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FUNCTION

, Volume 16

(Founder editor: G.B. Preston)

EDITORIAL

Part 3

Kent Hoi's article "One Good Tum" (Function, Vol. 16, Part 1) arose out of a VeE
project and, as we wrote at the time, "very ably looked at the problem set by the
examiners". Uilfortunately, as two correspondents have pointed out (see pp. 83-87), the
problem set by the examiners bears little' relation to reality. We too deplore the phony
"relevance" of such artificial questions ·and think they have no place. Nonetheless,
Kent's article was a nice piece of work.
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THE FRONT COVER

Michael A.B. Deakin, 1.16nash University

The Front Cover diagram, reproduced below, is based on a method· for solving equations
numerically. In this case the equation to be solved is

-xe =·x.

The two functions e-x
, x are graphed and it is seen that the graphs intersect for

x ~ 0.57.. The graph is mainly illustrative, however. We do not actually use it in the
computation. .

Begin with an approximation Go' say, to the correct value of the solution.' In this

case, I chose a =0.4. Then
..0

-a
e 0 = 0.67032 = at (say).

1
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The value of a1 is represented .on the vertical axis and, by reflecting it in the line

y = x, on the horizontal axis also. nlis gives a value rather closer than the earlier
value. Continue in this way

-a
1

e = a
2

The solid spiral on the diagrams indicates the way that the successive values

a
o
' ai' 02' ... better and better approximate the true' value.

I frrst implemented the algorithm on a small calculator. I entered 0.4 and then

pressed in order. +/-,.INV and eX. This gave 0..67032; repeating these three keystrokes
gave 0.5115448; and so I continued... Evenmally I found

028 = 030 = a32 = =0.5671 433

° = a = a = =0.5671 432
29 31 33

as approximations to the exact value.
. .

. I next used a spreadsheet on my Macintosh to fmd

a
39

=a
41

=a
43

= =0.5671 4329 03

a = a = a . = =0.5671 4329 04.
40 4244'

The following BASIC programme 'solves the equation by the same method.

DIM A(30)

A(O) =0.4

FOR 1-= 1 TO 30

A(I) = EXP(-A(I-l))

PRINT I;' A(I)

NEXT I.

END

On my machine, this gave

a27 =°28 ='!29 = ... =0.5671 433.

* * * * *
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\VHEN CATTLE FARMING BECOMES

. AN" ECOLOGICAL DISASTER

Hans Lausch, Monash University

"Only 11 km south of Brunswick in Lower Saxony, where the eminent mathematicians Carl
Friedrich Gauss (1777-1855) and Richard Dedekind (1831.:1916) were born, lies Wolfenbtittel,
a small Northern Renaissance city with a famous library: the Herzog August Bibliothek. It
houses literary treasures that rulers of the fonner Duchy of Brurtswick-Luneburg
Wolfenbtittel and their capable librarians accumulated over the centuries. Most noteworthy
among the o"·Volfenbtittellibrarians are: Gottfried Wilhelm Leibniz (1646-1716) and Gotthold
Ephraim Lessing (1729-1781). How'ever, not the mathematician Leibniz but the writer and
dramatist Lessing is known for having unearthed from the ducal library a manuscript with a
delightful mathematical problem.

As a boarder at St. Mra Grammar School in Meissen, Saxony, Lessing had delivered a
speech on the mathematics of the barbarians (De marhematica barbarorum). His interest in
mathematics declined suddenly after he had come across a book that combined geometry with
chiromancy, the "art" of palmistry. Nonetheless, Lessing's mathematical acumen allowed
him to decide that his fmd deserved. publication. The manuscript is based on an anthology
by the Byzantine monk and diplomat Maximos Planudes (c.1260-c.131Q), who also wrote an
article about the Indian (= Arabic) numerals, then new to his countrymen from
Constantinople. The manuscript consIsts of a number-theoretical problem formulated in 22
Greek elegiac couplets, i.e. 44 "lines with .hexameter and pentameter alternating. By its
headline we are -infonned that the Sicilian mathematician Archimedes of Syracuse
(284-212 B.C.) had ~omposed it and sent it to his N~rth-:African colleague Eratosthenes of
Cyrene as a puzzle for the geometers in Alexandria. The text is accompanied by a
scholium, Le. an explanatory comment. While Lessing himself and later scholars doubted
Archimedes' authorship, the" DanishArchi~edes expert, J.L.· Heiberg,. and the French
mathematician P. Tannery did believe the headline.

The problem is about the sacred cattle herds belonging to· Helios, the sun god (or
Hyperion, the sun titan),' which he kept on a Sicilian cattle station. There were four
herds, each of a 4ifferent colour, viz. while, blue, checkered and yellow, and each having
both oxen and cows. In Lessing's notation, the number of w.hite, blue, checkered and
yellow oxen is W, X, Y and Z respectively; the number of white, blue, checkered and
yellow cows is w, x, y and z respectively.

Here is an. English translation of the original.

"Tell me, friend, precisely the number of Hellos' cattle.

"Carefully calculate, if wisdom has not abandoned you, how many there were that once
were grazing on Sicily's pastures, divided into four herds. Each herd had a different
colour; the one was rnilkywhite, but the second was shining in darkest black. The third,
however, ,,'as brown, the fourth was checkered; in e~ch one Jhe bulls numerically outweighed
the cows. And such was the relation: the white ones numerically equalled the brown ones
and a third taken together with half of the black ones, 0 friend. Further the black set
was equal to the fourth part and the fifth of the checkered augmented by all the brown
ones. Finally you have to put equal the number of checkered bulls to the sixth and also
the seventh part of the white ones plus all of the brown. set.
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'"With the· female" cattle the story is different: Those with whitish hair were equal to
the third part and the fourth· part 'of the blackish cattle, cows and .bulls. Further the
black cows were equal to the fourth and the .fifth part of the herd of the· checkered ones,
counting cows as well as, bulls. Also,. the checkered cows were one fifth plus one sixth of
all those with bro\vn hair, as they went to the pasture. Finally, the brown cows were one
sixth and one seventh of the whole herd with w~itish hair.

"If you can tell me precisely, .my friend, how many of the cattle were joined there
together, also how many cows there were of each colour and how many well-fed bulls,. then
one will call you quite proficient in arithmetic.

"But you· will still not be counted among the sages; well now, come and tell me, how
the story continues: If all white bulls and black bulls united and stood in an orderly
fashion, the number of ranks equalled the number of files; the wide land of .Sicily would
be completely filled by the set of bulls~ If, however, you put together the brown and the
checkered ones, then they would fonn a triangle, .one standing in front, and none of the
bro'wn and checkered bulls would be missing, while none of any other colour would be found
among them.

"If you have· found also this and conceived by your mind, and tell me the ratio,
friend, in each herd, then you may walk around as a proud winner;' for your fame in
scholarship will shine brightly." - .

