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THE FRONT COVER
Take a circle of diameter a with centre at CO,a/2) resting,

if we might put it so, on the origin. The line y = a s·tangent
to this circle and is par'aIlel to the .~·-a~<is, which .= also a
ta.ngent. Thr-ough 0, draw the 1 i ne y m.~·, and suppose thi s
intersects the circle in the paint B and the line t = a in the
p<;Jint A.

Through B draw Cl. hor-i zontal 1 i ne a.nd through .A a. verti cal
line. Call their paint of intersection P. The po~ition of P
depends upon the slope (m) of the li.ne GA. As m vat-ies, OA may
be thought of as rotating about the pivot at the origin. -As it
does so, P traces out a curve <shown opposite>, called the Hitch
()f Aqne$i. Its equation is

It is not difficult to verify this fact and reade~s are invited
to do so as an exercise.

Wha.t is less clear is {Alhy this,
shaul d attract so bi zar-t-e a na.me ..
a.nd, because it is often mi stol d., we
correctly here.

reI ati\lel y si mpl.e... Cl.lt-ve
The story is interesting,
take pai ns to rec:ouni:: i 1.:

Maria Gaetana Agnesi (1718-1799) was, as her biographer Edna·
~:::ramer sta.tes,! II t.he f i r~;t ~AJOman' in the l1Jestern wor 1 d who can
accurately be called a Mathematician. II She was the eldest child
of Pietro Agnesi, a wealthy man and professor of mathematics at
the Univet-'sity of Bologna.. The Univer5it.y of Bologn~. is the
oldest European university, and held that prestigious status
then., as now ..

Pietro Agnesi married three times and fathered a total of 21
children, so perhaps it was well that he was wealthy.

Maria showed not only talent, but genius, from a very early
age. By. the time she was eleven, she spoke, besides her native
Italian, French, Latin, Greek, German, Spanish and Hebrew.
Before her 21st bit-·thdB.y, she had published t.wo books.
Carespondence exists to show that at the age· of seventeen she was
already a very accomplished mathematician.

Her father, justifiably proud of her achievements,· took
ever-y oPPot-tuni ty 1.:0 di spl ay these to an adul a.t.ory publ i c _. a
si tuati on the yDu.ng l~lc:u-i a found i net-'easi ngl y di stasteful . In
1738, she thought to escape this by attempting to enter a
convent. Her tathet- di ssuaded her- i":r·om dQi ng thi. s;, hut some
accommodation seems to h<':lve been reached, for she retired from
social life and worked in some seclusion on mathematics •.
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This bor·€-: f.ruit in 1748 with the publication o·f her majol'"
work Istituzi6ni analitiche ad ~so della qioventu italiana
( Li? S S <:> rt S' inc a 1" c tL 1 us f <:> r y <:> u n 9 I tal ian::.) • Th e ti tIe SDun d s

perhaps all too tri te to modern ears '1 but one must remember the
date of its appearance.

Newton, one of the founders of the calculus, was still alive
when Maria was barn, so her work presented an account of what was
then difficult and indeed controversial front-line research.
Perhaps the most remarkable tribute pa.id to her te~·~t was its
translation into English (1801) by Professor John Colson of
Cambridge "that t'he British Youth might have the benefit af it as
well as the Youth of Italyu"

But there were other, more immediate, tributes. In 1749,
Pope Bened i ct XI V s.ent her a qol d medal and an orna.te' jewell ed
wreath in recognition of her- achievements and the ne~<t ''y'ear, and
perhaps more to the' point, offered her a professorship of
mathematics and physics at the Universfty of Bologna.

She thus became the first woman ever to be made a professor
of mathematics. She held the post far two years (from
1750-1752), but without, it would seem, either teaching or
dr'awi ng any pay.. When her fathet- di ed, in 1752, she began to
withdraw frommat.hema.ti cs a.nd devoted het-sel-f: more and more tCJ

religion, social work and the care of her numerous younger
brothers and sisters.

By 1762, she was so far removed from mathematical work that
she declined to eNamine a major papel'~' by the yOLlng W:;eppe
Laqrangia (now known as J.L.La~range, a mathematical superstar).

That then is the woman.
called the Witch?

