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THE FRONT COVER

In this final issue for this yeal; we· have an interesting
article from John Burns and Laci Kovacs on the bisection of a
quadrilateral. It is· the first full account dealing with all the
special cases (one is illustrated on the front cover) - that, so far
as we can discover, has been printed. There are many natural
problems of a similar kind. In the following two, a construction
for the. bisecting lines, in general, cannot he given; but it can
be proved that the required bisecting lines exist. The first
problem is : if you have two pancakes in a plane, possibly
overlapping each other, is it possible with a single straight line
cut to divide each pancake into two equal parts. This is called
the pancake problem. The second problem is the ham sandwich
problem: if you have two slices of bread and a slice of ham
between them can- you, with a single plane cut, divide each piece
of bread and also the piece of ham into two parts. of equal volume?
The answer is 'Yes' in each case. Food for thought while you eat
your Xmas dinner!
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BISECTION OFAQUADRILATERAL
BY A LINE THROUGH A VERTEX

Joe.Burns
Australian Defence Force Academy

Campbell, Australia 2600$

I.G.Kovacs
Australian National University

Canberra, Australia 26010

One of the Hungarian mathematical competitions in 1978included the following problem:

Given a convex quadrilateral, construct a line throughone of its vertices so as to cut the quadrilateral intotwo parts whose areas are equal.

This problem appears in textbooks on elementary Euclidean geometry(e.g. [1]) and, with the restriction that the quadrilateral. beconvex, is simple enough to· solve.

However, as contestants in a mathematical cOlnpetition areencouraged to generalize, one should inquire whether the solutioncal) be adapted to deal with non-convex quadr~laterals. Whilesome difficulty could be expected in ensurIng that all cases areconsidered, it came as something of a surprise to us that in twocases a completely different approach was required.

J.e.Barton of the University of Melbourne has drawn ourattention to [2] where, on page 77,. under the general heading of"Area constructions by eqUIvalent triangles or parallelograms" wefind:

The bisection of a triangle by a line drawn from apoint in a side. The bisectIon of a quadrilateral bya line from a corner ...is a nice extension of this.

This reference to a "nice extension" may imply that the solutionis straight-forward; as indeed it is when the quadrilateral isconvex. On the other hand, the choice of the adjective "nice"rather than, say, "simple" or "routine", may have been intended asan indication that the extension is not without special interest
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of its own and as an invitation to the reader to pursue the matter
further. If this was the case, the authors of the Report at
least provided a clue, for, having referred as above to the
bisection of the quadrilateral, they went on to remark that

It is interesting to note that the obvious extension,
the bisection of a triangle by a line through an
external point, is specialist work, and hard at that,

It turns out that in order to provide a complete solution of the
quadrilateral proplem we need to be able to carry out the
construction of a line through an arbi trary point to bisect a
given triangle. Although a solution of this latter problem was
eVidently familiar to the authors of the Report, we have not been
able 'to find one in print and the problem is discussed at some
l~ngth in [3]. In the relevant part of [3]. it is also required
that a particular vertex of the given triangle lie in a triangular
(rather than a quadrilateral) portion of the bisection. and that
the bisector not go through this vertex. The number of such
bisectors through a given point of the plane may be 0, 1, or 2.
and [3] gives a construction for them.

Even if we assume the constructipn for bisecting the
triangle. the original quadrilateral problem has more to it than
appears at first sight and it seems worth while to offer a
complete solution.

We shall begin wi th a construction which is adequate for a
convex quadrilateral and then explore the possibilities of
applying it to non-convex quadrilaterals. Let the quadrilateral
be ABCD with vertex C opposite vertex A and let A be the
vertex through which the required line is to be drawn. In the
first instance we distinguish four types of quadrilateral: (A)
convex qudrilaterals and (B) non-convex quadrilaterals divided
into three classes according to the position of the reflex angle
relative to the vertex A: (Bl) opposi te A, (B2) at At (B3)
adjacent to A. Later it will be necessary to divide each of the
classes (B2) and (B3) into three sub-classes.

We note first that if the diagonal AC bisects the diagonal
BD, then AC bisects the quadrilateral.' As shown in figure 1,
this resul t holds for convex quadri laterals and for non-convex
quadrilaterals when the reflex angle is either opposite to A or
at A. When the ref.;lex angle is adjacent to A (B3). it is
impossible for AC to bisect BD. In what follows, it will be
assumed that the mid-point H of BD does not lie on AC .