Lessing re-wrote the original problem, which we call a system of Diophantine
equations, in "the now common notation";

w= ~X + .!.X + Z = ~X + Z
236

x = .!.y + .!.y + Z = !.-y +'Z
~ 5 20

y = .!.W + !W + Z = .!!W + Z
6 7 42

w = (! + .!.)(X + x) = ~X + x)
3 4 12

x = (.!. + !)(Y + y) = .J<y + y)
4 5 20

y = (! + !)(Z + z) =~Z + z)
5 6 30

z = (.!. + .!.)(W + w) = ~W + w)
6 7 42·

w+x=c

Y+Z=.£1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

where c stands for "a perfect square", Le. a number of the form n'2, n being an

integer, and 4 stands for "a triangular number", i.e. a number of the form ~t m

being a positive integer~
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By the copyist we are told that W = 829 318 560, X = 596 841 120, Y = 588 644 800
and Z = 331 950 960 and are given values for w, x, y and z as well. The grand total

of oxen and cows turns out. to be 4 031 126 560. "Truly a herd befitting SicilY",t noted
Lessing. When substituting IV, X and Y, Z into equations (8) and (9) respectively and
taking the square root of W. + X :: 1 426 159 680, Lessing discovered that W + X is not a
perfect square after all. And he noticed that Y + Z =920 595 760 ~'mriltiplied by 8 and
augmented by 1" is not a perfect square, either, which it would have to be if

~ =Y + Z had an integer solutio~ m (check this statement!).· Lessing considered

the possibility that the author of the scholium had erred because Hextracting· roots in
Greek numeral.s might not have been an easy job".

Wolfenbiittel had been endowed by it~ dukes -with a granunar school, the so-called Great
School. In 1773 its conrector (= vice-principal) was the mathematician Christian Leiste,
who had been praised by the mathematician Leonhard Euler (1707-1783) for having ~mproved

the construction of air-pumps. Working in the immediate neighbourhood.o.f Lessing, the
conrector read the problem 'and attempted a' solution. The problem seemed too hard for
Leiste, yet he reduced it to a more manageable problem; here is Leiste's approach:

Equations (1), (2) and (3) imply

6W - 5X' = 62; 20X - 9Y = 202; 42Y - 13W = 422, i.e.

~ - 5~ = 6; 2~ - 9~ = 20; 42~ - 13~ = 42.

Solving this .system of three linear equations in three unknowns, we obtain

W 742 X 178 Y 1580 th t
7" = '1:97' Z = -w' z =-gyr' so a

W - 74.2Z X -.illz y - 1580Z- '1J}7' - 'J'T' ~ --ggr .

Since Y must be a positive integer and 891 and 1580 are relatively· prime, 891
is a factor of Z. Thus we have Z =891i, for some positive integer i, and hence

W = 2226i, X = 1602i, Y = 1580i, 2 = 891i.

We substitute these expressions into equations (4)-(7):

12w - 7x = 11214i, 20x - 9y = 14220i,

30y - lIz =9801i, 42z - 13w =28938i.

(10)

After solving this system of four linear equations in the four unknowns w, x, y, z
we multiply the solutions by their common denominator '4657:

4657w =7 206 36Oi, 4657x = 4 893 246i,

4657y = 3 515 820i, 4657z = 5 439 213i.
(11)

t Here Lessing uses a pun: the sentence can also be translated as "Truly a rather large
crowd, considering Sicily".
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We abbreviate p =4657 and observe that p is a prime. As none of the
coefficients of in equations (ii) is divisible by p, wehi!ve i =P x j < for some
positive integer j. Substituting this into (10) and (11) yields:

W = 10 366 482j, X =7 460 514j,

Y =7 358 060j, Z = 4 149 387j,

w = 7 206 360j, x =4 893 246j,

y = 3 515 820j, z = 5 439 213j.

What we have achieved so far i.s having solved the system of equations (1)-(7). As j
can be any positive integer, we have infmitely many solutions. Now we have to select
those which, in addition, satisfy (8) and (9).

Clearly, the next step is to substitute our solutions W, X, Y, Z into (8) and (9),
respectively, using (10) and the fact that i:: p x j:

3828pj =n2
and 4942pj = m2 + m

for some integers m and n. Putting k = 957 = 3 x11 X 29 and l = 4942, the last two
equations read:

n2 = 4kpj and m2 + m = [pj.

It follows that rz has 2, 3, 11, 29, 4657 among its prime factors, and so

n = 2 x 957 x 4657b = 2kpb

for some positive integer b. We see that

n2 =4k2p2b2.

Going back to (13) we fmd that

4k2p2b2 =4kpj,

and so j = kpb2 =4 456 749b2
•

Substituting this value into (13) leads to

m2 + m = klp2b2,

so that, after multiplying by 4 and adding 1,

(2m+l)2 = 4klp2b~ + 1.

Defming a = 2m+1, u = 4klp2, we have to solve

a2
_ ub2 = 1,

with a and b being the unknowns and u =·410 286 423 278 424.

(13)

(14)
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Equations such as '{ 14} (with u being .any ·positive integer) have been referred to in
the literature by the name "Pellian equations" or "Pellians", after John Pell (1611-1680);
Oliver Cromwell's "resident" in Z1:1rich. Since Pell's connection with the "Pellians" is
rather loose, various authors have used the name HPermat equations" instead, linking them
to the famous French mathematician Pierre de Fennat (1601-1665), whose Diophantine

equation xn + yn = zn still awaits a general solution. On reaching (14), vice-principal
Leiste gave up. For further advice Leiste referred his readers to Euler's Algebra (St.
Petersburg 1770), where Pellians are solved.

In 1880 the Gennan mathematician Amthor ventured to solve the cattle problem. The
leftmost four decimal digits in his number of sacred Sicilian oxen and cows owned by the
sun god are 7766; and these are succeeded by - holy cow! - another 206541 digits.

Exercise: suppose the sun god wants to improve the run for his Sicilian cattle. He
buys all the land on earth in a bid to consolidate the planet into a single station. How
many oxen and cows will, on average, occupy one square kilometre? No doubt, it will be an
ecological disaster - for cattle that is, as no place will be left on 'earth for human
beings after the sun god t s business transaction.

* * * * *

PEGS IN HOLES

Karl Spiteri, Student, University of Melbourne

Which fits better: a round peg in a square hole or a square peg in a round hole?

To answer this question consider a circle of radius r inside a square of side 2r
and a square fitted into a circle of radius r. The side of this square will be . rIZ.
(See diagram.)

In the rust case:

Area of circle = Ttr
2

2Area of square = 4r _

So the circle-to-square ratio is rt/4 Q! 0-785.
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In the second case
")

Area of square = 2r'"
. "Area of circle = 1tr-.

So the square-to-circle ratio is 2/1t Ql: 0·637.

Because 0·785 > 0·637, we can conclude that the circular peg in the square hole is
the better fit. .

I thought to explore generalisations .of this result in two directions.

First, in place of squares, I looked at regular n-gons. If the circle is placed
inside the n-gon, the circle-to-n-gon ratio is

~ sin[ 2~ ) = R1 (say).

Conver~ly if the -n-gon is placed inside the circle, the n-gon-to-circle ratio is

~ cot( ~ ) = R2 (say).

It may be proved that for all n, R2 > R 1. However, as n becomes large R l' R.2
both get closer and closer to 1. Thus for n = 100

R2 =0·99967

R1 =0·99934.

Secondly, I considered. what. happens in higher dimensions. This was an extension of
my earlier work on hyperspheres. (See Function, Vol. 15, Part 5.) Let n' now refer to
the dimension(l)jty .of .the ~ace. The circle and sqQ.at"e. r~fer to the case n·= 2. When
n =3, we refer to the fitting of a cube inside a sphere and the fitting of a sphere
inside a cube. In this case, the cube-to-sphere ratio is' about 0·368.· Call this R1.

The sphere-to-cube ratio is about 0·524. Call this R
2

.

Note that we still have R2 > R1.

However, as I went to higher values of n, I discovered that this pattern did not
persist. As long as n < 9, we fmd R2 > R 1, bot for n 2 9, the inequality is reversed.

