding limits

Spreadsh~ets are also very useful to investigate the limiting values of functions.

Take for example lim. ~n' sin x. The function y = sin x cannot be evaluated at x =0
x~ x x .

because both denominator and numerator are zero. We can see the behaviour of that
function near the origin by evaluating it at x = O. SO we need to create a column
containing values close to zero and another column with· the evaluation of the function at
those values. We can start with 0.1 and .then move down with a step of 0.01. Start
with a blank spreadsheet, and enter the number 0.1 in At. In A2 enter the formula

+ Al - 0.01

and in B2 the formula

@sin(A2)/A2.

(The "@" symbol indicates that what follows is an internally
defmed function, no~ text.) Next copy the two formulae~

namely ~2' and B2, down 8 rows. You produced a table (Figure

5) and from it you can see that the function y = si~ x

approaches 1 as x gets closer to O. You can do the same
approaching zero from the negative side.

Solving algebraic equations

You certainly know how to solve linear and quadratic
equations. Although there are fonnulae for the cubic and
the- quartic,tbey are too complicated. Usually you end up
guessing a solution, and if you are lucky you may fmd
one.

A 8
1 0.1
2 0.09 0.998651
3 0.08 0.998934
4 0:07 0.999184
5 0.06 0.9994
a' 0.05 0.999583
7 0.04' 0.999733
8 0.03 0.99985
9 0.02 0.999933

10 0.01 0.999983
11
12

Figure 5

Guessing would certainly not help in, equations like, x::: cos x or x + tan x =2.
There are some" practical ways of getting an approximate solution, and I will show here two
of them.
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Tabulating the function

Solving an equation means fmding the value of the variable such that both sides are
equal, or where the left-hand side minus the right-hand side is zero. The idea is then to
produce a table with two columns: in the fIrst one we list values for ~e variable, and in
the second we - evaluate the difference between the left- and right-hand sides at those
values to identify where it is close to zero. Usually we can get some bounds for the
solution, for example by looking at the graphs of y =cos x and y =x we can see that
the solution is somewhere between 0 and 1. So let us create the table: start with a
blank spreadsheet and enter 0 in AI. Move to A2 and enter the formula

+ Al + 0.1.

In B2 enter the function

@cos(A2) - A2.

Then copy the fonnulae in A2 and B2 down to· row 10. If .you investigate the table -(Figure
6, columns A and B) you can conclude that cos x - x is equal to 0 somewhere between
0.7 and 0.8. If we need more precision we can create another. table, but taking a
smaller step: start with 0.7, and go up to 0.8 wi~ the step 0.01. (Figure 6, columns D
and E.) By doing that we can now see that the solution lies between 0.73 and 0.74. If
we want "mOre' accuracy for the solution we should look closer at the values between 0.73
and 0.74 by using a smaller step, say- O.OCH.

A B C 0 E
1 0 0.7
2 0.1 0.895004 0.71 0.048362
3 0.2 0.780067 0.72 0.031806
4 0.3 :0.655336 0.73 0:015174
5 0.4 0.521061 0.74 -0.00153
6 0.5 0.377583 0.75 -0.01831
7 0.6 0.225336 0.76 -0.03516
8 0.7 0.064842 0.77 -0.05209
9 0~8 -0.10329 0.78 -0.06909
10 0.9 -0.27839 . 0.79 -0.08615
11
12

Figure 6

. A similar procedure may be followed to solve the equation In x + x = 2 which could
be rewritten as In x + x - 2 =O. Again, we tabulate the function In x + x - 2 in
steps of 0.5 between 0.5 and 5 (logarithm is· not defmed at O!). This is done in
Figure 7: the fust column is for the values of the variable~ the second column contains
the fonnula. In Al we enter-the value 0.5. In A2, we have the fonnula 4- Al + 0.5 and
in 82 the fonnula @In(A2) + A2 - 2. We can see that the values jump from positive to
negative between 1.5 and 2, so this is the· range blown up in the third column. From
the fourth column we can conclude that the solution is between 1.55 and 1.6 and we
gain .one decimal in the precision. You can. complete the spreadsheet to increase the
accuracy (columns G and H).
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A 8 C 0 E F G H
1 0.5 1.5 1.55
2 1 -1 1.55 -0.01175 . 1.555 -0.00352
3 1.5 -0.09453 1.6 0.070004 1.56 0~OO4686·