The construction for the cO,nvex quadri lateral is of course
well-known. It is set out now in a form which allows it to be
used in other cases as well.
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Figure 1.
Draw a line through 'the mid-point M of the diagonal BDparallel to the other diagonal AC to meet one (and, as H --isnot on AC , only one) of the segments BC, CD in a point P; andname the vertices in such a .way that P lies on Be (in fact,strictly between B and C). Then the line AP is the requiredbisector provided the segment AP lies wholly within thequadrilateral ABCD and is the only part of the line to do so.The construction is illustrated in figure 2 for cases (A), (BI)and (B2). Case (B2) , in which the reflex angle is at the vertex

A , is divided into three categories (B2a) , (B2b) , (B2c) ,according as BP is greater than, equal to, or less than BD'where D' is the point where DA cuts Be.
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In all these cases, the construction produces a segment AP
which lies wholly within the quadrilateral and, as" we now show,
divides the quadrilateral into two parts of equal area. Let the
I ine through D parallel to AC meet the side BC produced
beyond C in E. Since I1P and DE are parallel and 11 is
the mid-point of BD, BP = PE and it follows that area ABP =
area APE. Also area ACD = area ACE for the al ti tudes
corresponding to the common side AC of these triangles are
equal, being the distance between the parallel lines DE, AC •
In all cases (A), (B1), (B2a), (B2b), (B2c) in figure 2 we now
have

area ABP =area APE

- area APC + area ACE

= area APC + area ACD'

-= area APCD .

Since area ABCD area ABP + area APCD • the segment AP
bisects the ~uadrilateral.

It will be noted that in case (B2c), the distinction between
the line AP and. the segment AP becomes important. In the
other four cases in figure 2. the only part of the line AP to
lie within the quadrilateral is the segment AP so the
construction has produced the required line through A·. This is
not so in (B2c) where the segment AP bisects the quadrilateral
but the line evidently does not. Further constructon is needed
in this case.

We note first that because area ABP =' (1/2) area ABCD >
(1/2) area ABC, it follows that BP > (1/2)BC so BP > CP. In
figure 3, we choose Y on BC so CY = BP. Then CY > CP ;
thus the order of points on BC is BYPD'C.

Draw the line through A parallel to BC to cut CD in X;
choose Z so that X is the mid-point of CZ. Three subcases
arise according as CZ is greater than, equal to or less than
CD; we picture in figure 3 only two as Z = D can be handled as
a degenerate version of. say, the first. Even" for these two
sub-cases, the arguments will not branch for a while.

The triangle CYZ has area double that of CYX which,
because CY =BP and AX is parallel to BC. has area equal to
that of ABP and so to half that of the quadrilateral.
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(b)
Figure 3.
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We shall prove that there exists a line QAR. with Q onthe segment YD' and R on the segment CD. which bisects thearea of triangle CYZ. Then the area of CQR is half that ofCYZ or of the ,quadrilateral so the line also bisects thequadrilateral; on'the other hand, as a bisector of CYZ through
A • the line (or perhaps two such lines) can be constructed by themethod of [3].

The first point is to observe that A always lies inside thetriangle CYZ, else this triangle would be a proper part of thequadrilateral in spi te of their areas being equal. Let Y' bethe intersection of YA and CZ; then Y' lies on the segmentCZ, and also between C and D because D' is between C and
Y. Moreover, area CYY' > area CYA = area BPA (because CY =BP) = (1/2) area ABCD; thus area CYY' ) ( 1/2) area CYZ.Similarly. area CDD' < area PCDA' (because D' lies between p'and C) = (1/2) area ABCD: so area CDD' < (1/2) area CYZ.

Continui ty now guarantees the existence of a point Qbetween Y and D' such that QA cuts CD in R between Y'and D and area CQR = ·(1/2) area CYZ. When CZ ~ CD (as 'inf-igure 3a) , we have R on CZ so QAR. bisects both thequadrilateral and triangle CYZ and our aim has been achieved.

It remains to consider the case in which. CZ < CD (figure 3b).We define Z' as the point where ZA cuts BC. BeCause CZ <CD and A lies inside triangle CYZ, Z'lies between D' andY , and Y' therefore lies between C and Z. Moreover.because X is the mid-point of GZ and AX is parallel to Be,
A is the mid-point of ZZ' .

It is known [4J, pp 89, 122, that of all triangles withvertex C. sides along CB and CD and base passing through A,the one wi th the smalles t area is obtained when the base isbisected by A '. Hence area CDD' > area czz~ .
We have already shown that 1/2 area CYZ > area CDD' so wenow have 1/2 area CYZ) area CZZ' . . As before, area GYY' >1/2 area CYZ so, by continuity, there is a suitable Q betweenY and Z' and a matching point R between Y' and Z so thatQAR bisects both the quadrilateral and the triangle as required.Th'is completes the investigation of case (B2c).

We turn now to case (B3) in which the reflex angle isadjacent to the vertex A. The construction is carried outexactly as before and is illustrated in figure 4. With D'defined as before as the intersection of AD and Be, we thistime distinguish three cases (B3a). (B3b), (B3c) according asBP is less than, equal to. or greater than BD' .
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In all three cases,

area ABP = 1/2 area· ABE

1/2 (area ABED + area DEA)

1/2 (area ABED + area DEC)

1/2 area ABCD .