What of her curve - and why is it

Well, one il"'ony is that this ;-ema.rkable mathematician is
remembered best for a solitary example from her major book, and a
none too important: example at that. Anothet- irony is that
Fermat, a French mathematician, had disc0ssed this curve before
her a.nd ~-;Q, if justice were to be done., should .have his name
a·ffi;·~ed to the cu.rv€?" However-, jLtstice is t-'arely done in such

matter·s. If this were not enough., Guido Grandi r' had also
discussed the curve and given it the name versiera.

GO,back to the line OA on the cover diagram. Let m vary -
this corresponds to the line OA turning on its pivot at D. The
Latin word ~/ertere means lito turn"" and from this Grandi., and
later Meu-ia A-gnes,i, derived the word ~~ersiera - lathe result of
the tLtrning li

•

T See Function, VOl.8, Part 2.



The mainstream of
h(Jv-l:::~v(.:;ot- , was d if 1- sf-ent..
contemporary Italian.
dictionary to find it"

thfe wa~./ the It.al i an . 1 angLtage
Ve·r:.;iera is not a common

You need to go to quite
But find it you will.
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evolved,
word in
a large

?~nd it mt~ans) " wi.tch ll
-- one, feminine (it end,:; in -a), who

turns the right order of things upside down.

So a concatenation of
happenst:ances pr-eserv.es the name of
an inadequate context.

l{nguistic and historical
a remarkable mathematician in

To the detriment, indc:~ed,f of her memory. One strident
article, at the ill-informed end of the feminist spectrum, even
cl ai med that Mari a Agnesi. had been denounced as a wi tch. Wi th
friends like that do feminists need enemies?

But truth will always outdo such slick fictions.
leaves' us much to pander an.

And truth

Mathema.ticians and feminists alike will mourn the loss to
the world of intellect of a.maj6r t~lent. Why she withdrew, we
may Mever know. What effect tha~ withdrawal had on the
subsequent history of mathematics~ we can, at bes~, speculate.

We do know what she did when ':;heabandoned math~matics.

She led a life of piety, devotion and service. In other words,
those ~oles society then and now assigns to women. Why did she
choose these - and how free was her choice?

Hat-d to knqw If and, even i. f we di d, hard to enter a moral
judgement. Her decision may well have been wrong, but i~ was,
by all accounts., hers. And we know one thing about her with
glowing certainty - she wasn't stupid.

INTERNATIONAL MATHEMATICAL OLYMPIAD RESULTS

Australia placed 15th overall.

Bronze medals aw~rded to:

David Hogan
Ross Jones
Catherine Playoust
Ben F~ob i n son
Tet-ence Tao.

Tet-12nC:E~ Ta.D i'5 the youngest compet i. to,,- ever' to have taken
part in the international olympiad.

Catherine Playoust is the first girl to obtain a medal for
Austr-al i a.
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A MATHEMATICAL MODEL
- -

OF AN ARMS RACE

Peter Kloeden, Murdoch University

During the four years (1910-1914) preceding the outbreak of
the First World War, there was a massive growth in th~ armaments
held by the future protagonists, which became ~,own as an arms
race. When hostilities finally broke out many people believed
that they were an unavoidable consequence of the arms rac~. So
too thought. Lewis Fr-'Y f;:icha.r·dson (1881-1953) a. young English
Quaker who had turned his back on a brilliant career as a

meteorological scientistT because of the way in which meteorology
was bei ng used +or aeri. a1 a.nd gas war·-t:are. Instead he served as
volunteer ambulance driver with the French Army. In the lulls
between .battles he' thought a' lot abou.t the causes o·f war, and
indeed devoted the rest of his life to its study. He
particularly believed that mathematics could be applied here with
the same succe~s ~s for the physical sciences. Thus he
constructed a simplistic mathematical model of an arms race,
which he hoped would elucidate the mechanisms and consequences in

'a context free from emotional and political prejudice.

Richardson's model consisted of a pair of dIfferential
equations describing the evolution in time of the armament levels
x<t) and y<t) of two countries X and Y. These equations differ
from familiar algebraic equations in that they involve the rates
of change of the armament levels as well as the actual armament
levels themselves. The theory of differential equations is
based on differential calculus, yet a detailed knowledge of
cal cuI L\S is not essent i a1 ·f or' an understand i n~J of what
differential equations are or for a rudimentary analysis of how
their solutions behave.