4 2 0.693147 1.65 0.150775 1.565 0.012886
·s 2.5 1.416291 1.7 0.230628 1.57 0.021076
6 3 2.098612 1.75 0.309616 1.575 0.029255
7 3.5· 2.752763 1.8 0.387787 1.58 0.037425
8 4.3.386294 1'.85 0.465186 1.585 0~045584

9 4.5 4.004077 1.9 0.541854 1.59 0.053734-
10 5 4.609438 . 1.95 0.617829 1.595 0.061874
11
12

Figure 7

Iterative methods

In Function, Vol. 16, Part 3., you. can fmd an iterative technique to be 'used for the
solution of equations of. the form J(x) =x and it consists' basically in. getting a frrst
approximation x0 and then generating the sequence by the iterative formula

xn+1 = j(xn)·

What better· tool than a spreadsheet for an iterative task? Let us illustrate it with the
two equations we used above. Start with x = cos x. We already determined x = 1 as a
fIrst approximation, therefore we enter the number 1 in Al .(I assume you started with a
blank spreadsheet). Now in A2 we enter the iterative formula

@cos(Al) (Notice that now .f(x) = cos x.)

This formula needs to be copied about twenty rows down, generating in this way a sequence
that would ultimately~onverge to the exact solution of the equation. This appears in
Figure 8. As you can see in that table, the subsequent terms are closer and closer as we
move down the colunm. The 7 in the fIrst decimal position appears in the fourth iteration
and it does not change from then on, meaning that it is correct. The 3 in the second
decimal place remains unchanged from· the row 16 on. So we c'an confidently say that an
approximate solution is x =0.73.

Let us now go. to the second equation, In x + x =2. We fIrst need to rewrite it in
the form j(x) =x, that is, 2 - In x =x. Now, start with the approximation .x = 1.5.
Enter 1.5 in Al or any other blank area of your spreadsheet. In the cell immediately
below, enter the iterative formula

2 - @In(Al)

and copy it down several rows. Figure 9 shows the result. The frrst three digits remain
unchanged from row 14 on, meaning that. the solution to the equation, accurate to three
decimal places, is x = 1-.557..
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A
1 1
.2' 0.540302
3 '0.857553
·4 0.65429
-5 0.79348

. ',,6:. 0.701369
:7,:,:,: 0.76396

,:8' 0.722102
',:9·.:.0.750418
·to:·:,:j 0.731404

.. '12:,·;:: 0.735&05

. '16 ';:: 0.738369
f7': 0.739567

"'1'8"::: 0.73876
1.9:::~·: 0.739304
20 :: 0.738938
'21,

Figure 8

8 A
1 1.5
2 1.594535
.3 1.53341,8
4 1.572501
.5 1.547333
·6 1.563467
7 . 1.553094
8 ' 1.559751
9 1.555474

1:0:: _1.55822
--1-1 1.556456
:-12: 1.557589
1.'3. 1.556861
'14- -:: 1.557328
"f5"~: r.557028

,:.1·:1.:-;~ 1.557097
'(11::8·6: 1.557177

'.20·;' 1.557158
21· .

Figure 9

B

Although this is not _the best technique to solve equations iterativelyt- , it is a good
example to show that spreadsheets are' not only good for business, bu.t also to solve a wide
range of mathematical problems, specially those involving iterative fonnulae.

There are many other possible _applications but it is impossible to show them in just
a few pages. I hope this small sample is enough to encourage you to think of the
spreadsheet as a useful tool when solvirig problems. .

To conclude, I suggest you investigate the iteration

Start with the constant C:: 1 and Xl = 0.5. Generate a sequence using the -iterative

formula (use at l~ast 200 iterations). Then fwd out what happens when you systematically
increase C from 1 to 4. You may also use graphs the better to understand it. By
doing this exercise you are entering in the field of chaos. Good luck!

t The Newton-Raphson method converges much more rapidly. This may be a topic for another
Function article!·.
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HISTORY OF" MATHEMATICS

EDITOR: M.A.B. DEAKIN

The Wonderful Deduction

Mathematics has, as one of its most important components, . the concept of proof. It
is necessary in .Mathematics, not only that one's assertion be true, but that one also be
able to demonstrate their truth. [See, for example, the article by Jim Mackenzie in
Function, Vol. 17, Part 1.] Proofs may take many different fonns, but some follow
standard patterns, and this article will examine one of the least-known of these.

But before we get to that, let us begin with another: the so-called reductio ad
absurdum. Suppose we want to prove a proposition P to be false. We begin by supposing
it to be true. That is to say, we wish to prove .the negative of 'P, nonnally written
not-P,· or - P, and to this end, we entertain the possibility P.