Hence, in cases (B3a), (B3b). ·AP is the required bisector. In
case (B3c) however. the construction is not achieved as the
segment AP does not lie wholly within the quadrilateral.

In case (B3c) we see that

area ABD' < area ABP 1/2 area ABCD .

Thus area CDD' > 1/2 area ABCD; hence there is a line
(ffgure 5) which bisects the quadrilateral. cutting CD
and Be and Q. We proceed to construct such a line.

ARQ
in R

This is easily done if we first construct as in the front
cover figure triangle DFC equal in area to the quadri lateral
ABeD by drawing AF parallel to DB and joining DF. Since
A is outside CDP. using the construction discussed in [3], we
obtain the unique line ARQ through A to bisect triangle DFC
and to cut CD in R and BC in Q. The triangle CRQ thus
produced "has area equal to half that of triangle' DFC and hence
to half that of the quadrilateral. The line ARQ is accordingly
the required bisector of the quadrilateral and the investigation
of case (B3c) is complete.

Our conclusion is that the construction described initially
f or the case of a convex quadr i lateral .produces in all cases
except (B2c) and (B3c) a line AP which bisects the
quadrilateral and we have provided alternative constructions for
the required line in each of the two exceptional cases.

Finally, we remark that it is not difficult to find examples
of quadrilaterals ABCD for which we can draw more than one line
through the vertex A to bisect area ABeD. There is therefore
scope for investigating the number of bisectors through A and
the circumstances in which given numbers of bisectors occur.
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* * * * *

In his book [The Psychology of Mathematical Invention (1945),
Jacques] Hadamard [a famous French mathematician] tried to find
out how famous mathematicians and scientists actually thought
while doing their work. Of those he contacted in an informal
survey, he wrote "Practically all of them . . . avoid not only the
use of mental words,· -but also . . . the mental use of algebraic or
precise signs . . . they use vague images." (p.84) and ".. .the
mental pictures of the mathematicians whose answers I have
received are most frequently visual, but they may also be of
another kind - for example kinetic." (p.85)

Albert Einstein wrote to .Hadamard that ttthe words or the
language, as they are· written or spoken, do not seem to play any
role in my mechanism of thought. . . . The physical entities which
seem to .serve as elements in thought are certain signs and more or
less clear images which can be 'voluntarily' reproduced and
combined. . .. The above mentioned elements are, in my case, of
visual and some of muscular type.Conventional words or other
signs have to be sought for laborIously only in a secondary stage
. . . "(p.142)· Several recent studies on the' way in which
nonmathematical adults perform simple arithnletic seem to suggest
the same is true for non-mathematicians as well. tt

Philip J. Davis and Reuben Hersh
Penguin, 1983.

The Mathematical Experience,
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A TALE OF THREE CITIES
Michael AoBo Deakin, MOD'ash University

Take 3 cities called (very imaginatively) A. B & c. They
will be supposed to lie in flat terrain and they therefore form
the vertices of a triangle in the "plane of the plain"~

We wish to site some facility.
say a school or. a telephone exchange'.
to serve all three communities. and
we want to do so in such a way as to
minimise the total cost involved.

It will make sense to locate the
faei Ii ty at some point D inside the
triangle ABC and in the plane of the
three vertices. We now need to
formulate more precisely what
mathematics our problem involves.

a

A

Figure 1.

c

Suppose. for example. D is to be a telephone exchange and
that A has 50.000 i-nhabitants. B 30.000 and C 20.000. Then
we could imagine that ,the amount of wire involved 'in connecting D
to each of A. B. C would be in the proportion

DA=DB:DC

So if we wr i te DA = x , DB
sui tab~e uni ts):

5 : 3 : 2 .

y . DC = z we have (in some

length of wire =5x + 3y + 2z . (1)

So we would seek to locate D in such a way as to minimise the
quantity 5x +, 3y + 2z .

More generally. the proportions need not be 5:3:2 but could
be A:~:v. In this case, we would seek to minimise Ax + ~y + liZ.

So the problem becomes :

Given a triangle ABC. and three positive numbers
.A. ~, 11. locate that point D inside the triangle (2)
which minimises ~x + ~y + liZ, where'x =DA , Y =DB t

z =DC .
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As you can see, the problem is a practical one, but it first
arose as a piece of Pure Mathematics. Classical, by which I mean
ancient Greek, Geometry knew four different centres for the
triangle: the circumcentre (centre of the circle through A, B,
e). the incentre (centre of a circle inside ABC and tangent to
the three sides), the centroid (or centre of mass) and the
orthocentre (where the three altitudes intersect - this last
stretches the idea of centre a bit, as it need not lie inside the
triangle) .