Consi der a knDwn f u.nct i. on ."X." :::: .x:' (t)
smooth graph as illustrated in Figure ld

of t. i me t wit h a. n ice
The slope meta) of

r
See my earl ier al,..ticle ilL. F. F~:ichat-ds(JnIS t!Jeathet- Forecast

Factory" which appeat-ed in Function Vol .. lO, Part 3 (1986).
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the tangent to the graph at the point (to' x(to » repre~ents the

instantaneous rate of change of the function x = x(~) at t = to.

is in fact the limit of the

Generally this rate ~ill vary as to

in its value' m(to)" This· ta.ngent

varies, so the t
(.)

is included

straight line segments, or chords, joining the point

tothenearby poi n t s ( t <:> + fJ t , x' ( to + fJ t» as

arbitrarily close to zero, i.e. as ~tconverge5 to O.
of such a chord is

(to' .x:(t o »

t"t is made

The slope

x(t + 6t) - x(t )o (.)

(t +L\t) .- t
o 0

l~.~· (t )
o

where ~x(to) is written for x(to+~t) - x<to )' and this converges

to the slope m(t o ) of the tangent to the graph at (to,x(t
o

» as

~t converges to zero, i.e.

.t1.~' (t )
o

m(t )
<'.>

]. i m
~t-+O

L1t

----- x = x(t)

~x(t )
o

0'-------'------&.---------......... t
to-to+t:,.t

b.t

Figure 1:

It is now conventional to write the limiting val~e in (1) as

d)(

dt
(t )

<:>
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not e ~.~ p lie i t 1 Yt
{)

where the dependence ondx'

dt
This i sea1 1 ed the de r i ~,at i v t? of .':.;. == }( ( t) wit h
t at t == t. . It is the 51 ope' of the tangent to the

o
xct) at the point x xct

o
) and represents the

asor simply

stated.
respect 'to

graph of

instantaneous rate of change of x(t> at t ,= t .
<'.>

Cl earl y it is

negati ve if )f Ct) is deereasi ng.,
not changing and positive if x(t)

Figure 2 ..

zero if x(t) is instantaneoL\sly
is increasing at i: == to" See

ax
dt > 0

to"

ax
dt < 0

t

Figure 2: The sign of dx
,;/t

A simple example of a differential equation is

d)(

dt
a)( (2)

d.~...
- whet'-e a is a cc)nsta.nt. Here the rate of change dt is

proportional to the value of x with the same constant of
proportionality a for each instant t A solution of the
differential equation (2) is a function,x = x(t) which satisfies
(2) for each instant t. In this case all of the solutions have
the farm

- x(t) == ){<c)e
at

where .~.«» is the inzti.al l-'alue that the solution takes at the
i ni ti al instant t=O" There are thL\S i nf i ni tel y many di -fferent
solutions, each one-corresponding to a different initial value.
Note also that .~. (t) = (> for all t .~ 0 when ~.~ (0) = o. This is

it has zero

di fferenti Cl.l

~_s

(Theo.tallforochange

call ed an equ i l,i. br i urn or steady s tate sol uti on,
dxrate of

'dt
equation (2) models exponential population growth when a > 0 and
exponential or radioac~ive decay when a < 0)"
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Just how one goes about finding solution~ for di~ferential

equations is beyond the scope 6f this article. In fact
solutions are known only for fairly simple types of equations and
in genet-al anI y appro~·~imate solutions can be found by
approximating the differential equation

. by an algebrai~ equation

d.'X,·

dt
f(x)

.~. ({ + trt) x' (t) + T (x (t» ~t .. (3)

Here the deriva~ive ~~ has been replaced by the quotient
dt

(x(~+~t) - x(t»/~t,which will be fairly accurate provided ~t is
SUfficiently small. The algebraic equation (3) is then solved
for discrete instants of time ~t, 2Dt, 3~t, starting from a
given initia.l value x(O).. These' calculations can be easily
carried out on a compLlter. In fact R.ichardson used a very
similar method to find appro~·~imate solutions for the extremely
complicated differential equations used to model the dynamics of
the atmosphere ..