The proof then proceeds by showing that P implies some false proposition, Q sa~.

This we write as
P => Q.

Deduction (1) is known to be equivalent to

- Q => - P,

and, since Q is false, - Q is true and thus, by Deduction (2), - P is established.

Consider as an example the theorem:

(1)

(2)

If two angles of a triangle are equal to one another, then the sides which are
opposite to the equal angles are equal to one another.

This is Proposition 6 of Book. I of Euclid's Elements. It is· theconv.erset of Propo~ition
5 of Book I: the theorel11 -known as the pons asitiorum, stating that the angles at the base
of an isosceles triangle are equal. (For more on this, see Function, Vol. 3, Part 3.)

A

The proof of 1.6 makes use of Figure 1 at right.
Weare told that

L ABC =L ACB

. and must prove that, in consequence, AB = AC.

e'-----.... c

Figure 1

t Many theorems are themselves statements of the form P => Q. The converse of such a
theorem is the statement Q => P. The converse may be true (as in this case) or false. An
example of the latter: If the series a1 + a2 + ... + an + ... converges, then an ~ 0 as

n ~ 00. The converse (if .' an ~ 0, then the series converges) is false. See Peter

Grossman's article in Function, Vol. 17, Part 2.
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To do this, sUppose AB ¢ AC; then one or other of these lengths, AB say, will be the
greater. On AB then, measure off DB such _that DB =AC. Then join CD as shown.

Now consider the triangles DBC and ACB. We have: '

(1) DB =AC, by our hypothesis and construction,
(2) BC =CB, obviou.sly,
(3) L DBC =L ACB, also by hypothesis.

Thus these triangles are congruent and so have equal areas, which is, of course, a
nonsense.

Thus our hypothesis of different lengths has led to an absurdity and so we-must
abandon it. Let P represent the statement AB ~ AC and let Q be the statement that
the' whole is equal to· one of its· parts. We have found

P=>Q

and as -Q is false, - P is established, Le. P is false, and so AB = AC.

An even starker form of reductio ad absurdum is to be found in the event that
Q =- P. That is ~o say, we assume P and fmd that

p => - P. (3)

(If P is true, then it is also false!) Clearly P is then false, i.e. - P is true.
Logicians write this fonn of the reductio ad absurdum argument as

(P ==> - P) ==> - P (4)

(a proposition that implies its own falsehood must be false).

An example of this mode of argument is to be found in the proof of 1.19 of Euclid's
Elements. This states:

If one angle of a triangle is greater than anotherp then the side oppo$ite the
greater angle is greater than the side' opposite the less.

This theorem is. the converse of the preceding theorem (I. 1'8) in the Elements:

1/ one side of a triangle is rgreater than another, then the angle opposite the
greater side is greater than the angle opposite the less.

The proof of 1.19 runs as follows.

In a triangle ABC (Figure 2 at right),
suppose L B > L C. We wish to show that AC
(opposite L B) exceeds AB (opposite L C).

Begin by assuming that AC is not greater
than AB. Then:

either(a) AC = AB B
or (b) AC< AB.

Figure 2

c
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If (a), then by the pons asinorum (1.5) L B =L C, which contradicts the data; if (b),
AB > AC and so by 1.19 L C > L. B, again contradicting the data. We thus cannot entertain
either possibility (a) or possibility (b) and so must·have

(c) AC > AB.

The argument has the structure

(AC ~ AB) ~ - (AC ~ AB) (5)

which is of the fonn (3) and so our argument is established by Deduction (4).

We may however write Deduction (5) in another way. As I have outlined it, comparing
(3) with (5), we have

P = (AC ~ .4B).

But 1 could. instead have written P for (AC > AB), the direct statement I wished to
prove. This statement is the negation of (AC ~ AB) and then Deduction (5) would have
read

-(AC > AB) ~ (AC > AB). (6)

This has the same fonn as' Deduction (3), except that direct and negated statements
have changed places. Using this notation in Deduction (4) we fmd

(- p => P) => P. (7)

This is the standard fonn of a· mode of argument known as the consequentia mirabilis.

The name is Latin and probably derives from the medieval schoolmen. It translates
literally as the "consequence miraculous", but the words "wonderful deduction" give a
better feel for the original. Its character of quaint paradox has continued to fascinate
logicians through the ages.