But the point D that we seek turns out not (except in special
cases) to be any of these. The firs.t person to consider it was
JAKOB STEINER (1796-1863), one of a number of mathematicians of
his era who were influential in reviving interes~ in geometry and
showing that there were still results to be found, results not
known to the ancient Greeks.

Now the problem Steiner
problem I have labelled (2).
was

considered was not exactly the
The quantity he sought to minimise

(3)

where x, y, z were as described above and n was a real number
(not equal· ·to zero). He gave his answer to thiS in 1835,· and
later (1837) in an address to the Berlin Academy of Science, he
drew particular attention to the case n = 1. This is the
special case of Problem (2) for which A = ~ = v .

.The answer to that special case is available to us in
geometric form on pages 354-361 of a book that should appeal to
many of Function's readers: ffiURANT & ROBBINS' What is
l1athematics? (Oxford Universi ty Press, 1941). Courant and
Robbins, indeed, consider a djfferent generalisation:

Given n points A
1

, . ~ " An to find a conn-

ected system of straight line segments of shortest (4)
total (4) length such that any two of the given
points {are connected by the segments] of the
system.

This too is a very practical and important problem for road
or rail links, air schedules, etc. But let's get back to our
three points A, B, C, and the matter of locating the point D .
So our problem, is to minimise .
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x+y+z. (5)

This is the very simplest case of all and all the others depend on
it.

I will now explain how to find the point D in this case.
Two possibilities arise. Either

(a) One ·of the angles A. B. C in the triangle ABC exceeds

120° (if this happens. there will only be one such angle
and we can suppose it to be A).

or (b) The angles A, B, C are all less than 120 .

What Courant and Robbins show is that in Case (a). the point
A .itself is the point we seek while in the more usual Case (b).
the point D is such that the angles ADB, BDC. CD4 are all equal

to 120°. [Two related problems for the reader.

1. Show that such a point exists and that it is unique.

Figure 2 shows the result in this
case. For a 'pure mathematical'
proof, see, as I said. Courant
and Robbins' book. which also
answers the questions set above,
in case you need help.

2. Give a method for finding it.]

B

A

Fi-gure 2.

c

But I want to take a different course here and refer to. a
treatmentby a Polish mathematician HUGO STEINHAUS (1886-1972)t.
In a remarkable piece of lateral thinking, Steinhaus saw that the
problem could be replaced by another. He proposed making a
model.

t I derive these dates from an obituary that (strangely) neglects
to give Steinhaus' date of birth. but tells us he died on February
25, 1972 at the age of 85. What is the probability that he was
born in 1887?



Draw A, B, C on top of a table
(Figure 3) and drill smooth
holes at each of these points.
Through each hole, thread a
string and tie the top ends
together in a knot. To each
of the other.ends attach a
weight of 1 kg. Now let the
device go and see where D
turns up.

Figure 4 shows what happens in
Case (b). The knot at D is
subject to three equal "pulls".
By symmetry, these align themselves
at equal angles. i.e. each of the
three angles involved is 120°.

In Case (a). the lmot tttries"
to reach a 120° - 120° - 120°
configuration, but gets tangled up
in the hole at point A before this
is possible.

B l
A

.
~c

Figure 3.

o

Figure 4.

143

I take this analysis from Steinhaus' book Mathematical
Snapshots) another introduction to mathematical thought that I
would thoroughly recommend - but draw your attenti.on to one point
I have glossed over.
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Are we solving the same problem with our doctored table as is
posed in the minimisation of Expression (5)7

Steinhaus addresses this matter, but you will find it better
deal t wi th by the Russian mathematician USPENSKII (Some
Applications of Mechanics to Mathematics, Pergamon Press. 1961).'

Those readers studying Physics will understand' Uspenskii' s
argument very easi ly - J:11inimising. x + Y. + z is the same as
minimising the potential energy of the system depicted in Figure
3. The mathematical questions involved are the same.

[As an applied mathematician, I take great pleasure in the
paradoxical note sounded by Uspenskii' s ti tIe. The section
(pp.20-22) I refer to here gives only one ·of his many delightful
examples. But just one word of warning. Uspenskii relies on
Steinhaus. Uspenskii wrote in Russian, and translated Steinhaus'
title from either Polish or English into Russian. In due course,
Uspenskii's book was translated into EngI ish. "Mathematical
Snapshots" appears (after this long journey) as "Mathematical
Kaleidoscope". This is just one example of the traps that can
beset the historian of mathematics.]

But now we have established the validi ty of Steinhaus'
lateral thoughts, we can go back to Problem (2). What if there
are >. people in A, J1 in B, 11 in C? All we need do, says
Steinhaus, is to use Figure 3 again, but to hang a weight of A kg
on the string through A, J1 kg on the string through B and 11 kg
on the string through c.

Once again. and for the same reason, the position taken up by
D (the knot) determines the solution. Once again we can analyse
that solution in terms of the forces pulling on D .
See Figure 5.

