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Welcome to the readers of FUNCTION! An outstanding feature of
Australia's bicentennial celebrations will be the 29th International
Mathematical Olympiad in July. FUNCfION will keep readers informed of the
momentous competition.

1988 is opened by FUNCTION with imprecision as its central theme.
Mathematics· has many ways of dealing with it. .

Peter Kloeden's article is a story of fuzzy sets: despite their name
they are mathematical objects, and their theory is .aepliea in real life,
e~g. decision making for an entire underground subway rail system'· in Japan
by computers, of course.

More traditional is. the .imprecision in forecasting the result of
tossin$ dice: G.A. Watterson's article provides·a result to be remembered,
especIally by. players of board games like "Escape from Colditz".

A tracking error, another manifestation of imprecision, occurs when
needle and record meet on a record. player: how to keep track of such an
error is recorded in an article by John Barton.

Jandep this time tells us about a way of surpassing Archimedes' sand
reckoning: building a miniature word processor 'capable of incorporating
mathematical symbols and simple diagrams.
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THE FRONT COVER
Hans Lausch

Monash University

Perception and apperception of geometric configurations is a theme that
has engaged psychologists~ chess players,. educators" and mathematicians.

. This issue's front cover pre~ents a. dIagram originally drawn by Hermann
Amandus Schwarz (1843 - 1921).

The drawing delineates a solution to a problem proposed by the 60 year
old Marquis Gianfrancesco de Toschi a Fagnano (1715 - 1797), a famous
mathematIcian's son, a master of Euclidian" geometry and archdeacon in
Senigallia, an ancient Italian city on the Adriatic coast. . His treatise
Problemata quaedam ad methodum "maximorum et: minimorum spectantia appeared in
the German journal Nova Acta Eruditorum, the follow-up to Acta Eruditorum
where a multitude of excellent mathematicians had their articles published.

Fagnano~s problem was: '!In a given acute-angled trian~le ABC, inscribe
a triangle aIJ-y whose perimeter is as small as possible', and Fagnano's
answer was: "The triangle of minimal perimeter inscrIbed in an acute- angled
triangle ABC is the orthic triangle of ABC." The term "orthic triangle tl

(of ABC) refers to the triangle whose vertices. are the three feet "of
altitude (of ABC). .

Fagnano used "pure" geometry as well as cal~ulus in his solution.
Knowing the problem and its answer facilitates recovering Schwarz's proof:
the drawing, baffiing as it may be "at first sight on the score of its
abounding crisscrossing lines, "speaks for itself' after all.

A

Bo---------o--------oC
v

The editors' would "like to have your explanation, a legend that
reconstructs every ·single. thought Schwarz had when' working out his proof.
You could e.g. start, as Schwarz did, by saying: "Let Al be the
reflection of A in Be "
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The mathematician Leopold Fejer (1880 - 1959), while he was a student
in Betlin. and attended Schwarz's seminar, discovered a very 'elegant solution
to Fagnano's theorem. Inspect Fejer's sketch on page 2. . Then tell whether
you can recover his proof before reading further.

Consider an arbitrary triangle UVW with U on Be, V on CA, W
on AB. Let U' U' , be the images of U by re.t1ection in CA, AB,
respectively.

Then

UV + VW + WU =U' V + VW + WU"

which is a path from U' to
and W. Su~h a path from U'

v' " usually a broken line with angles at V
to ·U" is minimal when it is straight.

Hence, among all inscribed triangles with a given vertex U on BC,
the one with smallest perimeter occurs when V and W lie on the straight
line U' U.. , . In this way we obtain a definite triangle UVW for each
choice of U on Be.

The problem will be solved when we have chosen V so as to minimize'
U' U' " which is equal to the perimeter. Since AU' and AU are images
of AU by reflection in AC and AB, they are congruent and the angle
U' AU" equals twice the angle BAC.

Thus AU' U" is an isosceles triangle whose angle at A is independent
of the choice of U. The base U U is minimal when the eq\l~l sides are
minimal, that is, when AU is minimal.

In other words, AU is the shortest distance from the given ,point A
to the given line Be. Since the hypotenuse of a right-angled triangle is
longer than either of the other sides, the desired location of U is _such
that AU is perpendicular to Be.

Thus AU. is the altitude from A This choice of U yields a unique
triangle UVW whose perimeter is &maller than that of any other inscribed
triangle.

Since we would equally well have begun with B or C instead of A,
we see that BV and CW are the altitudes from Band C. And Fagnano's
theorem has been proved.,

'" Once you have recovered Schwarz's beautiful pro.of you will be able to
aPllraise .the . teach~r's ideas in his student's approa"ch. And to assess
FeJer's clever Innovation.
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Hans Freudenthal, mathematician, educator and the inventor of the space
language Lincos which he designed for .communication With intelligent alien
life forms, studied in Berlin soon after Schwarz had passed away, and
learned that Fejer had long ago .been Schwarz's "favourite. In those days,
narrates Freudenthal, Fejer's family name had been Weiss [German for
"white"], and so it contrasted notably with his teacher's [ttschwarz" is
German for "black"].

The story continues years later with Fejer about to visit Schwarz, who
was Berlin's absent-minded mathematics professor par excellence, after the
adoption of his new Hungarian name. Schwarz refused to admit him: "I don't
know ~ Fejer!" .

Fagnano's treatise deals with more "extremum" problems, and these are,
of course, open to alternative solutions: .

. Proble~ 1, proposed by Pierre Fermat (1601 - 1665). . In a given
triangle . ABC, locate a point D whose distances from A, B, C have the
smallest possible sum.

Problem 2. In a given triangle ABC locate a point D such that the
sum of the squares of its distances from A, B, C is as small as possible.

Problem 3. In a given quadrilateraIABCD locate a point E whose
distances from A, B, C, D have the smallest possible sum.