The Euclidean· proof of 1.19 is probably" the earliest example of its use in
Mathematics, but it· was also used, probably about the same time, in philosophical contexts
by the Stoics (followers of a school of thought whose origins were roughly. contemporary
with Euclid).

The clearest example of the use of the consequentia nzirabilis in Mathematics is
probably IX.12 of the Elenlenls. This is a proposition· in Number Theory - Le. the study
of the properties of the natural numbers (positive integers). Here, Euclid was concerned
to show that if p is a prime and a, n are natural numbers and if p divides an
exactly, then p divides a exactly. In symbols,

1 will present Euclid's proof 'here, but not in its 9riginal order. The consequentia
mirabilis appears in its starkest form in the case n = 2 and 1 will begin with that.

First we need a preliminary result:

If (p lab) and (Pk a), then (p Ib).

(Here k means "does not divide".) This result 1 will not stop to prove, but it should
be fairly obvious.
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Now suppose (p Ia2
) and apply this theorem in the case a =b. If we deny (P Ia),

we have

(Pi a) => (p Ia).

So, setting P = (P Ia), we have Deduction (7), the consequentia mirabilis, and have proved
that (PIa).

This argument may easily be extended to the caSes . n =3, 4, .... Consider for

example the case n =3 and assume (p Ia3
) but (Pi a). Then (p Ia2

) and the above
argument then shows (P Ia). Similarly for n =4, 5, .... [This is an example of

another standard pattern of proof, known as rnq.thematical induction.]

The Euclidean proofs using the consequentia mirabilis, particularly to my mind the
case n = 2 of IX.12, remain perhaps the best illustrations of its use. It was revived
by the medieval schoolmen and their successors, mostly in philosophical and theological
contexts that lie outside the scope of Function.. However, in 1967 Girolamo Saccheri
(1667-173~) published a work entitled Logica Demonstrativa (now very rare). This contains
the following interesting passage.

"It is now my intention to follow another and, as I think, a very beautiful
way ·of proving these same truths without the help .of any assumption. I
shall proceed as follows: I take the contradictory of the proposition to be
proved and elicit the required result from this by straightforward
demonstration. This method of proof has been applied by Euclid (IX.12), by
Theodosius (Spherica, 1.12), and by Cardan (De Proportionibus V.201), whom
Clavius reproves (in his. Scholium to IX.12) for boasting that he was the
first to discover this kind of proof." . ,

Saccheri goes on to discuss rather technical propositions (here omitted) and to prove
them by application of his principle - which is of course the consequentia mirabilis. Of
the various· people mentioned in the passage above, Euclid· is familiar, the others perhaps
less so.

Theodosius was a Greek mathematician who was probably active around 180 BC. The
Spherica (or Sphaerics) is his principal work and it concerns the geometry· of the sphere.
Spherical geometry is important -in many practical contexts, e.g. navigation. (It was
discussed in this context in Function,. Vol~ 14, Part 1 and more generally in ,Vol. 6, Parts.
4 and 5). Proposition 12 of Book I of the Spherica considers two circles drawn··on the
'surface of the sphere and supposes that each bisects the other. It shows that in this
case the two circles must both ·be great circles - i.e. circles whose centres' coincide with
the centre of the sphere. .

Cardan (or Cardano) was an Italian algebraist who lived from 1501-1576. He is best
remembered for his work on cubic. equations, contained in his major work Ars Magna. De
Proportionibu8, is' a rarer and lesser-known book and unavailable to me. Several authors
credit Cardan with the frrst modem use of the consequentia mirabilis (in Mathematics, at
l~ast) and cite V.20t. H~wever, they give no details.

Cristopb Clavius (1537-1612) was the Gennan mathematician we met in Function, Vol.
17, Part 2 in connection with· the Gregorian calendar. Like Saccheri, he was a member of
the Jesuit order and likely acquainted with earlier work by the schoolmen. It is thought
that it was the Jesuits who coined the name consequentia mirabilis.
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Clavius wrote commentaries on both Euclid's Ele.ments and Theodosius' Spherica.
Regrettably neither of these nor any edition of the Spherica has .~en available tome.
The use of the consequentia mirabilis in the proof of 1.12 has been variously attributed
to Theodosius himself (as in the passage quoted above). or· to Oavius as edit,?r. Neither
original is available to me,' bu~ I have seen a summary of Oavius' version. ,This summary
would seem to show that the proof is inadequate (though the theorem itself is .true).