When the point D comes to
rest, we have, by a result
known as LAMY's Theorem:

A J.1. 11

sin 8 = sin ~ = sin ~

o

Figure 5.

+

v

Steinhaus produces this result but with a bit more song and dance,
as he seems to have been unaware of Lamy's Theorem as such.
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[The theorem is said to be found in B.Lamy's book .Trai tez de.

l1ecanique (1679), to \vhich I do not have access. However, many
more recent books give the result and the name "Lamy's Theoremn is
standard. The proof is not difficult. I leave it as· an
exercise to the reader.] t t

Equation (6) applies if a point D satisfying these
conditions--,~can be found - othelWise one of the vertices, and let's·
keep calling it A, swallows it up.

Again the question arises as to whether the· point D exists
and is unique and; in effect, the Steinhaus approach guarantees
that it does.

Questions such as those raised - here have become very
important because of their economic implicatons, but· they derive
from Steiner's interest in a purely geometric problem.

* * * * *

"In World War II, one finds mathematical and scientific
talent in widespread use in the Army, Navy, and· Air Force, in
government research laboratories, in war industries, in
governmental, social and business agencies. A brief list of the
variety of things that math~maticians did would include
·aerodynamics, hydrodynamics, ballistics, development of radar and
sonar, development of the atomic bomb, cryptography and
intelligence, aerial photography, meteorology, operations
J;esearch, development of computing machines, econometrics,
rocketry, development of theories of feedback and control. Many
professors of mathematics were directly involved in these things,
as were many of their students."

Philip J. Davis and Reuben Hersh: The Mathematical Experience,
Penguin, 1983.

* * * * *

t t B.Lamy (1640-1715) was· a writer of mathematical texts. His
biographer states .that the theorem should really be credited
to the slightly later author P.Varignon (1654-1722).



146

SOLVING
POLYNOMIAL EQUATIONS II

Neil So Barnett

Department of Mathematics

and Operations Research

Footscray Institute of Technology

In part I of this article, in Function Vol. 11 , part 4, 'we

began a discussion of the solution of polynomial equations. In

this final part we begin by giving an interesting method. devised

(in 1829) by Jacques Charles Franyois Sturm, modifying an earlier

idea due to Fourier: which enables one to discover how many real

roots and hence how many complex roots a polynomial has. The

method applies only to polynomials without repeated roots. Other

considerations can be used to remove any repeated roots before

begilUling but we do not consider this refinement here: in a

practical situation repeated roots would occur only rarely.

THE NUMBER OF REJ\L SOLlffIONS

If the polynomial equation is represented as lex) = 0 and'

its derivative as t'{x) = 0 then the following functions may be

calculated. First write £O(x) for f(x) and £l(x) for

£'(x). Now divide £O(x) by f 1(x), getting a remainder that we

call - f2(x) , of degree less than .fl(x) :

Now divide £1 (x) by £2(x) getting remainder -£3(x) • of

degree less than £2(x)

COntinue the process, terminating with
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for which fm{x) is a non-zero constant. The calculations end

with a non-zero constant because the polynomial f{x} is assumed
to have no repeated roots.

Sturm's theorem states that if a and b are not roots of
f{x) then the number of real solutions to f{x}::;: 0 in the
interval of a < x < b is N(a) - N(b} where N{a} is the
number of sign changes in the sequence fOCal. f 1(a). ···f fm(a)

and N(b) the number of sign changes in the sequence
fO{b), f 1(b) . ... , fm(b)

Use of this will be illustrated shortly. Although it is not
appropriate to prove this result here it shouldn't be surprising
tha·t changes of sign are linked wi th existence of real solutions.
Since polynomials are continuous it is clear that if a polynomial
y =f(x) is such that at x = a, f(a} > 0 and at x =b()a).
feb) < 0 then y = f(x) must cross the x axis at least once
(so there is at least one real solution) between x = a and x = b.
The same is true if f(a) < 0 and f(b» o. Thus a change of
sign of f{x) in its values for x = a and x = b indicates the
existence of at least one real solution between x = a and x = b.

APPROXIMATION AND ITERATION

Once the number of real solutions is lmown, intelligent
application of this sign change principle can often be used to
obtain a first approximation to these solutions. Once this first
approximation is available there is potential 'for being able to
improve on it. Methods that facilitate this are called iterative
teclmiques; the following is one that is widely used. Such
methods proceed with a crude approximation to a particular
solution and refine it repetitively until its value' is given to a
desired degree of accuracy. If the coefficients of the equation
have been themselves approximated then this will of course affect
the accuracy of the solutions. Because of being systematic and
repetitive. iterative techniques are ideally suited to be
performed by computer. The functions f 1{x} t f 2{x) , f3{~)"

fm{x) can also be obtained via computer.