Another interesting feature is that, as n increases, both ratios approach zero!
Indeed, if n = 10, we have already

R1 ~ O.()040; R2 ~ 0·0025.

[Editorial note: We have left oui- quite a lot. of technical detail, but Karl supplied
a number of explicit formulae for both his generalisations. In his second case, this
enables' the proofs of the hVo properties he points out. We felt, however, that this was
too specialised and technical for inclusion in Function.]'

* * * * *
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HOW BIG IS A FUNCTION?

Peter Kloeden, Deakin University

At fIrst it may seem just a Inatter of silly mathematical speculation to ask

How big is a function f: [a, b] -? R?

The answer is not too difficult once we understand or denote exactly what the questio~

means. It does, however, have profound consequences both within mathematics and for the'
application of mathematics. ~o see why, cons.ider the closely related question:

What is the distance between nvo functions f, g : [a, b] -? R?

For example, the n~merical values of trigonometric functions that. are listed in
Mathematical Tables or produced· by a pocket calculator are obtained by evaluating suitably
chosen polynomials. Consequently the results are not exact, but are only accurate up to a
certain number of decimal places~ The choic~ of an appropriate polynomial to approximate
a given function requires our knowing how close the polynomial and the function are, that
is, the distance between them. As another example, consider the task of controlling a
rocket to remain on a pre-assigned trajectory. The rocket will inevitably be buffeted by
fluctuations in both wind direction and speed, so the best, we can hope to achieve is a
perturbed path that remains sufficiently close to the desired one. Here too, we need to
say what we mean by the distance between two paths, that is, between the functions
describing the paths. There are, in fact, many different, non-equivalent ways of defming
such a distance.

To help us understand and answer the questions above, it is useful to remind ourselves
of what we mean by the size or magnitude of a real number and by. the distance between real
nuIllbers....11le JIlag~i!U~e<:>r .a~s.o1.1.1teYalue ... 1xl of .a real. numper. x. E:. R iSH just its
distance from the "'origm on· tile real line and is thus a positive number unless· x =0
itself. See Figure 1 and remember that the negative of a negative number is a positive
number, e.g. -(-6) = +6.

1-6/=+6 1+6 1=+6

----I----I----I----.......~ real line

-6 0 +6

Figure 1. Measuring distance on the real line

Expressed mathematically we have

{

-X if x < 0

Ixl = 0 if x = 0
+x if x > 0

which is the same as Ix I =ff for all x in R.
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The following basic properties of absolute values lie at the heart of what we mean
intuitively when we talk about magnitude or· size.

(1) Ixl ~O for all x in R

(2) Ixl =0 if and only if x = 0

(3) laxl = lallxl for all a,x in R

(4) /x+yl ~ Ixl + Iyl for all x, y in R.

An absolute value is either. positive or· zero. Of course 101 =0, which is the "if' part
of (2), but also Ixl =0 holds "only if' x = O. Also, if we multiply a number x by
another~ a, then we change its magnitude accordingly, that· is, by the factor Ia I (since
a could be negative). Finally, the magnitude of a sum of two numbers can never exceed
the sum of .their magnitudes. However, the numbers could have opposite signs, e.g.

12 + (-1) I = 111 = 1.

121 + 1-11 = 2 + 1 = 3.

So here we have inequality, as 1 < 3. Equality holds in (4) when one of the numbers is
zero or when they both have the same sign.

. Things become more complicated when we consider vectors instead of real numbers. The
idea of. a vector is familiar from analytical geometry, where we specify a point in the
plane or space in tenns of its coordinates relative to a given coordinate system. For any
integer n ~ 1 a real n-dimensional vector :! E Rn (real n-dimensional space) has the

fonn :! =(Xl' X
2

' ..., x
n

) where its ith-component ("coordinate") X i' for

i = 1, 2, ..., n, is a real .number.t A 2-dimensional vector ! = (xl' x
2

) e R 2 is

sometimes conveniently represented as a directed line segment from the origin to the point
in the Cartesian plane with coordinates (xl' x2).' arid similarly for 3-dimensional

vectors. ,Mathematically it is simpler just to consider. a vector :! as a point in the

appropriate n-dimensional spac~ Rn
• Then, a I-dimensional vector (Xl) e ~1 is just a

point x on the real line R, a 2-dimensional vector (x, x ) E R2 is a.point in the
lIZ

plane, and a 3-dimensional vector (Xl' Xz' x
3

) e R3 is a ·point in "everyday" space.

Higher ·dimensional vectors may not have such a' direct geometric interpretation, but they

still arise quit~ naturally. For example, in, relativity theory R4 represents
"space-time" and a 4-dimensional vector ! = (Xl' x

2
' X

3
, ~) describes the location

(Xl' X
2

' x
3

) of a particle in everyday space. at the time-instant x
4

•

Note that when we add or subtract two vectors :!, I E Rn we do so componentwise, that

is,

t Note that the zero vector Q= (0, 0, ..., 0) has all of its components equal to zero.
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an4

Compare this with what you do in analytical geometry in R2
and R3

• Similarly, we alsomultiply a vector ;! e Rn
by~ a scalar a e R componentwise. that is.

It is quite obvious that the distance between two vectors :;E, X e Rn
should be the

magnitude of their difference ! - t, which is also a vector in Rn
• But what do we rnean

by the magnitude of a vector in R n when n > I? Once again, analytical geometryprovides us with some clues. By Pythagoras' theorem the length of the line .segment

joining the origin in R2
to a point (Xl' x

2
) is Ix-~+x~ and that joining the origin

in R3
to a point (Xl' X

2, X:;) is /t~+x~+x~. This suggests that the magnitude II::EII
of an n-dimensional vector X = (Xl' X

2
' ~ ••, X

n
) e RO should be defmed as

t~11
!J 2 2 2= X +x +...+x .

1 2 n

This not only equals the geometric distance of the point :! from the origin in R2 or

R3
, but also on the real line R

1
since II (Xl) II =«= lXII, the absolute value of the

real number X 1. See Figure 2.

•
o

real Une

o

plane

Figure·2. .Geometric distances

space

The Euclidean norm II::! II = /r~+x~+ ...+X~i, as it is called, also satisfies analogous
properties to (1)-(4) for the absolute value, that is,
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(1*) II;EII ~ 0 for all :! E R
n

(2*) :1;E11 = 0 if and only if :! = Q

(3*) iia...rll = lal II;EII for all ;! E R
n

and ex E R

The last of these is called the triangle inequality (why?). It is quite tricky to prove.

The Euclidean nonn is a natural generalisation of our everyday experience with the sizeor magnitude of real numbers and vectors, as is the corresponding Euclidean distance

Il x - villi' = v{x -y )2+(x _y )2+...+(x _y )2'-- "'" 1 1 2 2 n n

between two vectors :!' I in RD. There are, however, other possibilities whi~h are
sometimes easier to pse, for example

that is, the largest of the numbers lXII, Ix
2

1, ..., IX
n
I,

and

(We sometimes call the Euclidean norm me 2-normand denote it. by ~ Zl2 to .distinguish it
from others.) Note that both the max-nonn and the I-norm satisfy properties (1*)-(4*)above.

The three norms IlzlI
l
, IlzI1

2
and 1l~lIm will usually have different numeric~ values

for a given vector. For example,

11(-4,3,0)11
1 = 1-41 + 131+ 101 =7 .

1(-4, 3,0)12 =v{-4)2+32+02 =v'Z5 =5

~(-4, 3, O)l
m

= max ( 1-41, 131, 101) =4.