Saccheri· himself went on to use the consequentia mirabilis in a context that was much
more interesting - though his .proof was also flawed. Saccheri was one of a number of
m,athematicians who sought to prove Euclid's "Fifth Postulate" and, it is in this context
that he is best remembered. The postulates in Euclid, with ·the· exception...of the Fifth,
are basic assumptions whose truth we may readily accept. For example, the Third Postulate
states that we may construct a circle about any centre .and with arbitrary radius.

The Fifth, however conceinsparallels and, in essence, states that, in Figure 3, the
lines 11 and 1

2
are parallel if and only if

a + p= 180°. This postulate seems much less
obvious than the others and it strock many people,
from Euclid's· time till quite recently, that it was
the sort of thing that really should be proved.

The suspicion arose, that this postulate could
in fact be deduced from the others. [In the case
of the Fourth Postulate (All rightangles are
equal) such proof is possible.] It is now known
that the Fifth Postulate cannot be so proved, for
we may assert its opposite and reach .consistent
non-Euclidean geometries (see Function, Vol. 3,
Parts 2 and 4, and Vol. 12, Part 4).

However, before this was known, there were many attempts to prove the Fifth
Postulate. One of the best-known and most thorough was Saccheri's. He began by denying

the Postulate - by supposing that there were cases in which a + P* 180°, . but
nevertheless I} and /2 were parallel. This is the geometry later invented by .Gauss,

Bolyai and Lobachevsky and referred to nowadays as Lobachevskian geometry. The
consistency of Lobachevskian geometry, the fact that no contradictions may arise in it,
was. later proved by Poincare.

Saccheri investigated the consequences of denying the Fifth Postulate and did so in
great detail. In the course of this work, ,he discovered many of the theorems of
Lobachevskian geometry. But ultimately he made a mistake and, working from this incorrect
basis, he deduced that, after all, ,the Fifth Postulate was true. What he thought he had
was' (with P representing the Fifth Postulate):

-P=:!iP

and so, using the consequentia mirabilis (7), he argued

(-P~P)~P

and therefore P. So, Euclid was viridicated -his' Fifth Postulate was proved..

In a sense, it's sad that he was wrong; it was a genuinely heroic effort, marred by a
single, but critical, mistake.



88

The non-mathematical 'uses of the consequentia mirabilis lie' mainly outside the scope
of Function, but perhaps one deserves mention. ' This is the proof of the statement (P):

SOl1ze proposition is true.

To prove this, consider the negation of P (- P):

No proposition is true.

But if P is false, then -'P is true and - P is a proposition! So at least one
proposition· (- P) is true and so p. is true after all. We may put things thus: P is
true, because its negation, - P, is self-contradictory.

[This form of the example .has been attributed to the Belgian Arnold Geulincx
(1624.;1669), but its roots are much older. The Stoics, mentioned briefly above, were at
odds with the Sceptics, those who denied the.possibility of knowledge.· The Sceptics then
"knew" that you could know nothing. The· irnitionality of universal doubt also played a
major role in the philosophical thought of Descartes (1596-1650) after 'whom cartesian
(co-ordinate) geometry is named.]

To conclude this article, I give a really beautiful demonstration of the following
theorem (P): .

An irrational nurnber, raised to an irrational power, may yield
a rational anSl1-'er.

To prove this, suppose (- P):

An irrational nU111ber, raised to an irrational power, aI-ways yields
an irrational answer. .

Now put a = V'1,V2. Then - P implies that a is irrational. NQw fonn a12,

which is ration~l, so - P is false and P therefore is true.

It should be noted that the above argument, beginning from a premiss which later
proves to be false, actually says nothing about the irrationality or otherwise of a. a
actually is irrational, but the above argument does not prove this. It does, however,
prove the theorem P most elegantly and efficiently.

Further Reading

A recent article in the learned journal History and Philosophy of Logic drew much of
this material to my attention. The most useful of the references given there is The
Development of Logic, by· W. and M. Kneale. Lukasiewicz's Aristotle's Syllogostic has a
brief account (it calls theconsequentia mirabjlis "The Law of' Clavius", presumably
because of Clavius' use of it) and other works· of logic refer to it, but not always by
name. The translation from Saccheri's Logica Demonstrativa is taken from the Kneales'
book.
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PROBLEMS AND SOLUTIONS

We continue in this issue to publish solutions to long-outstanding problems.

SOLUTION TO PROBLEM 14.1.6
f

E

See the figure at right depicting a convex
pentagon whose perimeter is u '(= AB + BC +CD +
DE + EA)and with p = AD + AC + BD + BE + CEo
We want to show that

1<l!.<2u

and that the number 1 may not be increased and
that the number 2 may not be decreased.