The method to be demonstrated is called the Newton-Raphson
method and uses the given polynomial f{x) and its derivative
f'{x). The iteration formula is quite simple (see diagram) and
can be written as
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t{Xn )

x n+l = x n -t"(x
n

) , n = 0.1,"2 ...

where X o is the" first rough approximation and xl the first

<improvement', x
2

the second, and so on.
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- £(i )
x

n
- __21_

f" ex )
n

To start, therefore, requires finding xl from

then

t(x l )

x2 = xl - t,{x
1

) and so on .
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When the digits of successive approximations do not change at' the
accuracy required then the iteration process can stop. There are
other iterative methods designed, to achieve the same end. they
vary mainly in how qUickly they reach the degree of accuracy
required. (In the'days when computations were done by.hand this
was particularly important!). Clearly, the Newton-Raphson method
will strike problems when f'(xn ) =0 . however, this will usually

n~t be a problem with other than contrived examples.

A SUMMARY EXAMPLE

To conclude. the techniques discussed in this article are
used to obtain the largest real root (if one exists) to two places

of decimals of the equation 1.2x4 + 4.8x3 - 2.4x2 + 8.4x + 4.8 =0.

From what has been learned regarding complex solutions there
are either O. 2 or 4 real solutions. To determine how many, use
is made of Sturm'~ theorem.

Recall that

and

4.8x3 + 14.4x2 - 4.8x + 8.4

Dividing fO(x) by f 1(x) gives a remainder, term of

- 4.8x
2

+ 7.5x + 2.7 . giving

2
f 2 (x) = 4.Sx - 7.5x - 2.7 .

Dividing f 1(x) by f
2
(x) gives a remainder term of

32. 11875x + 20.71875, giving

f 3(x) = 32.11875x~ 20.71875

Similarly, f
4

(x) is' (to two decimal places) - 4.14.
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Now the functions, fO{x), t f 4 (x) are examined at

large positive or negative values of x and 0 to see if they

are posi tive or negative. When x is large in each case the

highest power of x is the dominant term and so the signs of

fO(x) , .... f 4(x) are determined.by the term. of highest power.

Thus

Sign at

Total number of sign changes

+

+

+

3

o

+

+

+

+

+

1

Using Sturm's theorem there are 3-1 2 real roots

(solutions) less than . 0 and 1 - 1 = 0 real solutions greater

than 0 .Hence there are two real solutions (both negative) and

two complex solutions.

The task now remains to find roughly where the largest of the

two negative roots 1ies. The method of obtaining bounds is of

little value here because it has been established that there are

complex solutions.

By judiciously choosing integer values and substituting them

into

f{x) = 1.2x4 + 4.8x3 - 2.4x2
+ 8.4x + 4.8

it should be possible to determine the ·where-a-bouts· of these

solutions. We find

£(0) = 4.8 .

£(-1) = -4.8 .
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Hence. this change of sign indicates a real root between -1 8..Qd O.
It is sti 11 necessary to' locate the remaining solution at least
approximately, 50 that it COOl be established whether or not there
are one or two solutions between -1 and O. Iteration can
strike difficulties if there are two close solutions. We have

£(-2)

£(-5)

-40.8

52.8 .

Hence there is a solution between -5 and -2 and since our task is
to find the largest. effort can now be concentrated on the single
solution between -1 and 0 Since

f(-.5) = -.525 ,

thus ~he solution lies between -.5 and 0; as a first
approximation let this be -.3. This can now be used as Xo in

Newton-Raphson's iteration formuia ,

f(-.3)
-.3 - f~ (-.3)

1.94412
-.3 - 11.0064 -0.4776635412

-0.220621377
-0.4776635412 - 13.45519694 -0.4612668

and -0.461112205

Hence to two decimal places the largest real solution is -0.46.

-As an exercise you may want to find, to the same degree of
accuracy, the other rema.ining real solution. You will save
yourself work if you first tnarrow it down' more before using
i teratioD. As an addi tional exercise you might wish to attempt
programming Newton-Raphson's result, the obtaining of fO(x) , ... ,
fro(x) of Sturm's result and even the locating of real solutions

by the change of sign method. Such programs could then be
readi ly - used to help solve many polynomial equations of much
higher degree when hand calculation would be prohibitive.
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A TRICK WITH DOSEDIT

.Jandep

If you use a personal computer with PC or MS DOS then you are
probably fami liar wi th EDLIN the line ecli tor _provided with DOS.
Most books say that nobody uses EDLIN these days and advise a
screen edi tor or word processor to help prepare batch files. It
is true that a line editor is not the easiest way to prepare such
fi les and the COPY CON command can also be qui te frustrating if
you are not a touch typist. A real professional working wi th
large installations of PCs might tell you, however, that he uses
EDLIN every day and the reason for that is that it is available on
every machine us ing DOS. For those who work wi th the VaxIVMS
system EDLIN will also have a certain familiari ty. So there IS
some advantage in lmowing EDLIN.