When Schwarz's solution came out in a volume of Jacob Steiner's (1796 
1863) collected works, .it was believed to have emanated from this great
Swiss geometer. Steiner was himself an expert in solving extremum problems.

Steiner's methods were, as a rule, pleasing to the eye, and he was not
fond of computations: . "When it comes to formulae, I· am dull." Steiner

~::~te~o~ti~t~:Sf~:~y t~~ht;~~~e~~~~~: ..p'{~bf~~~, aa~los~te~~~ Jro~~~
length such that the area it encloses is .as large as possible."

Many laws in physics can be viewed as "Nature's" response to extremum
problems. The mathematical physicist Pierre Louis Moreau de Maupertuis
(1698 - 1759), president of the Royal Academy in Berlin,elaborated a
"principle of least action" which postulated that Nature minimized "action". .

Maupertuis was, however, too vague and excessively general with his
claims re~arding the applicability of his "principle", which eventually
became hIS obsession. It led to a claSSIC scandal in Berlin, the
persecution of the dece.nt mathematician Samuel Koenig, an iniquitous attack
on Maupertuis by the witty Voltaire, and .Voltaire's banishment from' Prussia
and his royal friend Frederic II.

It was only William Rowan Hamilton (1805 - 1865) who managed to make
the "principle" precise, deriving it rigorously from Newtonian mec~anics;

the quantity "action" .is the product of the quantity "energy" and the
quantity "time". "ActionIt occurs in the celebrated formula E = hv of
quantum theory as the constant h, Max Planck's "quantum of actiont', where
E stands for Itenergy" and v for "frequency".
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Hamilton's principle, as· it is now called - especially by the Germans
elayed an important role in twentieth-century physics .after. it had been
'translated" into the language of quantum mechanics. Numerou.s everyday
phenomena are explained smoothly by the Hamiltonian principle, e.g. that
light is refracted when passing fropl one medium into a second; one of .the
principle's consequences is the .obselVation that for m()v~ng between any two
eoints in space, light Uchooses"a path which permits it to reach its
'destination" within the shortest time possible.

The mathematical shape of this extrenlunl problem is: "In a plane a line
t is given and two points, A and B, separated by t. Let v and w
be two positive real numbers. Locate a point C on t such that
AC/v + CB/W is as small as possible.'t Would you try' your skills on this
problem? .

Imagine a bath tub full of water and ·ill it a coin at point B while
you stare' from point A upon the water surface; let t be the' line on the
water surfac~ that is perpendicular to AB, and v, w be the speeds of
light in air and in water respectively" The coin will seem to be located on
the line AC (produced) rather than at B.

Stay in your bathroom for an easier extremum problem: look into the·
bathroom mirror! Can you see that the occurrence of retlexion furnishes an
argument favouring the thesis that light "wants to move" as fast as
possible?

And another extremum problem is demonstrable in the bathroom, provided
you can prepare a good soap solution and you have a piece of wire at hand.
Bend the wIre into a twisted frame of your choice. and fill the frame in with
soap film: no other surface spanned onto the frame will have an area smaller
than that you have just created. '.

Hermann Schwarz was noted for ttbeing in love· with his soap solution,
and he never ceased improving it", according to his obituarist; the
mathematician Hamel. To be sure, calculating these "minimal surfaces" is
not always simple: Schwarz hit upon complicated mathematical theorems when
doing so.

Professor Schwarz was popular with his colleagues and with his
stud~nts. He corifessed to have married the daughter of his teacher Ernst
Eduard Kummer (1810 -. 1893), as "mathematical talent is well-known to pass
from the father to the son-in-law rather than. to the sonIt; not without
adding that his "real" teacher was not Kummer, "but Weierstrass had no
daughter!"

·One of Schwarz's grandchildren was the mathematician Roland Percival
Sprague (1894 - 1967). FUNCTION has already reported about him, and this
issue contains a letter to the editor which addresses an aspect of his work.

*****



6

LETTER TO THE ',EDITOR

1 would like to offer the following comments on "The Sprague Sequence",
Shyen Wong (Aug 1987, pp 120~123):

Althqugh the approximation Tn = I 2n +!In n + 1 is closer to Sn

1than is Rn = r2ii, a better approximation would have been -I 2n + 21n n.

However, a considerable improvement can be made.

Retracing the original development· of Rn (vol 10, pt 5),

1
S =8 l' +8--n n- n-l

S2 =S2 + 2 + _I_
n n-l S2

n-1

2 '1 1= Sn-2 + ~ + -2-- + -2-

Sn-l Sn-2

2 11- 1=~n-3 + 6 + -2--- + -2--- + -2-

Sn-l Sn:2 Sn-3

and, in general,

If n = r + 2

but

so

Therefore

S2 = S2 + 2r + _1_ + _1_ + + _I_
n n-r S2 8 2 S2

n-1 n-2 n-r

S2 = S2 + 2(n-2) + _1_ + _1_ + ....+ --.!..- + _1_
~ 2 S2 S2 S2 S2

n-1 n-2 3 2

S2 =S2 + 2 +.L and 82 = 4
3 2 S2 2

:2

s: ~ 6, S~ ~ 8 and S~_1 ~ 2(11-1)

21111 1
Sn ~ 4 + 2n - 4 + 2:{i1=IJ + 2"{ii=2) + ... + g .... () + :4

. 11 1 1 1
~ 2n + 2(2 + 3" + 4 + ... + n:r!
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y
1 1 1

S=2+3+4+ + 1
n::I

234 5 A-l n

S is an approximation to the area (A)

enclosed by .y =~ and the X-axis
be~een x = 2 and x = n.

f
n 1

A= 2Xdx

=In n - In 2

n
= In 2

S exceeds A (approximately) by the sum of the areas

"triangles" on top of the curve.

SA = ~(~ - §) + ~(~ - A) + ...