Solution (from Hans Lausch, .Monash University) :

(a) Note that AB + BC > AC, BC + CD > BD, etc.

By addition, fmd t < 2. A

(b) Next note that AF + FB > AB, BO + GC > BC,
eH + HD > CD, DJ 4. JE > DE, EK + KA > EA.
By addition,. fmd

p - (FG + GH + Hi + JK + KF) > u

B

o

c

so that p > u, Le. 1 < ~.

(c) Let CE =2. If D is chosen .sufficiently close to the midpoint of the line segment

CE, A sufficiently close to E and B sufficiently close to c, then the ratio e- u
may be as close to 2. as we J like.

"Now let AD' = 2. liB, C and E are chosen sufficiently close to the midpoint of

the line segment AD, then the ration l!. will be as close to 1 as we like.u

SOLUTION TO PROBLEM 14.3.1

c

A

In the diagram at right, let .BA =, s. Then

BC= CD =DA = s also. Let L BAD =a.. So
aL CAD = "T' Let F be the foot of the

perpendicular from E to AD. Then r =EF.

Thus r = AE sin -! .

Solution:

The problem read: ABeD is a rhombus and E the intersection point ·of its diagonals,
AC and BD. Letr

l
, r

2
, r

3
and r denote the radii of the incircles of the triangles

ABE, ABC, ABD and the rhombus ABeD respectively. Prove that

!+l.=.!-+.!-.
r r r r

1 2 3
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But now it is a theorem that L AED is a right angle. Therefore
a . a

AE =AD cos "'! =8 COS "T. Thus

~ a a. 1 . (1)
, ::: 8 sm "! cos "I =1.8 sm a.

To fmd r
1
, '2"3 we need to kn~w a formula. The in-radius of a triangle is equal

to its area divided by its semi-perimeter. As BE =8 sin ~, we readily fmd

'1 = Z(sin 0.)/(1 + sin ~ +~ cos ~) (2)

'2 = ! (sin 0.)/(1 + cos t) (3)

'3 =! (sin 0.)/(1 + sin ~)~ (4)

The required result now follows, after a little algebra, from Equations (1), (2), (3)
and (4). (

SOLUTION TO PROBLEM 14.3.2

The problem read: ABC is a triangle right-angled at A, and .D is the foot of the
altitude from .A. Let X and Y be the incentres of triangles ABD and ADC
respectively. Detennine the angles of triangle AXY in terms of triangle ABC.

Solution: ,_ Consult the diagram at right. The
dotted lines bisect 'the angles at A, B, C, D as
shown. Thus if L ABC = ~ and L ACB =1, then

~ + "( =~. L BAD =1 and L CAD = 13. Thus

'L XAY =~~ + 1) =~ . '. Let AB =b. Then

AC =b tan ~.

Apply the sine rule to the triangle ABX.

Note that L AXB =1t - ( ~].= ~. Thus

. AX =(sin ~)b/(sin ~) = V'l b sin ~ .

Similarly,

c

\. Y 0" ..

A . B

AY =..;'l b tan ~ sin 1.
Put L AXY =9. ThenL AYX ::; 1t - 9 - ~ =~ - 9. Now apply the sine rule to the

triangle AYX.

VI b tan p sin y/2 _ IZ b sin 13/2
SIn 9 - sin(~ - 9) .

After a large number of somewhat tedious manipulations (here omitted in the interest
of brevity), this equation redu~es to

. (1t~]tan 9 = tan 1+1

so 9=;+~ and ~-e=~-~.

The angles are thus ~, 2- + ~ , ~ - ~ .
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SOLlITION TO PROBLEM 14.3.3

The figure at right comes from a work by the
17th-Century astronomer Longomontanus. L ABC is a
rightangle and thus the arc ABC is a semi-circle.
The length of this arc is therefore . 1ta.

We seek to determine· the l~ngthBG.

By Pythagoras' Theorem, Be =aI'J, and by similar

triangles CG =~. Thus BG' =aI'J + ~.

Longomontanus had .a =43, b =70 and so reached
BG =135.09996. 'The arc ABC measures 135.08848
which is- very close. We thus have a quite remarkable
approximation

1t Q! Y3(1 +~] = !!"3" = 3.1418....
43 43

F

G

2a

A

It is now. known that no such approximation can yield an exact value for 1t. This is
referred to as the impossibility of "squaring the circle".