DOSEDIT is a public domain program and is therefore free to
all PC users. It is easy to get a copy - most-PC users will have
it. DOSEDIT is a program which saves a stack of DOS commands (up
to 256 characters in toto). Before committing yourself to a
sequence of DOS commands in a batch file DOSED!T allows you to go
through the sequence :;md if a command is incorrect too recall it
from the s tack wi th the arrow keys to the command I ine where you
can change it. You can scro11 backwards and forwards through the
stack as you please. An example will make this clear.

Assuming you have DOSEDIT (and have read the document) you
let it take over your PC by typing in the command

DOSEDIT

followed by Enter.

Then key 'in the following commands:

ECHO ONE

ECHO TWO

ECHO THREE

If you made any typing errors you can recall and edi t the
incorrect entry wi th the cursor control keys (the arrow keys
etc.). The short document which comes with·DOSED!T describes this
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example and exactly how the keys are to be used for edi ting
commands. Of course you can substitute any DOS commands for the
ones in this example.

It is when EDLIN is combined with DOSEDIT that you see the
real advantage.. Suppose you have the stack of commands shown
above. Now key in the command

EDLIN TRY.BAT

Enter input mode with command

I

Then call down the stack as before finishing with

CTRL Z

which is the tend-of-file marker', followed by

EXIT

to return from EDLIN to DOS and your batch file will be saved to

disk. To check that your batch file runs properly key in

TRY

followed by Enter to run it.

This method allows you to build a batch file by rehearsing it
first wi th DQSEDIT and then recording it from the - stack into an
EDLIN file and saving it to disk.

When you run the batch program sugges'ted you may dislike the
way commands are echoed to the screen before they are executed so
try another experiment. Clear the stack with Ctrl-Pg Up then
enter:

ECHO-BLAH

ECHO ONE

EaIO TWO

ECHO THREE
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Errors in typing can be corrected by calling down the stack as

before.

Now enter EDLIN with

EDLIN TRY2.BAT

and enter input mode with

I

Call down your stack wi th the cursor keys but change ECHO BLAH to
ECHO OFF. Continue on as before until Ctrl Z. the end-of file
marker, and EXIT from EDLIN as before. Now when you run TRY2 the
separate commands will not appear on the screen which will show
only as follows:

ECHO OFF

ONE

TWO

THREE

Doing it this way. returns your normal prompt when the program
finishes. An alternative is to use ECHO OFF before running TRY2
but then you have to remember to key in ECHO ON again as soon as
TRY2 has finished or you will get lost in DOS.

DQSEDIT and EDLIN in combination give you a miniature word
processor which is amusing to tryout. For example you can write
some Christmas greetings to your friends this way.

First clear the stack with Ctrl-Pg Up then key in the following

Dear Bill

Can you come

to my party

on Christmas Eve?

5 o'clock in the Caf

Love.

Mary
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DOS will complain as each 'command' is entered but each line will
go in~o .the stack nonetheless. . Then as before key in

EDLIN TRY3.BAT

and

I

to enter input mode. Call down the stack, and finish· with

Ctrl Z

and

EXIT

You can TYPE your batch file TRY3.BAT to the scr~en, or PRINT
it to the printer. By the way, REName the fileLETIER.TXT if you
don't want· it to be mixed up with your executable batch files
later.

Now repeat the letter as often as you like changing the name
each time and your miniature· word processor wil~ produce the
'customized' invitations you need.

* * * * *

"At a talk which I gave at a celebration of the twenty-fifth
anniversary .of the construction of von Neumann's computer in
Princeton a few years ago, I suddenly started· estimating silently
in my mind how many theorems are published yearly in mathematical
journals. I made. a quick mental calculation and came to a number
like one hundred thousand theorems per year. I mentioned this
and my audience gasped. The next day two of the younger
mathematicians in the audience came to tell me that, impressed by
this enormous figure, they undertook a more systematic and
detailed search in the Institute library. Bymuttiplying the
number of journals by the number of yearly issues, by the number
of papers. per issue and the average number of theorems per paper,
their estimate came to nearly two hundred thousand theorems a
year."

Stanislaw Ulam
Schribners 1976.

Adventures of a Mathematician, New York,
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CAREERS IN ECONOMETRICS
Maxwell LG King

Department ofEconometrics & Operations Research

Monash University

WHAT IS ECONOMETRICS?

There is no simpl~ answer to this question because

econometricians can wear many different hats. Sometimes they are

economists who use economic theory to improve the statistical

analyses of economic problems of interest. Sometimes they' are

mathematicians concerned wi th translating economic theory into

mathematical terms so it can be tested. At times they might be

considered to be accquntants who seek, collect and monitor

economic data and who relate theoretical ~conomic variables to

observed data values. They may also be business consultants who

provide predictions or forecasts of ~ variety of variables

necessary for planning and budgeting. Sometimes they are applied

statisticians who spend hours at the computer estimating economic

relationships and/or forecasting future values of economic

variables. . They can also be theoretical statisticians who use

their skill to develop statistical techniques to overcome special

problems that occur when statistical methods are applied to

economic problems.