1 1 1 1 1
= 2(2 - 3 + 3 - 4 +

11 1
= 2(2 - Ii)

(SA) . of the small



So

Therefore

nIl
S ~ In 2 + 4: - 2i1

n 1
~ln2+4

8

The .table shows values of Sn together with the three approximations, Rn,
Tn and. Wn (corrected to 4 dec. places)

n S R T Wn n n n

10 4.5699 4.4721 4.7065 4.5749

50 10.0839 10.000 10.1467 10.0863

100 14.2137 14.1421 14.2584 14.2155

500 31.6675 31.6228 31.6877 31.6684

1000 44.7569 44.7214 44.7711 44.7575

5000 100.0199 100.000 100.0263 100.0201

Shyen may care to incorporate Wn in her programs to reproduce the

relevant graphs.

David Shaw
Geelong West Technical School
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THE MATHEMATICSQF IMPRECISION:
FUZZyrSETS

Peter Kloeden
Murdoch University

To most people mathematics is synonymous with precIsIon and rigour, so
the title of th.is article may seem rather absurd. Indeed the subtitle
ttfuzzy sets" may even give the impression that this is going to be a
mathematical spoof. While some mathematicians still wince at the mention of
fuzzy sets, they are certainly no joke. In fact they are now the focus of
serious mathematical investigation and. are . being used extensively in
many practical engineering and managerial situations.

Fuzzy sets are the brainchild of Professor Lofti Zadeh, a .professor of
electrical engineering at the University of California in Berkeley.
Typically in many engineering problems, such as the control of a rocket or
the regulation of a chemical reaction, precise' mathematical models are used
to describe the behaviour of the system. These are usually expressed in
terms of algebraic or differential equations, which are based on well
established scientific laws, such as Newton's laws of mechanics. The
engineer solves these equations, usually on .a computer, in order to' predict
and to control t~e. evolution of the system. The advances in aerospace
technology over the past fifty years are a clear indication of the stunning
success of this methodology.

There are however many situations for which precise mathematical models
cannot be determined or, if they can be, are too unwieldy to implement. It
was to enable one to predict and to control such processes that led Zadeh to
the idea. of fuzzy sets in the 1960s. . This occurs for instance when an
engineer ·has only a rough idea of the mechanisms involved in· a proces~ or
has heuristic and often conflicting criteria for making decisions about its
operation. Consider for example a transport engineer who is to or~anize a
commuter bus service for a city, which must be cost .effect1.ve, yet
convenient and pleasant. The impression here is due to the indefiniteness
and the subjectivity of the task; It has nothing to do with randomness in
the probabilistic sense. Rather it. is the kind of imprecision .involved' in
deciding, for example, if a woman is beautiful or, In a less 'emotional
context, if a number is much larger than 1; there appears to be no clearcut
way of deciding. This contrasts with the impression of not knoWing whether
a fair coin will come down as ahead or a tail· when tossed. ExclUding
absur~ situations such a~ its. being s~cked u.p into space by a UFO .or t~e
less absurd but rare sItuatIon of Its landIng on Its edge,' the cOIn will
land either as a head or a tail, and there is an equal probability of it
bein~ one or the other; one simply cannot say in advaJ;lce which' of the two
speCific alternatives will occur. .
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Before seein~ how Zadeh managed, without resorting to magic, to give a
precise mathematIcal meaning to imprecision, that is how he 4efined fuzzy
sets, let us consider the more conventional mathematical sets. These are
specified either by listing each element in the set, for example with the
set

A ={1, 2, 3, 4} , '

or by giving a mathematical rule that clearly indicates which elements are
in the set and which are not, as for example with the set

B = {x: x > 1} .

The two sets A and B here are subsets of a larger set R, the set
of all real numbers. Although R may itself be considered a subset of some
other I.arger set, it often suffices or is convenient to restrict attention,
in these cases, to the set R, which can be represented by a straight line
with each number a point at the corresponding distance from the origin in
either the positive or negative direction.

GIIIIIll-=-ImI---Il----..I__IIllIlIIlIIISI:Il..IIII!IiIlII:-__I....-Il2SIII--_ R
-2 -1 0 +1 +2

We could then indicate a subset of this line by marking in black (or
boldface) all those numbers which belong to this subset and in white (or
light dashes) all those numbers not in it, that is all those numbers in the
complement of the subset. With the subset B from above we have

Be . B

---------------------------~-----~(IIIIIIIIIIIIIIIIIIII~
o +1

where BC denotes tne co~plement of the subset B, so

BC = R \ B = ·{x: x :s 1} .

Instead of using a colour or typographical code to indicate the points
belonging or not belonging to a given subset we could just as conveniently
characterize the set in terms of the graph of a function, called the
characteristic function of the subset, which takes the value 1 at each
point belonging to the subset and the value 0 at each point not belonging
to it. For a subset B it is usual to denote the characteristic function
by xB' so

{

1
Y = xB(x) = 0

if x E B

if x fl: B .
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. Hence for the particular subset B ={x: x > I} we have for the graph
of its characteristic function

y

1

x

Note that this graph bas a jump or discontinuity in it at . x =1, a
bounda.ry point between the set B and. its complement set Be. (The graph
may not be easy to draw at all; consider the gJ;aph of the characteristic
function of the· subset Q of aU of the rational numbers in R.)

The characteristic function of a subset is so called because it
characterizes that subset; the value that it takes at each point of the real
line indicates the degree of membership of the .point in .the .subset. Here
there are just two alternatives, either the point is in the sub~et (and has
membership degree 1) or it is not in the. subset (and its membership degree
is 0).. Abstracting, as .is a feature of modern mathematics, we can thus
think of the subset of real numbers as a characteristic function. Thi~ may
seem artificial and useless, but. is the key to Zadeh's concept of a fuzzy
set; he very simply allowed points to have an intermediate membership grade
between 0 and 1, as· well as 0 or 1, with these intermediate grades
representing "partial" membership. Thus according to zadeh a fuzzy set of
real numbers is characterized by, and may thus be thought of as .being
equivalent to, a function

f: R ~ [0,1] ,

with the value f(x) of the function at· a point x E R indicating 'the
degree of membership of the point x in' this fuzzy set. Consider . for
example a fuzzy set of real numbers much greater than 1, that is the set .