The shapes of the "unit circle" (!:! E It, II~11= 1) show interesting variations when
the three nonns are used. See Figure 3 overleaf.
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-1

-1

, x
2

1

"'-

-1 1
,

x

-1

Figure 3. The unit circle in R2 for different norms

The I-norm andmax-nonn also provide an indication of the magnitude or size of a
vector, and are much easier to use than the usual Euclidean nonn. Fortunately, they are
all related to each other in the sense that

II!ll m ~ IIfll l ~ nll!!l rn,

Ilzllm ~ IIfl1 2 ~ Viiilfll rn,

~llzI12.~ ~!lll ~ nllz~2'

for all ;! e RO. Consequently, any vector inRo is always large or always small in all

threenonns, up to a scaling factor which does not depend on the particular vector.
Mathematically, the nonns .are said to be "equivalent". The equivalence of allnonns is a

characteristic of any fmite dimensional space like ~2.

Let us now retUrn to the original problem of measuring how big a function is. Without
loss of generality we· can restrict our attention to functions f: [0, 1] ~ R, in
particular to continuous functions, Le. those functions which, roughly speaking, are
those with graphs that can be drawn without lifting the pencil from the paper. The space
C([O, 1],. R) of all continuous functions f: (0, 1] ~ R is an infinite-dimensional
space. We can think of the value fit) of a function f at t, t E [0, 1J as its
tth-coordinate,in much the same way that fit) is the ith-component of an

n-dimensional vector (f(t ), f(t), ..., fit ») E RO fonned by evaluating f at only a
1 2 ° .

finite number of points 0 ~ t
1

< t
2

< ... ~ to ~ 1. This is a useful analogy, as we can

use each of the nonns that we considered on R2 to suggest possibilities for C([O,l], R).

Before we proceed, we need to say what we mean by addition, subtraction and scalar
multiplication of functions. These are natural generalisations of their namesakes for
vectors 5n RO, I.e. being performed "componentwise" or pointwise as' we usually say, Le.

h=f±g:

h = a/:

h(t) =j{t) ± g(t)

h(t) = af(t)

for all t E [0, 1]

for all t E [0, 1]
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where a E R is called a scalar. See Figure 4.

(f+g}{x) = 1 + ~ Xy

1

. 1 X

y

o

2
(2f){x) = 2x

2
fx;::: X

x

adding functions scalar multiplying functions

y

Figure 4

The max-nonn is the easiest of the three nonns on Rn to translate over to the
setting of the function space C([O, 1], R). We shall use the same notation and name for
it, which we defme as

Ilfll = max Iftt) I,
m OSt~l

I.e. the maximum of' the absolute values Iftt) I as t varies ov~r the interval
o ~ t :s; 1. This defmition makes sense because a continuous function on [0, 1] has a
maximum value which it attains at t*, t* E [0, 1]. (Compare this with the function f
dermed by ft.t) = t for 0 S; t < 1 with it1) = O.J It can be shown that this max-nann
satisfies properties (1*)-{4*) of the nonns on R (but with f E C([O, 1], R) rather
than z eRn), so has the intuitively necessary properties of a magnitude.

The corresponding distance between two functions J, g E C([O, 1], R) is then

Ilf - gil =, max Ift.t) - g(t) I,
m O~t~l

i.e. the largest of the magnitudes of their pointwi~

differences over the interval 0 S; t S; 1. For example, if

itt) = t and g(t) = l for 0 S t S 1, then .

IV - gil = max lfit) - g(t) I = Ifi1/2) - g(1/2) I = 1/4
m 0~tS1

since IAt) - g(t) I = t - l ~ 0 attains its maximum value
of 1/4 on [0, 1) at t* = 1/2. See Figure 5.

o

Figure 5

What are the counterparts of the I-norm and 2-norm of Rn on -the function space
C([O, 1], R)? Consider a function f E C([O, 1], R)- and a .fmite number of points

o :s; t < t < ... < t < t = 1. Then x = (f(t), f(t), ..., f(t» E Rn has I-norm
1 2n n+l - 1 2 n
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A sligh t variation is .to multiply each term by

i == l, 2~ ..., n~ the difference between successive t values:

·~t·= t - t > 0
i i+l i

for

. .
Readerswlio are familiar with calculus Will recognise that as . n -) 0() with I~ti I -) O~

this sum converges to the integral of IAt) I from t =0 to t = 1, that is,

1im{ Ij(t )I + Iftt ) I + ... + lfi t ) I }~t. = SIlitt)Idt,
1 2 n 1 0

n-)O()

which is the area under the graph of y = litt) I for 0 ~ t ~ 1. It can be shown that

11Il1 1 = J~ lfi t) Idt,

which we shall call the I-nonn on C([O, 1], R), also satisfies properties (1 *)-(4*) and
is thus an intuitively acceptable. measure of m~gnitude. So too is the corresponding
2-nonn on C([O, 1], R), which is defmed by

The I-nonn and 2-norm on C([O, 1], R) provide us with additional measUres of diftance
between functions. in C([O, 1], R). For example, with f(t) = t and g(t) =1 on
o ~ t ~ I we have

(as 1 - l ~ 0 for 0 ~ t ~ I)

[:"l _ !.p] 1 =!. _ .!. = :..
2 3 2 3 6'

t=O

whereas

IV - gil" =y(Jllit t) I~t} = v{J 1(l-2l+l)dt}
- 0 . 0

_I 1 3 24 1 S 1 -f( 1 2 1 .~= y {[-t - -1 +-t] } =v - - - + -} =vI/30.
3450 345

Not unexpectedly, we usually obtain different numerical values for the different norms.
They are related in the sense that

for all f E C([O, 1], R). However, unlike their counterparts in Rn
, these function

space nonns do not satisfy general inequalities in the other direction, so what is small
in one norm need not be small- in another. For example, for °< C < 1 consider the
fun~tion Ie. E C([O, 1], R) defined by
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1/£

Figure 6

Then IVell
1

=. ~ (the area of the triangle in Figure 6), whereas Ilfell
m

= l/E. As

e ~ 0, one of these becomes very small, whereas the other becomes infmitely large!

For an· infmite-dimensional space such as C([O, 1], R) different norms are usually
not equivalent. Which one we use will depend very much on the nature of the problem that
we are investigating. For example, the max-norm.is appropriate if we require· two paths to
be close in geometric space for every time instant, whereas an integral norm like the l
and 2-nonns are. useful if we want to minimise an accumulative effect $Uch as energy or
fuel consumption.

The problem of guiding a rocket over a 'pre-assigned flight-path raises another
interesting issue. Here we usually· .require the speed as well as the position of the
rocket to be close to "the planned values. Now, spee~ is just the derivative of the
position as a function of time, that is, the slope· of the .tangent to the graph of the
position as a function of time. See Figure 7.

tangent

y =f(t)

f' =f '(t) = 1im f(t+h~-f(t)
h~O

Figure 7
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A continuous function need not be differentiable, that is, have a derivative, for
each t. However, if a function is differentiable then it must be continuous. Let
C ([ 0, 1], R) be the space of functions f: [0, 1] -7 R which are differentiable
everywhere on [0, 1], with both f and its derivative f I being continuous functions
on [0, 1]. Then '

lltll = !1Il1 + IV"il = max Iftt) I + max If '(t) I
d m· m 0~ t~lOS; t~1

is a nonn (i.e. it satisfies properties (1*)-(4*» on the' function space Cd([O, 1], R)

which takes into accoun~ both the magnitude of the function and its time-rate of change.
The corresponding distance IV - gil is small if both the values of the functions and of

their derivatives are close. To e:Uphasise this point, let fl.t) = -rA sin(IOOOt) and

g(t) == 0 for 0 ~ ,t ~'1. Then

IV - gIl = max I' -rA sin(lOOOt) I = -rA.
m O~t~l .