The computer has played a vital role in the development of

econometrics as a discipline. The 60's and early 70's saw the

construction of a number of large econo11letric m~dels of different

economies. These models are systems of mathematical equations

which attempt to reflect the complex inter-relationships between

economic variables. With the aid of a computer they allow

economic policymakers to forecast how the economy will behave in

the future, particularly if the government makes policy changes.

Over the last four decades, econometric techniques 'have also been

used to· explore and test economic theories, and relationships.

In fact, econom~trics is that branch of economics which attempts

to quantify economic relationships. In recent years, the

widespread penetration of the computer into the office

environment, p8.rticularly wi th the advent of the personal

computer, has meant that econometric methods have become more

widely available and more Widely used. The deregulation of

financial and foreign exchange markets, plus a heightened

awareness of the need for modern businesses to be competitive, has
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led to an increased demand for economists and financial analysts
with quantitative skills. These skills are used to monitor the
national and international economies plus markets of particular
interest as well as to make forecasts. Undoubtedly, the demand
for economists and financial analysts who are trained in
econometric techniques will continue to grow.

WHO EMPLOYS ECONOMETRICIANS?

A survey of advertisements for economists placed in the
Melbourne newspaper The Age over six weekends during March/April
this year revealed that:

(1) 71% of the advertis~ments explicitly required the
successful applicant to work with statistical data,

(ii)

(iii)

(iv)

(v)

'(vi)

a knowledge of econometric or quantitative methods was
acknowledged as desirable for 47% of the positions.

29% of the posi tions required an abi 1i ty to collect
data.

29% of the positions specified an ability to monitor
economic series.

24% of the positions required the successful applicant
to forecast economic variables.

21% of the posi fions required a knowledge of sample
surveying ~thods.

Organizations that wished to recruit economists with a knowledge
of econometric or quantitative techniques included:

The Labour Resources Centre, EPAC, Brotherhood of St
Laurence, Health Department of Victoria, Department of
Conservation Forests and Lands, Australian Dairy
Corporation, Victorian Council of Social Service, BASF,
Australian Bureau of Statistics, Federal Bureau of
Transport Economics, RACV.

A similar survey of senior management positions advertised in
the Financial Review identified a number of firms seeking
Managerial/Financial Accounts or EconomiclBusiness Analysts wi th
quantitative skills. The specified duties of successful
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applicants included short and medium term forecasting and the
monitoring of key economic and financial variables.

Both surveys show that some training in econometric or
quantitative methods helps the employment prospects of graduates
in economics, finance and accounting.

Some students may wish to train to be econometricians.
Graduates who have specialized in econometrics are employed in a
variety of key positions in both the private and public sectors.
There is ample scope for using and devel~ping further the ~kills

acquired during university training, and the career opportunities
open to econometriciaris frequently lead to senior administrative
positions.

In Australia. graduates trained in
quanti tative economics generally, are
organizaitons as:

econometrics,
employed by

and
such

Oil and Mineral Companies, Insurance Companies,
Manufacturing Industries, Trading Banks, The Reserve
Bank of Australia, The Industries Assistance
Commission, the Australian Bureau of Statistics, The
Bureau of Transport Economics, Telecom Australia, The
Bureau of Agricultural Economics, The Australian
Treasury, EPAC, State Government Departments,· Economic
and Business Consultants, and Economic Research Groups.

TRAINING IN ECONOMETRICS

The training of an econometrician involves courses of study
in the main areas of Economics, with special emphasis on the
statistical analysis of economic data. The particular techniques
which comprise econometrics itself are largely extensions of those
found in certain areas of mathematiCal statistics, these
extensions being necessary because of the particular nature of
economic systems and economic data.

Econometrics is both a theoretical and an applied subject and
its teaching, as \well as offering specialised training in
econometric principles and theory, places substantial emphasis on
the development of sound practical techniques. Courses in
applied econometrics put the theory into practice. They offer
the opportunity for students to gain practical experience in the
handling of economic data, the construction of econometric models.
and the use of a range of the latest computer packages.





Simple Rational Numbers John Mack 2 48

Solving Polynomial Equations
I Neil S. Barnett 4 110

Solving Polynomial Equations
II Neil S. Barnett 5 146

Sprague Sequence, The Shyen Wong 4 120

Square Root of Zero, The Michael A.B. Deakin 2 37
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lieing .the Pi Surrendra Verma 3 87
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Yellow Lights Michael A.B. Deakin 1 13

* * * * *
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