{x: x» 1}

This .set doe$ not make sense as a conventional subset of R as the
meaning of » is imprecise. It does however make' sense as a fuzzy set.
In fact there are many such fuzzy sets, depending on how we specify the
membership function. Certainly we would ex!'ect that .f(x) = 0 for x ~ 1
for all of them and then for f(x) to Increase slowly or at least not
decrease, towards 1 as x gets larger and larger.
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Two specific examples are

. { 0 if x ~ 1
(i) t( )Y = x = 1 _ e(-x+1) if x > 1

1

1000
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and

{

0 if x:s 1 .

(ii) Y =f(x) = ~(x - 1) if 1:s x :s 100

1 if x ~ 100

1 100

In choosing a specific membership grade function, that is a specific
fuzzy set, we are in effect specifying what we mean by a number's being
much greater than 1. In many cases it is. not necessary to specify a
particular fuzzy set; often general,. qualitative, facts can be deduced f.rom
the general <J.ualitative properties that such a function must satisfy. In
other cases, If numerical or quantitative resuIts are required, then the
engineer or manager must specify a particular membership function; this is
usually done on the basis of past experience and obselVations. (This is in
fact what must be done when nonfuzzr or "crisp" mathematical or
probab.ilistic models are used;' it. is often called t'parametrizing" the
model. In doing this it is important to know that small changes in the
model parameters do not .drastically change the behaviour of the model
system, that is the model is a robust one. For this reason a gene.ral
qualitative investigation is important before numerical calculations are
undertaken).

Fuzzy sets need not be defined only on the set of real numbers R. In
general, a fu~ set can be defined on any .set of elements S and consists
of a membershIp function

f: S ~ [0,1]

which assigns a degree of membership f(s). to e·ach element s e- S. In ·our
example above S = R, although it coul~ be the plane R2 or
three-dimensional space R3

, or even something nonmathematical .like a
collection of Year 12 students. To see where the name "fuzzy" comes from,
let S = R2 and consider a colour coding scheme for the membership grade,
with black for 1, white for 0, and rrogressively liBhter shades of grey as
the membership grade decreases from to O. A pIcture in the plane could
typically show a black core, representing full membership, surrounded by a
fuzzy grey boundary region consisting of points of intermediate membership
values, and finally a pure white region consisting of points of zero
membership grade.
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As you may already have .suspected, fuzzy sets are very useful in
pat~e~ recognition, for exam{'le wher~ a photographic signal from a
satellIte has to be converted Into a vIsual pIcture. They are also used
extensively in robotics and in management decision making, where the usual
dichotomous TRUEIFALSE logic is limited and various intermediate grades of
trutn. or falseness are useful. (This is what mathematicians c~ll "fuzzy
logic", quite different from the meaning implied in everyday speech!). For
instance in cost accounting, all .unstarted jobs are given value 0,
incompleted jobs value 1/2 and completed jobs value 1. Possibly one of the
,most -impressive uses of fuzzy sets in decision making is in the northern
Japanese city of Sendai, where the entire underground subway rail system is
run by computers· using fuzzy decision-making algorithms.

Unfortunately, it would take too much time and advanced mathematics to
go into any detail on the above applications of fuzzy sets. To end, I shall
list a few elementary set theoretic 'operations using fuzzy sets. For
simplicity these will all be defined on the same base space R. The
interested reader may wish to verify them in terms of the usual crisp sets,
using the characteristic functions of these sets as their membership grade
functions.

(i) union h = fvg hex) max {f(x), g(x)}

(ii) intersection h = fAg hex) = min {f(x), g(x)}

(iii) complement f: f(x) 1 - f(x)
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Incidentally, the empty fuzzy set e has zero membership. grade for all
points:

e(x) :: 0 for all x.

We illustrate the operation "union":

Let A and B be two subsets of S, f the characteristic function of A
and g the characteristic function of B. We have to verify that
hex) '= max{f(x), g(x)} is the characteristic function of the union A u 'B.
Let c belong to A u B, then c belongs to A or c belongs to B. It
follows that either fCc) = 1 or g(c) = 1 (or both), so h(c) = max{f(c),
g(c)} = 1. If c does not belong to A u B, then c belongs neither to A
nor to B, consequently f(cJ = g(c) = 0; in this case h(c) = max{f(c),
g(c)} = O. Therefore hex) is the characteristic function of the union
Au B.

*****

TWO METAPHYSICIANS ID TWO VIEWS

My soo, so long as you are .engaged in studying the Mathematical
,Sciences and Logic, you belong to those ·who go round aQout the palace in

'search of the gate. Thus.· our Sages figuratively use the phrase: .ttBen-zoma
is still outside." When you understand, Physics, you have entered the
antechamber; and when, after the study of Natural Philosophy, you master
Metaphysics, you have entered the innermost court, and are with the king ~n

the same palace. - Maimonides (1135 - 1204; The Guide for the Perplexed)

*****

Philosophy, that leao'd on Heav'n b~fore,

Shrinks to her second cause, and is no more.
P1).ysic of Metaphysic begs defence,
And Metaphysic calls for aid on Sense!
See Mystery to Mathematics fly! -

Pope (1688 - 1744; The DUDciad)

*****
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THE AVERAGE .ACHIEVED
IN TOSSING 1WO'DICE

G.A. Watterson
Monash University

Over· last Christmas, I played an enjoyable game called "Escape from
Colditz". In the game, you toss two dice. If you get a pair, you get
another toss. If you get another pair, then you get another toss again. And
so 00. 'My son asked, "What is the average accumulated total?" .Here is my
attempt to find out.