SOLUTION TO PROBLEM 14.4.1

Simplify (x-a)(x-b)(x-c) ... (x-z).
Answer: O.

Try this one on your friends!

SOLUTION TO PROBLEM 14.4.2

The problem read: The bisectors of the angles C and D of a convex quadrilateral
ABCD meet at a point P on AB such that L CPD = L DAB. Prove that P is the
t:IDd-point of AB.

Solution: Consult the diagram at right, and label the
~gles (l,~, 'Y, in accordance with the data, as shown.
Then (l + ~ + 'Y =1t, an~ so

L APD = ~, L BPC =(l, L PBC ='Y.

Then the triangles PCB, DCP and' DPA are all
similar. Because PCB and DCP are similar:

BC CP
1IP = P1J or BP =BC.AD/CP.

Because. PCB and DPA are similar:

~ =~ or AP =BC.PD/CP.

Thus AP ='BP, which is the required result.

SOLUTION TO PROBLEM 14.4.3

B

~
c

~

p y

a
a 0

y

A

The problem read: ABC is a triangle, right-angled at C. ,Let CD be perpendicular
to AB. The bisector ofL CDB meets CB in X, and the bisector of L ADC meets AC
in Y. Prove CX =CY.
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Solution: A coordinate geometry approach works well. Let C be (O,O)~ A be (O,a)
and B be (b,O).' Let L BCD be a, where tan a =bla. [This last is readily proved.]
D is the point

(
ab2 a

2b]
" a2+b2

' a2+b2

and ,DX makes an angle in radianst of· (~+ a) with CB. Thus DX has slope

tan(~ + a.) and this is (b+a)/(b--a). We may thus obtain the equation of the line DX

and so fmd the x-coordinate of x' to be ab/(d+b). I.e.

CX =ab/(a+b).

The symmetry of this expression now allows us to conclude that CY also equals
ab/(a+b). Hence the result.

SOLUTION TO PROBLEM 14..4.4

The problem read: L BAe is an obtuse angle. A -circle through A cuts AB at, P
and AC at Q. The bisectors of angles L QPB and L PQC cut the circle at X and Y
respectively. Prove that XY is perpendicular to the bisector of L BAC.

Solution: Let AZ bisect L BAC and meet XY at Z. (See'diagram.) Extend PX and
AZ to meet at D. Let AZ, PQ clit at E.

A

B
c

o

t In elementary geometry, it matters little what angular units are used. However, in a
calculus context, one 'must employ radians, so it is a good idea to get into the habit
early.
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Forsimplicity, put L QPA ,= a., L PQA = ~. Then, working in radians, L BPQ =1t - a
and so L XPQ = tTt - a). SimiladyL YQP =~1t - P). But. L- PAQ =1t - a - P, so

. L PAZ = ~1t - a - J3).

Now L PEZ = L QPA + L PAZ =~1t + a- ~) and similarly L QEZ (= L PEA) =
¥1t - a + (}). But· now .

L PDA =L PEA - L XPQ = ~J3.

Furthermore, PQYX is a quadrilateral inscribed in a circle, so L PXY =1t - L YQP =
¥1t + fJ). So L DXZ =~1t - 13).

Now L'AZX = L DXZ + L PDA
1 A 1 A 1t=i<1t - p) + -i<1t + p) ="Z

as required. )

SOLUTION TO PROBLEM 14.4.5

The problem stated: ABeD is a square and P a point on the circumcircle and ·lying
between A and B. The distances from P to A, B, C and D are denoted by a, b, c
and d respectively. Show (v'2+1)(a+b) =" + C and that a - b =("2+ l)(d-c) ..

Solution. The diagram below illustrates the situation.
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Let L f AB' = a, L PBA = <p; let s be the length of the side of the square and R be
the radius of the circle. Let 0 be the centre of the. circle.

Apply the sine role to the triangle ABC. Then

a = 2R sin <p, b = 2R 'sin a, s = 2R· sin(9+<p). (1)

Further L COP (the reflex angle indicated) is twice L CBP; i.e. 1t + 2<p. Thus the
angle COP (the one in the triangle COP) is 1t - 2<p. Now apply the cosine role to the

triangle COP. c2 =R2 + R2
- 2R2cos(1t-2<p) = 2R

2
[1 + cos 2<p] = 4R2coS2<p.

Thus

c = 2Rcos <po

Similarly

d = 2R cos a.
Now'

2 (9+<p) (~)
c+d _ cos <p + cos a _ cos -2- cos 2 _ 1
a+o - SID <p + sin 6 - 2sin(9+4J)cos(6-q» - .-ta-n~(6""'+-<p-) .