Now for Richardson-'s model of an arms race. Richardson
supposed that two countries X an~ Y wanted peace, but were
apprehensive of the other's intentions and were ~repared to fight
if attacked. He let x(t) represent the armaments level of
country X and ti me t and "y (t) that of country Y. .He assumed
that nei the,,- country had an i nc:enti ve to have weapons i f th~

other country had none and ~hat the rate of acquiring arms for
one country would "be directly p~oportional to ~he armament l~vel

of the other COLtntt-y. These twa assumpt ions yi el d a coupl ed
pair of differential equations

dt
= ay

dyC\.nd
dt

bx' (4)

where a and b a.re two positive constants of proportionality,
the specific values of which need not concern us just now.

The model ~escribed by the differential equa~ions (4) is far
too si mpl i sti c because it di sregat-ds any 1 i mi ti ng factors to
growth, such as the financial burden of large levels of
armaments, which one would expect to depress the rate' of
increase. Richardson thus subtracted a positive multiple mx of

..'( from the . dy equati on in (4) ·to account. for such 1 i mi ti ng

factors.
dt

This lead to the pair of differential equations

d:"i:

cit

dy

dt

ay .- m.X:

b.~· - ny •

(5X)

(Sy)
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He also considered eff~cts that were not due to mutual
s t i mu 1at i on ( i . e. the ){ (J r" y 'va J. lote s ) but t (j per- rnan en t Lln d et-l y i r, ~~

attitud~s or grievances. For this he added a constant 9 to (5X)
and a constant h to (5Y) to obtain

d){

dt

ely

dt

ay - m.~· + 9

bx - ny + h

(6X)

(6Y)

w~ere q,h > 0 correspond to grievances and g,h < 0 to feelings
of goodwill between the countries X and Y.

The pair of differential equations (6X) and (6Y) is
iT:. ich a r d:.-:: <:> n ";..::; model 0 f a Tl arm s rae e • He an a 1 ys i ed them us i n 9
specific coefficients a,b,m,n,q and h relevant to the arms race
which prec:eeded the First World War. His method of analysi.s
does not require finding solutions ·fot- <6X) and (6Y) <which is
possi bl e) but met-el y eHami ni ng where the rates of change are

negative, zero or- positive. In fact fr-om equation (6X) dx is
dt

o ay - mx + q (line L
1

)

and from (bY) dy is zero for
dt

<) a.~· - ny + h

which rept-esent t.he eql_lat~ans of stt-aight 1 ines. MCHr-eover on
dx

one side of L
1

, will be always negatiVE and on the other side
dt

always positive. A similar situation holds for ~~ and the line
tit

LI'"\ (but jt.lst which side what holds depends on t.lle' particular
..::.

values of the coe-f:-ficients a,b,m,n,9 and h) .. In addition the

point (x, y) of intersection of the two lines, assuming they do

intet-sect, 'is a steady stat.e or equi.li.br-i.um solutlQn ::t(t~) __ .x:,

y(t) ~ y for all t > 0 of the pair of differentlal equations.

Let us consider solutions starting at some pOlnt exCO) ,yeO»~

away fro~ the equilibrium solut~on, which Richardson called the
balance of power. Just what happens to the sol~tion (x(t) ,yCt»
as t -+ ~ depends on the pcu·-ticulat- values of the coefflcients ..
We wi 11 consi der t.wa cc.ses ~....,i th th(? 1 i nes c:tnd der i vat i ve si gns
oriented as in Figures 3 and 4, respectively. Remembering that
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a negative derivative mean~ the function is decreasing, whereas a
positive derivative means it is increasing, we can roughly sketch
~",hat wi 11 happen to (.~{ (t-) , Y Ct» as tinct-eases. (Stt- i ct 1 y

speaking we have to take into account the magnitudes of ~~ and ~~
. (.:it tit

as well {-as theit- signs).. In Figure ::::; the two solutions which
are representative of all other solutions, tend towards the
balance of power equilibrium, which is thus called a stable
equilibrium. In con'l:t-ast in Figure 4 for SLtfficiently small
initial values the solutions get even smaller, that is the
countries appear to be disarming. However, if the initial
values ~re too large, the goodwill between th~ countries and the
limits to growth factors will not be sufficient to reduce or hold
in check the arms levels and there will be a runaway arms race
with armament levels becoming arbitrarily large.

y

o

y

y

o

(x(O),y(O»)

Stable balance of power ..