The corresponding derivatives are f '(t) =~ cos(lOOOt) and g'(t)!5 0, so

IV '~ g'll = max I~ cos(lOOOt) I = 100.
m O~t~l

The functions f and g are close, but their rates of change differ dramatically. See
Figure 8;

1

10 ~ ~ ~ f(t) =~ sin. (1000+)

1 U U,
-1"0

Figure 8. Schematic only - very rapid oscillations!

The study of function spaces such as C([O, 1], R) and Cd([O, 1], R) and their.

properties norms included, is a major part of modem mathematics, which is known as
Functional Analysis.. The infrnite-dimensionality of typical function spaces certainly
gives rise to many complications, which are much of the fascination of the subject.

* * * * *
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LETTERS TO THE EDITOR

.The Bend in the Road

Kent Hoi's article "One Good Tum" (Function, Vol. 16, Part 1, p.14) prompts a number
of comments.

In the fIrst place, the interpolated remark (b), referring to the point where the
road starts to ~urve, is incorrect. This is not a point of inflection.

At a point of inflection, the curvature, if it exists, is zero; but a point where the
curvature is zero is not necessarily a point of inflection. For example, the curve

y == x 4 has zero curvature at the origin .(0,0), but .there is no point of inflection
there. The author's "that is" is wrong.

'X

y

for x ~ 0

for x < 0

{

_x2

v=.. 2
X

(see Figure 1).

An exa~ple of a·point of inflection where
the curvature does not exist is the point
(0,0) on the graph

For negative x near zero the cUrvature
is near -2; for positive x near zero the
curvature is near +2. Hence the curvature
does not exist at x = o. .Yet, in tenns of Figure 1
the .. dictionary defmition, .there is a .pointef .
inflection .at x =0, because the curvature changes from negative to positive, or from
convex to concave, as we pass that point. Put another way,. the curve crosses its tangent

at x ~ O.t.
Exercise: Show, mathematically, that there is, indeed, a tangent to this graph at

x = o.
The second point to .make is to extend the editorial remark at the end of the article.

It neither went far enough nor did it attend to the principal issue, namely, this is' not
the way surveyors go about their work. Surveyors join straight sections of road to
circular arcs by means of "transition curves" which give smooth changes in the curvature
as defined in the editorial note. (See Figure 2 overleaf.)

t For a careful analysis of the' concept "point of inflection", see The Mathenzatical
Gazette, December 1991.
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Transition Curve

Circular Arc

I/ .. Transition Curve

./

Figure 2

[Clearly we. could not use a curve Such as shown in Figure 1 as a railway or roadway
transition curve, because of the discontinuous acceleration at x =0, giving rise to a
large impulsive force on a vehicle passmg this point. But the cubic'curve, whi~h 109~s

similar,. could be used. Half the cubic curve, say y = x3 for X ~ 0, is c'alled, by
surveyors, the cubic semi-parabola, and is one of several curves which they commonly use
as transition curves. They do not use high-degree polynomials or cosine curves.]

The desirable properties of transition curves may. be understood by reference to
Figure '3.

o
Figure 3

x

In the notation of Figure 3, we may write formulae for some transition curves used by
surveyors.
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e'=~, which is .the lemniscatet , and .is ideal for
2

pegging by polar coordinates. Its polar equation is

r2 = a2 sin 29.

(ii) tan e =i tan 'J!, which is 'the c'ubic semi-parabola

referred to above. Its cart~sian equation

is well adapted. to pegging .by cartesian coordinates.
The curvature increases with x to a maximum 'at
x =O.4a and then decreases as x increases. This
curve was proposed in 1960 by the late Jjm

Thornton-Smithtt who wrote:

UThe cubic semi-parabola is not a true spiral~ its
cprvature attaining a maximum and then becoming very
flat again as the slope angle increases; 'however, in
railway design in cases where the transition length is
small in· comparison with the radius of the circular
curve which it joins, it has advantages of simplicity
and. symmetty which make it especially convenient for
pegging it by cartesian coordinates".

(iii) s2 = a
2'Jf, whi9h is the cloth~idttt. This has no

simple equation in polar or cartesian coordinates. Its
virtue is that the curvature is proportional to
arc-length along the curve.

J.C. Barton,
1008 Drummond St.,

North Carlton

* * * * *

Two Good Turns

The problem of designing a bend in a road or railway line was considered by Kent Hoi
in Function, Vol. 16, Pt;lrt 1. However, the curves actually used in such designs are not
to be found by such means. _ As the editorial note appended to the article indicated, we
need fIrst to use a correct defmition of curvature, but secondly the curves required need
not (and often do not) have simple cartesian or polar equations.

t The lemniscate was used as the cover of Function, Vol. 1, Part 4.

~~ In the technical journal Empire Survey Review. .

I I t Also known as Cornu's spiral. See the cover ,story for Function, Vol. 4, Part 4.
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Let K be the curvature. This is lip where p is the radius of a
best-approximating circle at the relevant point on the curve. Let s measure arc-length
along the curve. The simplest and most natural functional relationship is that curvature
be proportional- to arc-length:

1 .
K =P oc s. (1)

This equation uses two intrinsic variables, which are not referred to an external
framework, as are the extrinsic cartesian (x, y) or polar (r, 9).

The curve _dermed by Equation (1) is known by -various names: klothoid, clothoid,
Cornu's spiral, Euler's 'spiral and the Railway Transition Curve. It has also been found
useful in the science of Optics.

If we relate intrinsic· variables 1C (or p), s and the ~gent anglet 'V, we may'
write Equation (1) in" its standard fonn

1( = 2Ks

which is also known as Cesaro's Intrinsic Equation. Note that

l( - dW--. as

and this measures the rate of tum experienced by a driver travelling along the curve.

We thus have

~=2Ks

"and so deduce

'V =Ks~ + L

where L is a constant of integration.

But ~ow if we choose. 'V =0 'when s =0, it follows that L = 0 and so

'V =Ks
2

•

This is called the Whewell Intrinsic Equation.

From (2),

s =/ 'V/K

and we can deduce that

1 ds 1
P=K=·au;=--·

'V 2v'K\ji

This is referred to as the Euler Intrinsic. Equation~

t See Figure 3 of the' previous letter [Ed.].

(2)

(3)
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If we wish to refer this to extrinsic cartesian coordinates, we need to solve the
equations

dx . 2as ( =cos \V) =cos(Ks )

~ ( = sin 0/) =sin(Ks2
).as

The ,solution of these equations is beyond the scope of Function, but it can be done on ~ ,
computer. It leads to the study of Fresnel integrals and the theory of Cornu spirals.

D. Halprin,
P.O. Box 460,
North' Balwyn

* * * * *

SQUARE ROOTS USING MATRICES

If we multiply the column vector [}] by the matrix [~i) the result is .( ~ ).