2 2 2

. But s =RI'Z and so, by (1),

(2)

(3)

(4)

and

Thus

and

sin(9 + <p) ,= 1/,;'1

1t
9+<P=4'

9+<p _ 1t
-r --g

tan(9+<P) =_1_ ~
2 12+1

[The reader may prove this as· an exercise.]

The first part of the problem is thus proved. The second follows likewise.

SOLUTION TO PROBLEM 14.4.10

The problem asked for a proof that 2x + 3y and 9x + 5y are divisible by 17 for
the same set of integral values of x and y.

Solution: Suppose2x + 3y is divisible by 17. Then 2x + 3y = 17m for some integer m.
Then, multiplying by 9, we find

18x + 27y =9 x 17m

or

18x + lOy = 9 x 17m - 17y.

The right-hand side is clearly divisible by 17 and so

1&x + lOy = 17n
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for some integer n, which also clearly must be even. Therefore 9x + 5y is divisible by
17.

A similar' argument shows that if 9x + 5y· is divisible by 17, then so is . 2x + 3y.

SOLUTION TO PROBLEM 14.4.11

The problem asked for a proof that all integers, positive or negative, can be
expressed in the fonn

a (_2)0 + a (_2)1 + a (_2)2 + ..~ + a (_2)D,
p 1 2 n

where each of the a is either 0 or. 1.
m

Solution: Consider ftrst positive integers. These may be expressed in binary fonn, that
is to say in the form

b 20 + b 21 + b 22 + ... + b 2n

012 n

where each of the b is either 0 ~ or 1.
m

The fIrst two columns in the table below. list the fIrst few numbers in decimal and in
binary.

o
f
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

o
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111
1000

o
1

-2
-1
4
5
2
3

-8
-7
-10
-9
-4
-3
-6
-5

16

1 + 0 =+1
~2 + 0 = -2 }
-2 + 1 =-1
4+0=+41
4 + 1 =+5
4 - 2 =+2
4 - 1 = +3

-8 + 0 =+8
-8 + 1 =-7
-8 - 2 = -10
-8 - 1 =-9
-8+4=-4
-8 + 5 =-3
-8+2=-6
-8 +3 = ~5
16 + 0 = 16

The l's and .o's of Column 2 are the bm described above. However, if we interpret

them as " am' we find using base -2, the decimal numbers of Column 3.

Note th~ structure of this column. The arrows (Column 4) pick out powers of -2,
alternately positive .and negative.. They separate vertical blocks· of numbers. The ftrst
block (0, 1) contains two numbers. Starting at -2, add frrst 0 and then 1 to
produce -2, -1 and so a. block of 4 (0, 1, -2, -1). The next power is 4· and to this
add successively the four numbers just mentioned. This produces a block of 8
(0, 1, -2, -1, 4, 5, 2, 3) and the next power of -2 is -8 and we produce 8 more
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entries in the table. After this we will have 16 entries and so on.

Before 4, we have generated the integers -2, -1, 0, 1.
Before -8, we have generated the integers -2, , 5.
Before 16, we have generated the integers -10, , 5.

Continuing this pattern, we see that before 32, we will have generated a ron of 32
integers starting with ...;.10, i.e~ -10, ..., 21; before 64, a run of 64 integers ending
with 21, i.e. -42, ..., 2L

Thus all positive and all negative integers are eventually generated.

This analysis also answers PROBLEM 14.5.1 for if the number of digits is even, the
number is negative, and yes, the representations are clearly unique.

SOLUfION TO PROBLEM 14.4.12

The problem is historically based and may be stated in tenns of the diagram below.
DBL is the diameter of a circle and BZ is a radius perpendicular to it. We are told

that ST =BD and are asked to prove that L TBL = ;'L DBE.

L

B

o

1tSolution: Let L TBL = 9. Then L TBS ='! - 9 and since ST = DB = BT,

~ TSB = L TBS = ~ - 9. Thus L BTS =29. But now in the triangle TBE, TB =E!J and so

L TEB = 29 also. Thus L TBE =1t - 49, whence L LBE =1t - 39' and so L DBE = 39.

The problem raises the question as to whether we have successfully trisected the
angle DBE. We have, but it ,is not possible to construct the point T' with ruler and
compass alone. No such constroction is possible.

For more on angle trisection, see Function, Vol. 3, Part 3.

* * * * *
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