When you first toss the two dice, 'the probability th~t you get a pair
of "l's" is 1/36, because assuming each dice has .probability 1/6 of turning
up 'I1", and assuming the dice are independeot in their behaviour, then

Pr (both dice fall "1 It) = Pr (first dice falls "1") x Pr (second dice
falls t'l ")

= 1/6 x 1/6 = 1/36.

As. there are 6 different ways of getting a pair with two dice (i.e. both
"l's" or both "2's.i' or. ... or both "6's"), then the probability of ~etting
any pair is 6 x30 = 1/6, and theprobabiIityof not getting a pair IS the
complementary amount 1 - 1/6 = 5/6.

Suppose you do get a pair. Then the average total of the two 'dice would
be 7, because the results 1+1 = 2, 2+2 = 4, 3+3 = 6, 4+4 = 8, 5+5::: 10
6+6 = 12 do average at, 7:

Average(pair case) = 2 + 4 + 6 68 + 10 + 12 = 7.

On the other hand, suppose you do not get a pair. Then the average
total would be the average of 30 possible results such .as 1+2 =·3, 2+1 = 3,
1+3 = 4, 3+1 ~ 4, 5+6 = ~1, 6+5 =11. Again the average is 7.

Average (no pair case) =3 + 3 + 4 + ~O+ + 11 + 11 = 7.

(See if you can check this out.)
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Suppose you did not have another toss whenever you obtain a pair. Then
one way that you could work out the average total would be py the formula

Average Pr .(pair) x average (pair case)

+ Pr. (no pair) x average (no-pair case)

1/6 x 7 ~ 5/6 x 7

7. (1)

Of course ihere are many other ways of working out this answer, too.

But if you are· allowed repeated tosses whenever a pair is obtained, let
us write ~ for the average accumulated total. .If we start by_ tossing a
pair, we average 7 for that toss and, as we are allowed to continue tossing,
an extra average amount jJ is added to this to allow for the results of
further tosses.

Average (pair case) 7 + ~.

t
1;

On the other hand, if we first do not toss a pair, then the average
total is 7 without any extra allowance for further tosses. Thus instead of
(1), we get

Pr (pair) x average (pair case)

+ Pr (no pair) x average (no-pair case)

1/6 x [7 + jJ]

+ 5/6 x 7,

7 + (1/6) x jJ.

This equation can be re-arranged to say that

(5/6) jJ = 7,

that is,

jJ =42/5 = 8.4.

You average 8.4 for the accumulated total, when you toss two dice and

are allowed further tosses whenever you get a pair.
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DESIGN FOR A" PICK-UP

J()hn Barton
N. Carlton.

A record player of conventional type, Fig. 1, has a pick-up arm PKN·
pivoted at P with a needle at N tracking the record groove. . Usually the
pick-up cartridge KN is off-set at an angle {3, as shown, to the line
PN, so that when the needle N sits in the groove, the vertical plane
containing the longitudinal axis of the cartridge "KN is. as near as
possible to being tangential to the track of the groove at the point of
contact.

--- - -+-----+

......---h )II

Fig. 1

Our design is to show how to calculate the position of P and the
(angle p to get the best approximation to this tangential condition for all
the grooves across the record. It will become clear that, with the
conventional type of pick-up arm, we cannot fulfil the .condition exactly for
all grooves. There will always be some· "tracking error" for most of the
grooves, that is, a non-zero angle between. the vertical plane KN and the
tangent to the track of the groove at the point of contact. The larger this
angle the greater is the stress established at the contact surfaces of
needle and record during the runiting of the record,. and consequently the
greater the wear on the equipment. This· is one reason why we try to keep
the angle as small as possible.
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THE TRACKING ERROR

This can be taken as the variation, across the record, of the angle
ONP, Fig. 2, which we denote by 4>. For if if> were constant across the
record, we ·could then choose the angle f3 equal to .';11" - if> so that, at all

times, KN is perpendicular to the radius. ON, in which case KN is very
nearly tangential to the record groove at all times.

Fig. 2

h p
r----------------~..o

N

Bear in mind that a groove is not exactly circular, but is an

arithmetical spiral whose polar equation is r· =k(80-8), t where k is a

very small constant and 8
0

a large one. The "pitch" of the spiral, 211"k,

is the change in the radius r for one revolution and is so small relative
to r that the spiral can be re~arded as having constant radius, that is,
as being for practical purposes a clIcle. For a modern record, spinning at
33';' rpm, the pitch. is of the order of 1/10 mm.

R~ferring to Fig. 2, we now have, by the cosine rule,

cos ~
r 2 + c2 _ h 2

2rc = g(r) ,say,

for a s r s b, where a, b are the respective radii of the innermost and
outermost record grooves, c is arm length. PN, h is the distance between
the turntable axis an.d the pivot axis of the arm.

tIf ° is the centre of the record and t a fixed ray coplanar with
the record and emanating from 0, then a point P on the record is said to
have polar coordinates (r, 8) if r is the distance· between ° and P
and 8 is the angle between t and OP, measured counterclockwise from
t.
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We wish to make the variation of g over the domain (a, b) as small
as - possible, so that the corresponding .variation of q, is likewise small.
Writing

r c2
- h2

g(r) = 2C + 2cr (1)

we can easily sketch graphs of g(r) .against r for various -choices of c
and h. Such a family of graphs is shown In Fig. 3.

g(r)

o .

k

I I

-~-
I N

at

h<c

h=c
h>c

r

Fig. 3

If h =C, . g(r)
a ~ r s b.

varies linearly across the record, that is, for

For h > C, g(r) increaseS steadily with r, the total variation
g(b) - g(a) increasing as h . increases. This is clearly a state of
affairs to be avoided, as compared with the case h = c;

For h < C, the graph suggests that it may be possible so to choose
h, given c, that the varIation of g(r) for a s r s b can be minimised.