[ 1 2 J [ 57, 'J,Multiplying this' again by 1 1 gives and continuing in this way we may

generate from the matrix the sequence

( ~ ). (~ ). (~). [g), (i~ ). ug). (i~~ ). .... .
The ratios o~. the two entries in these vectors are respectively

1.0, 1.5, 1.4, 1.417, 1.414, 1.4143, 1.4142, ...

values which oscillate about but also get closer and closer to Y2.,

More generally

( 1 p) ( x) _ (x+P )
1 1 l' - x+l

and it may be proved that if oX is an approximation to vp, then (x+p)/(x+l) is.a
better one. If x < .[j, then (x+p)/(x+1) >,;p and vice versa. Equilibrium occurs when

x = (x+p)/(x+1),

and this quadratic equation reduces to x2 =p, i.e. x =±/p.

When p = 3, the sequence (beginning with x = 1) goes:

1, 2, 1.67, 1.75, 1.727, 1.733, ...
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converging to v'3" (= 1.732 ...). If we put p = 4, the sequence is

1, 2.5, 1.86, 2.05, 1.984, 2.005, 1.998, ...

and the limit is 2.

I was reminded of this material by reading J.B. Miller's "Square Roots of Matrices" in
Function, Vol. 16, Part 1.

Gamet J. Greenbury,
Greenleaves Village

Upper Mt. Gravatt, Qld, 4122

[The proof that this algorithm works is rather te4ious. Mr. Greenbury supplied a
rather nice graphicl# illustration coincidentally rather like the cover picture for this
issue, but it needs concepts outside the scope of Function. Ed.]

* * * * *

HISTORY OF MATHEMATICS

EDITOR: M.A.B. DEAKIN

Function, Vol. 16, Part 1 ~old the story of Hypatia, usually seen as the world's
fIrst woman mathematician. A footnote to that story, however, foreshadowed the claims of

.an earlier woman. Her name was Pandrosion and Winifred Frost of the University of
Newcastle has very kindly sent us her story. What I particularly like about it is its
flavour of the _techniques, difficulties, minutiae and rewards" of research in the history
of mathematics.

PAPPUS AND THE .pANDROSION PUZZLEMENT

Winifred Frost, University of N.ewcastle

Pappos of Alexandria (Pappus in the Latinised version) was a Greek mathematician of
the 4th century A.D., whose work comes some six centuries after Euclid,when the great
geometrical tradition was kept alive by teachers like him who wrote commentari~s on the
works of their famous predecessors. He was mentioned by the .later writers Marinus aJ.1d
Proclus at Athens in the 5th century, and Eutocius at .Alexandria in the 6th, "as a
commentator on Euclid and Ptolemy. There are also'- two later references to him, one
placing him at the beginning of the 4th century, the other at the end of it. He is known
to us as the author of "The· Collection", which consists of eight books of which the fIrst,
half the second, and perhaps· the end of the eighth are missing. Pandrosion is the person
to whom he addressed the third book, and thereby hangs a tale.

Nothing would be known of the "CollectIon'; if it were not for the survival of a
single manuscript, now known as Vaticanus Graecus 218, "which had reached the Vatican
Library by the 16th century, and was probably copied in Byzantium (today's Constantinople)
in the 9th or 10th century. How many removes it is from Pappus's original. manuscript.
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cannot be known unless another earlier manuscript is found, but it may be only one or two,
including that of the copyist who prepared the work for publication.. It is disorganised,
contains repetiti~ns and mistakes, and could not have been prepared for· publication by
Pappus himself. Eleven other manuscripts of the remnants of it, mostly 16th century,
exist, as well as several with' only some or one of the books, but they. have all been
proYed to be copied from the Vaticanus itself or its descendants.

Until the (rrst printed edition of Federicus Commandinus was published posthumously
in Pesaro, Italy, in 1588, very few had access to Pappus's work, butCommandinus extended
its readership with a Latin translation, omitting the part of ~ook II. No other. edition
was printed until 1875, when Fridericus Hultsch's edition was published in Berlin, with
Greek on the left page and Latin on the right. This is still the standard edition. The
only edition' in a modern language is the Frenchtrarislatiori of Hultsch's text by Paul Ver
Eecke, published in 1933. These are the only complete texts available to a modem
scholar, sixteen centuri~s after Pappus wrote. '

Hultsch's edition was based largely on a secondary manuscript, Paris 2440, though he
was aware that the Vaticanus was superior~ and had been able to consult Books II to VI.
He also consulted two other manuscripts, but the advantages of photography and modem
means of travel were not available to him. So it is only quite recently that further
progress has been made to make the "Collection" more accessible' to those who have no Latin
or Greek. (The outline of its contents may be found in "'A Manual of Greek Mathematics" by
Sir Thomas Heath, the famous 19th century translator of Euclid's "Elements", and of
Archimedes, Apollonius and Diophantus.)

Australia has its own Pappus scholar, ProfessoJ;' A. Treweek, fonner Professor of Greek
at Sydney University. He obtained photocopies of theVaticanus in 1938 and, comparing
Hultsch's text with it, "realised that all was not well with it". After the war he copied
out'the whole Vaticanus (a truly modem scribe!) which is difficult to read, as it is in a
minuscule hand and some letters have quite a different fonn from today's script. He spent
study leaves in .1949-50 and 1955..;56 collating all the other extant manuscripts, either by
personal inspection or from photostats, noting all variations of the texts on the
left-hand pages of his manuscript. He greatly contributed to the advance of the study of
Pappus by.restoring ·many .illegible -passages. where water ··damagehad ·-occurred.He did ·this
by deciphering the mirror image offset visible on the opposite page. In the course of his
work, he p~oved from relationships between the manuscripts that they· all stem from the
Vaticanus, and that its date was 10th century, or possibly. 9th. By reading what was
visible after rebinding of numbers marking· the beginning of a· quatemion or· quire (of four
sheets folded once), he deduced that ~e missing quires must number either. two or six.
His doctoral thesis contained his transcription of Books II to VI and his report on the
manu~ripts and their relationships. The latter was published in the scholarly journal
Scriptoriuln in 1957.

Further research continues to be done. In 1986, A. Jones' translation of Book VII
was published. This is the most historically interesting book, listing the books that
made up the "domain ,?f analysis", works by Euclid, Apollonius and Aristaeus (many Qf whi~h
we would otherwise know nothing about) and showing the method of proof of propositions by
analysis of what must precede if the proposition is assumed to be· true, until something
given or known is reached, and then by synthesis, that is by the reverse process, or
building up of the proof.

More recently a very scholarly work, "Textual Studies in Ancient and Medieval
Geometry", by W.R. Knorr examines the texts, their contents, history and relationships, of
eight commentators on the works of the ancient mathematicians, from Heron of Alexandria in
the fIrst century, to Eutocius and John Philoponus in the sixth, and including Pappus,
Theon and Hypatia.
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My interest in Pappus began when I was looking for a long-term project. that wouldcombine my interest in mathematics and classics, and. Bob Berghout of Newcastle Universitytold me that there wa·s no English translation of the "Collection". In the way of foolswho rush in, I began at once with Book II, which shows how to multiply any quantity ofsingle letter numbers together by taking out all factors of ten, and multiplying only theb~se numbers together. Factors of ten are. again taken out, their total number i$ dividedby four, and the number of myriads (l0000s) is obtained. He quotes Apollonius as hissource.

Book III is more interesting. There are four unrelated sections containing 45propositions and 15 lemmas. The fIrst section is concerned with the ancient problem ofthe duplication of the cube (equivalent to rmding two mean proportionals between twogiven quantities); the second shows how, in certain cases, a triangle may be constructedon the base of, and inside another triangle, yet have its other two sides together greaterthan, equal to, or in given ratio to the remaining sides of the outer triangle, andextends to polygons with four or more sides. The third section shows how ten differentmeans between two given quantities may be obtained, and how, given an extreme quantity andthe mean, to fmd the other extreme quantity; the fourth shows how to inscribe in a givensphere the five regular polyhedra - pyramid, cube, octahedron, dqdecahedron andicosahedron e'Sale of ·the Century" symbol). His method differs from Euclid's in Book 13of the Elements, and is probably based on Theodosius's "Spherics".