)(,

x

Figure 4: Unstable balance of power w~th initial
values determining if disarmament or an arms race occurs.
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Without going into detal1s here, it can be shown that there
are four typical cases:

(1) 'If mn > ab , 9 > 0 , h > 0 there is a stable balance
of power (FIgure 3);

( I I )

( I I I )

If mn >.. at.> 9 <: 0 h .< <) there is total di sar·mamen't.;

If mn -::: ab 9 :::. 0 h :> (> ther-e is a r~unaway .arms
race;

(IV) If mn < ab , q < 0 , h < 0 the situation is ambiguous
as in Figure 4 with a runaway arms race or disarmament
depending on the initial levels of armaments.

Other cases can occur too with q "and h taking opposite
signs or being zero. These are left to the reader to analyse.
Note that when mn = ab the strai ght. 1 i nes L 1 and L

2
are

parallel and do not intersect, unless they coincide everywhere.

Richardson was well aware that his model was contrived and
art i f i ci. aI, ye"t it does bear some resemb 1ance to what can be
abstracted from the dynamics of actual arms races. The results
seem to coi nc i de wi t.h what common sense tell s us what. shoul d
happ~n, so have we really gained anything by haVing such a model?
Yes we have, because the. model shows that certain mechanisms and
relationships lead to certain results, independently of any
particular moral, emotional or political point of view. We must
remember that these factors often di.stor't what we may think is
common sens,e. In Richar-dson's wC)rd~ liThe eqLlations are merely a.
description of what people would do if t.hey did not st.op to
think ll

• "The equati.ons cer'+":ainly give us somethin9 to think
about!

A readable a~d fairly elementary book on the use of
mathematics to model conflict and conflict resolution is Anatol
Rapap'ort 's "Fi ghts, Games and Rebates fl (Uni \.lesi ty of ,..li chi gan
Press, 1974) 10 The reader could 8.150 consult the art..:icle by
Bt-uce Tapl i. nand mysel f on liThe F't- i. sonet- "s Di). emma Game ll

, whi eh
appeared in Function Vol.','9, Part 1 (1985)'1 p1l14 ..

Everything should be made as simple as possible., but no
simpler.

When a mathematician
cn~ i omatics •

A.Einstein
has no more ideas, he pursues

FeliN Klein
Fantasy, energy, self-confidence and self-criticism are the

characteristic endowments of the mathematician.
Sophus Lie

The essence o·f mathemati cs 1 i es in it·::; freedom.
Georg Cantor
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CHEATING, ·STE~!N9,
PIANO TUNING

Hans Lausch, Monash University
Tunings of the musical scal~ in which most or all concords

are made slightly impure -in order that few or none will be left
di stastefull y so, are call ed musi cal temper·aments.. When the
medium of performance allows little or no flexibility of
intonation - ~ompare the suppleness of the human.voice with the
inflexibility of the keyboard instruments - music theorists are
obliged to contrive specific mathematical schemes.

Equal temperament, in which the octave is divided into 12
uniform semitones, is, with a few exceptions,' the standard
Western temperament today. As early as 1588, the year of the
Armada; the abbot of San Martino in Sicily, Girolamo Ros~11i, was
said to have reached these forward looking conclusions:

IIThis· way of dividing the diapason ot- octave into 12 eq~lal

parts could alleviate all the difficulties of singers,
players and composers by enabling them generally ... ~ to sing or
play ..• DO-RE-MI-FA-SOL-LA upon whichever of the 12 notes they
wish, touring through all the notes, making a circular music;
hence all the instruments will be able to keep their tuning and
be in unison, and organs will be neither too high nor too low in
pitch. 1I

About 50 years later, we are told, an old man in rags, who
had spent .most of his life, in Sicily and Calabria and knew
nothing except how to play the harpsichord, retired to Rome and
triggered e}·~ci tement by advocati og equal temperament on the
harpsichord and even inducing the influential composer
Frescobaldi~ with the aid of frequent and gratuitous beverages,
to recommend it for the organ in Bernini's new apse. at San
Lorenzo in Damaso. The mathematician Father Marin Mersenne
recommended the use of equal temperament about the ~ame time.

In the late 17th century and early 18th a circle of Serman
theorists became very interested in equal temperament, including
Werckmei ster, Nei dhardt and Mattheson.. In Eng1 and the organ
builder Renatus Harr~s, wishing to discredit ~ competitor,
brought the mathematician John Wallis to write in the
Philosophical Transactions of 1698 a letter to Samuel Pepys
Esquire, relating to some supposed imperfections in an organ.