To avoid tedious calculations, we shall assume that the curve ANB, for
which g(a) = g(b), is the best one available. For this, we have

a c2
- h 2 b c2

- h 2

2C+~=2C+ 2bc

ab = c2
-. h2

•
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This allows us to calculate h from the known design values of
a, b, c. As an example, for a typical record and pick-up, we have

a = 70 m.m, b = 145 mm, c = 225 mm,

so that h =201 mm approximately.

. That is, the pick-up is to be so mounted that the needle point overlaps
the turn-table centre by 24 .mm.

For this .case g(r) has its minimum value at N, wher~ g' (r) = O.
Differentiating (1), we have

g'(r) =.!... _ c
2

- h
2

=.!... -.~ ,
2c 2cr2 2c 2cr 2

.!.
so that g' (r) = 0 for r = (ab)2 ... "I, say, the 'geometric mean of a, b.

.!.
At this point g(r) = (ab)2Ie = "flc,

radius, g(a) = g(b) = (a + b)/(2c) =. a/c,
arithmetic mean of a, b.

and,

where

at the extremes of the

Q = ~(a + b) is the

Thus the maximum variation of g(r) is (0 - -y)/c.

A reasonable choice for the "best" value of

cos tP = cos(~1r - (3) = sin (3, to keep the variation. of

record small, is the value k as shown· on the graph, where

1

k " ~g(a) + g«ab)2)}

= (a + -y)/(2c).

g(r),

g(r)

that is,

across

of

the

This allows us to calculate the design value for the angle /3.
Referring to the above typical values we have

1
a = 2(70 + 145) = 107.5

1:.
'Y =: (70 x 145)2 ='100.75

k = sin f3 =. 208.25/450 = 0.4628

fJ =27!0

approximately.
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Note that, with < this choice of design, there are two radii (grooves) on
the record where the tracking error IS zero. Between these radii the
tracking error has one sign, outside them it has the opposite sign. It is a
simple matter to calculate from (1) the values of these radii, by
substituting for g(r) the value (Q + 7)/(2c). This gives

Q + 7= r + ablr

and, using the above Dl)mbers, we find the values of r to be 87.8 mm, and
130.4 mm approximately.

A little further arithmetic, not given here, will give the tracking
error, that is, the variations in 1'1r - 4J as between· the zero value at these. 2

radii and the non-zero values at the eXtreme radii a, b on the one hand
and the radius 'Y on the other.

This article is based on an actual .pick-up made by the writer, about
1938, from part of a bicycle pedal, some pieces of brass channel and one or
two other odds and ends. As well as the cartridge, of course. The device
is still working well.

*****

ACTUARIAL PROBLEMS OF 1693 WERE:

"First, In that the Number of the People was wanting. Secondly, That
the Ages of the People dying. was not to be had. And Lastly, That both
London and Dublin by reason of the great and casual Accession of Strangers
who die therein, (as appeared in both, by the great. Excess of the Funerals
above the Births) rendered them' incapable of being Standards for this'
purpose; which requires, if it were possible, that the People we treat of
should not at all be changed, but die where they were born, without any
Adventitious 11l:crease from Abroad, or Decay by Migration elsewhere.

Halley (1656 - 1742; An Estimate
of the Degrees of the Mortality of Mankind)
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BUILD YOUR OWN TECHNICAL
WORD PROCESSOR

ORBYOTWP

Jandep

In a l'revious article1 we described how to combine EDLIN and DOSEDlr to
make a mIniature word processor for the IBM PC and compatibles. DOSEDIT
allows you .to save in memory a stack of DOS commands which can then be
inserted into a batch file by means of EDLIN. The 'DOS commands' need not be
real ones at all so· you can use the same technique to write a' letter if you
like. Now we would like to extend this notion a little further so that we
have a miniature technical word processor, Le. a word processor capable of
incorporating mathematical symbols, foreign (or rather non-English) words and
some simple diagrams such as histograms. Anyone studying mathematics or
science should be interested in such a word processor .- they are sometimes
called mathematical or scientific word processors. Archimedes may have
written his mathematics in the sand but we guarantee that a floppy disk is
more portable and travels better in the mail.

Your IBM PCIPS or compatible has quite a number of mathematical symbols
and Greek letters tucked away out of sight and the first thing .to do is to
see what .is . available. To.see .th~se characters on your screen hold down the
Alt (Alternate} key and type -in the appropriate number on the right-hand
numerical keyboard. (TypIng the. numbers with the central top number keys
will not do the trick.)

To start with; try the following numbers in combination with the Alt key
to see on your screen (whenAlt is released) the symbols indicated in the
table below:

Number 224 227 228 229 230 235 236 239

Symbol Q 1f L a JJ S n

1 See Function Vol 11, Part 5, 1987.

2 EDLIN is the line editor provided with DOS, DOSEDIT is a famous
public domain program. _
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To see the full range of mathematical symbols you should try out all of
the numbers between 224 and 253. There are a few others at 124, 164 • 167
and 171 • 175, for example, which might-also be of interest. To. get an
integral sign experiment wIth 244, 245, and 124. Unfortunately, there seems
to be no logic~l arrangement about the association between number and symbol.

Sometimes a mathematician or scientist needs to use some non-English
letters and a similar trick will produce some of these on the screen. The
relevant numbers are mainly those between 128 and 163. Here are a few
examples:

Number

Letter

128

G.

130 143

A

168

(Linguists should also be interested in this aspect of the extended character
code.) The characters supplied are those used in modern European languages;
there are no Russian, Gothic, Hebrew, or Chinese characters.

There are also some characters which could be useful for producing big
brackets, histograms' and other simple diagrams or 'boxes' for enclosing text;
for these the numbers range between 169 and 223 mostly. Here are a few of
these items:

. Number

Character

187

11 .