At the very beginning of Book ill one gets a taste of Pappus's style. He addressesit 'to Pandrosion ("dedicates" is not the right word), only to show his low opinion of herstudents. "Certain peopl~"t he says, "who claim to have ·leamed mathematics from you, setout the enunciation of the problems in what seemed to us an ignorant·· manner". In hisaccount of the duplication of the cube, .he gives no credit to the unknown student ("animportant person, reputed to be a geometer"), not recognising that this person's method of
approximating the two meanst is at least as good as the other ancient methods, which ofcourse were sanctified by age. In fact it is an iterative procedure, obtaining successive. improving approximations, and it may ~ proved by modem methods that the approximationsconverge to the exact solution. Again in the proposition~ on rmding the means, he scornsthe·· effort of "a certain other personn to e$ibit the .... arithmetic,geometJic and h~onicmeans OD, a· ~~-~iI:~l~,WhiClth~ ..doestlsiJlg··only ,fo\lrHlines,and-says: ."1>uthow ·····BZ· is amean of the harmonic mediety, or of which straight ~es, he does not say", even though itis not difficult to prove that it is, and of· the same two lines as for the other twomeans. So we begin to see a conceited irascible old gent, fallible himself, butintolerant of the faults of others. (Perhaps his name, .Pappos - grandfather, isindicative of something other than reverence?) There are several other examples in BooksVI and vn of his critical attitude to other scholars.

One wonders whether his criticism would have been quite so terse if Pandrosion had
not been a woman. Yet she certainly was; all th~ manuscripts have the feminine vocativettfonnof .the adjective translated as "most excellent'~, which Hultsch has changed from thelong e (eta) to the short e (epsilon) of the masculine vocative case. Emendations should

t - The geometric method gives ways of approximating 2 1/3 , 2 213 (the "two means") byruler and compass construction. It is now known that no such construction can give themexactly.

.:tt The Greek words inflect according to thek function in the sentence and also withgender. The "vocative" case is used when a person is being directly addressed. Thevocative feminine is Qsed when that person is female. The feminine fonn has 11, whereasthe masculine has e, the other fonn of the Greek letter e.



91

never be undertaken without careful thought, and there are clues in the name itself to
warn· against it. The -ion ending is a diminutive or pet name' ending; as we say Jimmy for
James, and the original, Pandrosos, was the name of one of three sister-god~esses,

daughters of Cecrops and Aglauros in Greek myth. It means uall dewy", not a likely' male
epithet.. Following Hultsch, Ver Eecke calls her Pandrosio, using the modem male
tennination. Three other books have dedications: Books VII and VIII to "my son
Hennodorus', (no doubt of his sex, though he may not actually have been Pappus's son), and
Book V to Megithion, otherwise unknow'n, but all the manuscripts have the masculine
adjective..

So we have in Pandrosion a female teacher of mathematics at Alexandria, probably a
younger contemporary of Pappus, perhaps even at the same institution, the Museum (or
University).. Pappus's date was determined in the 1930s by Professor A. Rome from the fact
of his observation of an eclipse of the sun in 320 A.D., mentioned in his commentary on

Ptolemy's "Almagest", part of which survives.. Since he therefore pre-dates Theon,t
father of Hypatia, there is at least one, and perhaps tWo generations between Pandrosion
and Hypatia. This means that it is Pandrosion and not Hypatia for whom we may make the
claim "frrst known woman mathematician". And perhaps more may have been heard of her if
she, like Hyp~tia, had been the daughter of a famous mathematician.

Since completing the translation of Book ITI; Bob Berghout and I have visited
Professor Treweek at his home. He is now eighty, and was so pleased that two more
Australians were taking up his "vitai lampadatt that he has given us his precious
manuscript copy of the Vaticanus, his volumes of Hultsch~s ~d Ver Becke's translations,
the. Scriptorium .article and other valuable books, for 'which no thanks would be adequate..
Our aim is to continue with the work of a complete English text and commentary, of which
the mathematical and historical aspect is Bob's field, while I translate and revise with
his invaluable help.

* * * * *

PROBLEMS AND SOLUTIONS

EDITOR: H. LAUSCH

SOLUTIONS

1. The Steiner-Lehmus Theorem

Here is one more solution to the

Steiner-Lehmus Theorem (Problem 15.1.5)..- If the bisectors of two angles of a triangle are
equal, the triangle is isosceles..

Solution (provided by Gamet J. Greenbury, who proposed the problem). ~t AD and BE
be the equal angle bisectors. Make LBEF =LBAD and LFBE =LADB. Extend FB to H and
draw the perpendiculars FC and AB. Join AF.

t Theon observed two later eclipses in the year 364.
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c

A

H

Since .LBAD and. LADB are two angles of the same triangley they are together less than
two right angles, and hence EF and BF will meet. Therefore MBD, fjEFB are
congruent, and BD = BF, AB = EF.

LAKB = LKAE + 2AEK = LBEF + LAEK =LAEF..

But LAKB = LKDB + LDBK =LEBK + LKBA =LFBA. Hence

LAEF = LFBA,

LFEG = LABH,

M'GE and MBB are congruent,

GE =HB andGF = HA,

MGA and MBF are congruent,

GA = HF,

AE = FB =BD,

MBE and MAD are congruent,

LEBA = LEAD,

LeBA = LBAC,

CA = CBt q.e.d.
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Function also thanks the following readers for their contributions in connection with this
problem: SeungwJin Bang (Seoul, Republic of Korea), John Barton (North Carlton),

.l.A. Deakin (Shepparton) for two more solutions (including one by M.E. Richards), and
Garnet J. Greenbury. for more material.

2. Solutions to other- problems

It's Beetham's Problem

In Function, Volume 13, Part 3, June 1989, p. 96, a problem was published that had
been on a paper sat by candidates for membership in the team to .represent Australia at the
1989 Inte~ationalMathematical Olympiad (Braunschweig, Germany). A considerable number
of Function readers sent in solutions, so that the problem became our "'problem of the year
1990". Here it is: .

Problem. Let 0 be the circumference of the triangle ABC, and let X and Y be the
points on AC. and AB respectively such that BX intersects CY in O. Suppose
LBAC = LAYX = LXYC; determine the size of this angle.

Function thanks John Barton, North Carlton, for pointing. out a comment in
Mathematical Gazette, December 1991, p. 458, where we learn of the problem's origin. The
problem was originally published in Mathematical Gazette, December 1969# p. 403 by Richard
Beetham, who asked solvers to find the angle and prove the result by elementary geometry,
and re-published in Mathematical Gazette; June 1~91, as Problem 75.D. Function reader
Francisco Bellot, Valladolid, Spain, then spotted· the duplication, whereupon Mathematical
Gazette informed its readers of· the problem creator. Meanwhile Andy Liu, Edmonton,
Alberta, Canada, sent Function one more soluti9n to the problem, which was also used in a
Canadian high school competition. The solution is due to Kevin Kwan, Ontario:

Solution. Join AO and extend it to meet Be at Z. By Ceva's Theorem,

~.~.g=l.