206

JL
lr

218 '. 179 193

.1

You may be able to find a table showing aU the IBM character codes in
your .textbook on BASIC ·or in your printer manual, or you .could construct your
own on screen with the following True BASIC program:

For n = 128 to 254

Print n; chr$(n),

Next n

end

To .print the table produced by this program on the screen requires the
True BASIC command RUN; if you wish it ,printed to your printer use the True
-BASIC command ECHO followed by RUN. This may be the quickest way to find
out whether your printer can copy the symbols you see on your sc~een.

Having found out how to display the hidden characters on the screen we
can now use EDLIN and DOSEDIT in combination as before to produce a
mathematical document. Let DOSEDIT take over by typing in

DOSEDIT

and pressing Enter.
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Then enter the following text line by line:

The formula for the

arithmetic mean is

p. ='ZX/n

and for the variance is

a
2 = 'ZX

2/n

where x =X - JJ

Ignore aU the grumbling from DOS about 'bad' commands; each. line will be
saved on the stack by DOSEDIT even if DOS gets furious. Incidentally, the
exponent in the second last line is at 253.

Now start to make your document file by entering

EDLIN math.doc

and

I

to go into input mode. Use the cursor keys to pull down from the stack the
lines stored there and finish with

etrl Z

(hold down etrl and press Z) and then type

EXIT

followed by Enter.

Your mathematical document will be saved on disk. Notice that as we are
discussing only text or document files here we use the extension .doc for the
filenames. By using the TYPE command you can subsequently read your document
on the screen. The DOS command would be, in this case,

-TYPE math.doc

since the filename was math.doc.

If you' want your mathematical document to be printed you may have to
adjust your printer to graphics mode; on an Epson LX86, for example, this
Iueans setting the dip switch 1-2 up (for on) but see your printer manual for
the dip switch settings. OthelWise, if your LX86. is set for standard
printing . you will gel' various italic letters being printed in place of the
graphics characters you. see on your screened document. To print your
document (assuming you have a suitable printer) use: COpy math.doc PRN or one
of the alternative DOS commands for printing. Some IBM PC printers do not
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display. chara.ct.ers as thel· appear on the screen; you· must experiment or
consult your printer manua.

Tty .some furth~r experiments .with the characters· - for example, prepare
a file (call it fame.doc perhaps) with the following content:

Fran~ois Viete (135,138)

L'Hopital (147)

Godel (148)

Dieudonne (130)

P6lya (162)

The numbers on the right are there to help you find the right foreign
language letter - there is no need to put them in the document. The names
are all those of famous mathematicians.

Or you might like to try a simple graph, for example, try to make a
graph like this (the numbers are character codes):

~
o

(179, 196, 193, 248)

OUf miniature technical word processor is qui~e limited in its
capabilities and certainly does not have all the features one would expect to
find in a fully developed word processor. From a mathematical point of view
one of its major defects is that it does not allow for the inclusion of both
italics and mathematical symbols in the text - you may have either, according
to the setting of .your printer, but not both. Most· mathematicians would
regard this as a fatal flaw and a thoughtful glance at any well-printed
mathematical text should tell you why.

Some word processors exploit the IBM extended set of characters we have .
been examining in order to make available a limited handling of mathematical
and foreign language text.. A notable example is PC Write in its latest
version (2.71). As PC Write is a well-known and widely used shareware
product you should .be able to get a free copy from a fI~end or User Group.
It has many powerful features far: beyond the capabilities of .our miniature
technical word processor and provided. your mathematical requirements a.re not
very great you might be very happy with the facilities provided by PC Write.
The manual obtainable on registering is very extensive and mIght provide
sufficient instruction for someone just beginning to use a PC and thinking
about the need for a word processor. The method of entering the
mathematical characters is, however, not much of an improvement over the
method used by our miniature technical word processor and the ,range of
mathematical and· foreign language fonts is just as limited. If you Intend
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to be a professional mathematician, scientist or engineer you should
consider going straight to a fully-fledged technical, word processor.

There are now many technical word processors and' the area is one which
is rapidly developing. One place you can find up-to-date information about
technIcal word processors and their capabilities for typing mathematics is in
the Notices of the American Mathematical Society where there is an occasional
series of articles edited by Richard S. Palais devoted to this subject. The
articles have appeared over the last two or three years and are still
continuing. Two recent articles giving a list of the capabilities, or lack
of them, 'of about ,twenty technical word processors on the market and, in the
later article, offering reviews of each are in the February and Afril 1987
issues of the Notices, pp 262 - 281 (February) and pp 462 - 49 (April).
Other sources of information about this variety of software are unfortunately
not very well informed at this time.The AHS is fortunate to~~ve the active
co-operation of the Boston PC User Group.

The oniy techn~cal or scientific word processor we know of for which
there exists a ,public domain version is Chiwriter3

- often rather
misleadingly described as a 'multifont' word processor in recognition of its
many' fonts but ignoring its special relevance to scientific and mathematical
text. Because . it is marketed through the public domain user network you
should be able to get it from a scientific PC user friend or a science-minded
User Group. The public domain version comes ready equipped with an on-disk
tutorial which is an excellent electronic first lesson in - word-processing in
general as· well as a training for the use of Chiwriter in particular. The
tutorial does not, however, demonstrate all the Chiwriter· facilities - for
this you really need the manual obtainable on registration.

PC Writ~ has been advertised in the popular PC ma~azines for some years.
Very recently we noticed, for the first, time, a simIlar advertisement for
Chiwriter. Amongst all the high"'powered advertisements ,. appearing in such
magazines these. small ads are not easy to spot so you need to look carefully
if you want to know about current .prices for registration, supplier's address
and other matters for these two. word-processors. Alternatively, the public
domain version of each is accompanied by an explanatory document providing
such details.