AY AX CY BZSince YX bisects AYC, yc = XC. Hence YB =ZC ' so that YZ bisects Bye. Let

LEAO =a., LCAD = LACO = ~ and LeBO =.'Y.

A

8 z c
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Then a + P+ Y= 9(f. Since L4YX =LXYC = (X, + ~,LCYZ =y. ,It follows that BYOZ
is a cyclic quadrilateral, so that LYZO = LABO =<X.. The sum of 'the interior angles of
triangle Aye is 3a + 413 = 180°, while that of triangle AYZ is 4a + 2~ +Y =180°.
The second equation reduces to 3a + ~ = 90°. Solving this system of equations, we have
~ .= 30° and ex = 20°, so that LBAC = 50°.

Problem 15.4.5 (from ancient China; in Presek 17, part 1, 1989/90). A city has a circular
wall. We do not know ifS circumference or its diameter. The city has four gates.
Outside, a tall tree grows, 3 Ii north of the city. If we leave the city through its
southern gate and then walk, eastward, we have to walk 9 Ii before we can see the tree.
Calculate the circumference and the diameter of the fortress. (1 Ii = 612 metres.)

Solution (Dieter Be~ewitz, Koblenz, Gennany).

9

Equation (2) implies

Substituting this in (1) yields

(3 + 2r)2 + 92 =(x +. 9)2

(3 + r)2 = r2 + x2.

9+6r=x
2

23(3 + 2r) =x

x2

3 + 2r = r.

2 '2(r) +9
2

=(x+9)2

x4
_ 9x2

- 162x =0

x(x3
- 9x - 162) =0

x(x - 6)(x
2 + 6x + 72) =O.

_(1)

(2)
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The only positive solution is x = 6. It follows· that

x
2

- 9
r =--0- =4.5

d =2r =9.

Therefore the diameter is 9 Ii and the circumference is 21t·4.5 li := 28.3 Ii.

PROBLEMS

Problem 16.3.1 (from Switzer1~d). The number representing the year of birth of a famous
Swiss mathematician has the following properties:

(i) the number of its digits is a perfect square;
(ii) the sum and the difference of its third· and its fourth digit (counted from

the left) as well as its rightmost digit ar perfect non-zero squares;
(iii) the two leftmost digits, read as a decimal integer, form a perfect square.

In which year was this mathematician born? Who ~as he?

Problem 16.3.2 (Juan Bosco Romero Marquez, Valladolid" Spain). Let ABC and A'B'C' be·
two right-angled triangles with sides a, b, c and a', b', c' respectively. Suppose
that a > b ~ e and a' > b' ~ e' and that LABC > LA'B'C'. Let ANB IfC" be the
triangle with sides a", b", c" such that a" =aa', b" = bb' + ec' and c" =bc' - b'c.
Prove that M"B"C" is right-angled, and evaluate its area, circumradius and inradius as
well as LA"B"C'.

Olympiad News

The Asian .Pacific Mathematics Olympiad of ·1992

Since 1989 the Asian Pacific Mathematics Olympiad has taken place every year. This
year twelve countries from the Pacific Rim entered students for the contest in March:
Australia, Canada, Colombia, Hong Kong, Indonesia, Mexico, New Zealand, the Philippines,
the Republic of China, the Republic of Korea, Singapore and Thailand.

Time allowed for the paper was four hours, no calculators were to be used, and each
question was wprth seven points. Here is the paper - please send in your solutions:

Question 1 (proposed by· Canada):

A triangle with sides a, b and c is given. . Denote by s the semiperimeter, that
is s = (a+b+c)/2. Construct a triangle with sides s - a, s - b and s - c.' This
process is repeated until a triangle can no longer· be constructed with the side lengths
given.

For which original triangles can this process be repeated indefinitely?
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Question 2 (proposed by Canada):

In a circle C with centre 0 and radius r, let C
1

t Cz be two circles with

centres 01' 02 and radii r
1

, r7, respectively, so that each circle C
i

is internally

tangent to C at Ai' and so that C
I
, C

2
are externally tangent to each other at A.

Prove that the three lines OA, 0lA
2

and 02Al are concurrent.

Question 3 (proposed by the Republic of Korea):

Let n be an integer such that n. > 3. Suppose that we choose three numbers from
the set {2, 3, .~., n}. Using each of these three numbers only once and using addition,
multiplication and parenthesis, let us form all possible combinations.

(a) Show that if we choose all three numbers greater than n/2, then the values of
these combinations are all distinct.

(b) Let p be a prime number such that p ~ v'li. Show that the number of ways of
choosing three numbers so that Jhe sm~l1est one is p and the values of the
combinations are not all distinct is precisely the number of positive divisors
of p - 1.

Question 4 (proposed by Mexico):

Detennine all pairs (h, s) of positive integers with the following property: If one
draws h horizontal lines and another s lines which satisfy

(i) they are not horizontal,
(ii) no two of them are parallel,
(iii) no three of the h + s lines are concurrent,

then the number of regions formed by these h + s lines is 1992.



Question 5 (proposed by New Zealand):

Find a sequence of maximal length consisting of non-zero integers in which the sum of

any seven consecutive terms is positive and that of any eleven consecutive tenns is

negative.

The results of the Australian Division were:

Gold Certificate: Anthony Henderson (year 11), Sydney. Grammar School, NSW;

Silver Certificates: Benjamin Burton (12), John Paul College, Queensland;

Frank Calegari (11), Melbourne Church of England Grammar School,

Victoria;

Bronze Certificates: Adrian Banner (12), Sydney Grammar School, NSW;

Lawrence Ip (12), Melbourne Church of England Grammar School,

Victoria;
Rupert McCallum (11), North Sydney Boys' High School, NSW;

~rett Pearce (12), St. Michael's Grammar, Victoria;

Honourable Mentions: Geoffrey Brent (12), Canberra Grammar School, ACT;

William Hawlcins (10), Canberr~ Grammar School, ACf;

Michael Russell (12), Collegiate School of St. Peter, SA.

Congratulations to all!

The Australian team for the International Mathematical Olympiad (IMO) of 1992

This year's IMO, the thirty-third in history, is to be held at Moscow from July 10 to

July 21. As Head of State of the Jwst country, Russian President Boris Yeltsin is

official Chairman of the IMO for 1992. Eighteen students, including all winners of the

Asian Pacific Mathematics Olympiad, congregated at Sydney for Melve days to undergo a ~

densely packed training programme. At this training school our IMO team for this yeq.r was

selected after two more examinations. It is the youngest ever Australian IMO team, of

average age 16 years and six months. These young people, whom Function wishes every

success, are:
Adrian Banner,
Benjamin Burton,
Frank Calegari,
Anthony Henderson,
Lawrence Ip,
Rupert McCallum.
Geoffrey Brent (reserve).

An Olympian's progress

Terence Tao, born on July 17, 1975, celebrated his eleventh, tyvelfth and thirteenth

birthdays while. attending International J.\1athematical Olympiads as member of an Australian

team. In 1986 he won a bronze, in 1987 a silver and in- our bicentennial year, .when the

IMO was held in Canberra, a gold medal. In 1989 Terence would no longer have qualified

for participating at an IMO as he had enrolled at a university.

Now being hardly 17, he is .the youngest Australian to be given a Fulbright award,

which is q very prestigious scholarship in the United States of America. He has graduated

from the University of Adelaide with first class honours in Mathematics. Terence proposes

to pursue PhD studies in pure mathem!J.tics from this year until 1996. He is also co-author

of a boo~ on problem solving in lnathematics.
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