Time to own up! This paper was composed" using Chlwriter which is also
used to print Function. All examples, however, were given a trial run using
only EDUN and DOSEDIT. Equipment used included an IBM PC clone with CGA and
an Epson LX86 for draft versions and a Hewlett Packard Series II Laser Jet
for the final version.

Anyone haVing information about· any other should please let us know.
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PROBLEM SECTION

It is a well known fact that if 0 < q < 1

then 1 + q + q2 + ... qn tends to Jq as n -+ "'.

Let {an} be any sequence of~umbers that converges to q. Show

that the limit· of the sum does not change if we replace q by

an' q2 by an.an-l and so on, qn we replace by an·~n-1 .a1

12.1.2

Namely, show that

1 + an + an·an-1 + ... + an·an-1 ... a1 tends to

Find the angle x as shown in Fig. 12.1.2.

1
r:q as n ~ co.

Fig. 12.1.2

Both problems were passed to FUNCTION by Dr.F.C. Klebaner
of Monash University.
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TWO NORWEGIAN UNIVERSITIES D TWO VIEWS

I have often set myself problems beyond my powers. I have nevertheless
arrived at a large number of' general results which throw a strong light on
the nature of those quantities whose elucidation is the object of
mathematics.

Niels Henrik Abel,
Kristiania University (Norway).

We have not succeeded in answering all our problems. The answers we
have found only seIVe to raise a whole set of new questions. In some way we
feel we are' as confused as ever, but we believe we are confused on a higher
level and about more important. things.

Posted outside the mathematics reading room,
.Trom~ ·University (Norway)

PERDIX

Australia is host to the International Mathematical Olympiad (IMO) in
the bicentennial year, 1988. Despite the distance of Australia from many of
the countries participating a record· number 'of .teams is expected .to compete
this year. The IMO takes place in Canberra in mid-July, ont; of the official
bicentennial events .for 1988.

Teams are due to arrive in Sydney on July 9 and .after a :ouple of days
rest and a welcoming function, they travel to Canberra on Mc,nday July 11.
The first .IMO paper, consisting of three questions with 4! hours allowed for

2

their solution, is~· tackled on July 15. On the next day the second paper of
three questions, also taking 4-!- hours, is tackled. Medal awards are made

2

and results are announced on Wednesday July 20. Perdix will be there to
ensure that all goes smoothly.
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Each team that participates is accompanied by a team leader and· by a
deputy team leader, and may offer a maximum of 6 questions to be considered
as possible questions for selection for the Olympiad competition. If 50
teams compete then this may r~sult in 300 questions being offered from which
the final 6 are eventually selected for the ~o IMO papers. The job of
selection is a formidable one.

The team leaders. are separated from their teams shortly after arrival
and it is their task to select these six. questions. The team leaders will
not be speaking 50 different languages, but most of them will be fluent only
in their native language, and the job of ensuring clear communication will
be as difficult as that of judging between the merits of the _300 questions.

This task has to be completed sufficiently before the day of the first
competition paper, taking place only six days after the arrival of the teams
in Australia, for there to be time for the papers to be printed, and for
each paper to. be translated into the appropriate language for each team.
The translations have to be carefully discussed to ensure that they. are
logically correct and are written clearly and idiomatically. This is a vast
task for which a large number of Australian mathematicians have been
collected who combine a knOWledge of the languages concerned with their
understanding of the mathematics.

Equally difficult is the marking process once the competition is .over.
Each team's papers are first marked by its leaders. Then it is necessary to
try and ensure that t.he same criteria are being applied to all candidates.
Interpreters are again required to make the discussions (and disputes)
possible.

It might perhaps surprise some to hear that it is difficult to agree. 'on
a mark for the solution to a mathematical. problem. If the solution is
fully correct, .and this is not questioned, .then of course the mark to be
given is not too. difficult to decide. But even then there is a problem.
Some correct solutions are long-winded. Some seem to have been produced
without true understanding. Others are elegant. Occasionally a solution
involves insight that .none of the leaders had expected:... a totally new and
beautiful solution has been discovered. Are those solutions all worth full
marks?

When the solution is not complete, then the mark to be offered is much
harder to agree on. Team leaders /argue "for their own teams, which ensures .
justice is done. Has a convincing case been made that what a candidate
wrote was on the right track? These and- similar questions are argued until
the small hours of the morning: the time is so short (fortunately!), the
results have to be announced four days later!
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Let us now turn to a problem I set last year, Problem 11.3.1 (page 96,
Volume 11, pt 3). The problem is :

If a and b are positive and a + b = 1, show that

A solution involving the Mean Value Theorem, of the calculus, produced
by Dr.J.G. Kupka, was printed in the next issue (p. 128).

The Mean Value Theorem is not a result studied in most high schools,
and when I set the problem I was hoping for a solution not involving
the calculus. One has not been forthcoming. So I now offer one.

Showing that

(a +. ~)2 + (b + ~)2 ~ ¥ is equivalent to

showing that

i.e.

i.e.

If

4 ·14 1
(3 - a) (4ii - a) ~ (6 - b) (b - 40)'

1a = b = 2' then we get equality.

(1)

Otherwise, without loss of generality, we can assume 0 < a < b < 1.

Then

·4444
3 - a > 6 - b, (because a > 6 and -a > -b)

hence

(2)
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Also,

(3)

because it can be rearranged to assert that

Le.

1 > 4ab, since a + b = 1

i.e.

1 > 4a(1 - a)

Le.

(2a - 1)2 > 0, which is so since a' ~ ~-.

Hence the result (1) follows from (2) and (3), the factors in (1) being the
terms considered in (2) and (3).

PERDIX · A WOMAN?

Robert von Ranke-Graves wrote from Deya, Mallorca, Spain: "Perdix
(<partridge» was the name borne by the sister of Daidalos, the smith". The
writer is known to have composed a .treatise with the title ."The White
Goddess".

(Ed.)
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