Wallis asserted that equal temperament had
necessary on organs. In his Generation harmonique
French ccimposer Rameau endorsed equal temperament.

been found
(1737) the
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Whether Johann Sebastian Bach, who used the term
H well-temp(?red c 1a\/i E~t-" :i. r. the tit..I. e of his ·f i rst book (1 722) of
24 preludes and fu.gues 'to signi.fy SC:Hn~? ktnd C)f tuning sLlitable
for all '24 keys, was an advocate of equal temperament~ is debated
by musicologists. His SDrl, C.P"E. Bach, however', is the best
candidate if the music of any' leading 18th-century composer ought
to be performed in, equal temperament.

It was in 1761 when the Berlin music theorist F.W.t·iar·pLlrg
published the article II Ai:t.empt to find _a pet-fectly equal
temperament by constructi.on Ji

• Marpurg, in his introduction to
,this treatise, makes the f~llowing comments:

• II t"lr Ki rnberget-, one o·f our" best 1 ocal musi c: i ans, who
wished to see an equal temperament on the monochord which would
please both the ear and the eye, came to read what Neidhardt •. g'

w~ote of the geometric construction in view of the temperament.
He took the opportuni ty to tal k about it wi th an acute Berl in
-mathematician, whose name to mention I have no permission, and to
ask him: Whether one could not investigate in more detail 'I and
perhaps more satisfactorily than through arithmetical
approximation, what Neidhardt. had touched only su~erficiallYa

Mt- Kit-nberger's learned frie,nd undertook the investigation and
after a hrief efi:ort took pleasure in solving the riddle and
filling the wide gap left by Mr Neidhardt. Here is his essay on
this subject which gives so much honour to his excellent insights
by nqt only pleasing . every authority an musical temperament but
certainl y even the mathematic:i ans .. II

We shall turn to this mystery writer and his essay :in a
moment, but first a 'few words about Mr Ki rnberger. Johan
Philipp Kirnberger (1721-1783) was a well-known music theoretist,
composer, and music teacher who was tutor of Princess Anna Amalia
of Prussia ..

He belonged to the Berlin grou~ of theorists, which included
Gluant'Z ,C.P.~.Bach and MarpL\rg, and is commonly described by his
contemporaries as emotional and ill-tempered~ inflexible,
conservative, tactless and pedantic, but his detractors
acknowledg~d his devotion to students and friends and his
dedication to the highest musical standards. In 1764 he edited
a second edi ti on of the essay on equal temperament in whi. eh he
omitted Marpurg's introduction, and in the preface to one of his
collections 'Piano Exercises' of 1766 he progressed to purporting
to have written the essay himself. '

In 1776, at a time when his relations with Kirnberger had
soured, Maf'""purg publ i shed the most arti cuI ate treati se of the
late 18th century an the subject, 'Attempt on the musical
temperamentla And here we learn the identity of our writer: as
Marpurg put it, it was "the -famous r1r ty1endel ssohn 11.

Just to keep your mind in the right century, let
you that in spite of the musical context, Marpurg does
to Felix Mendelssohn Bartholdy (1809-1847) , but
grandfather Moses Mendelssohn who was born in 1729.
the world remembers the 200th anniversary of his death~

me a=·SL~re

not refer
to his

This year
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To give you only a sketchv story of his life, would lead far
beyond the limitations of a magazine article. The best
bialgraphical account is the one by Alexander Altmann, Noses
Hendelssohn - A Bioqraphi~al Study, London 1973.

Moses Mendelssohn founded a great dynasty o~ artists,
bankers and scient.ists. Of his mathematical descendants, the
most famous representati ve is the number thear i st ~=::Ltrt Hensel
(1861-1941), and should ya~ play the mathematical strategy game
NIM or a related game, then think of RolandS~rague' (1894-1967),
one of the pioneers of the modern theory of NIM-like games.

Professor llJal ter H~yman , who was instrumental in foundi ng
the British Mathematical Olympiad and is a well-known expert in
the theory of compleH functions, also descends directly from
t10ses Mendel ssohn. Three mathemati ci ans, whose resul ts have
been in the tool kits of succeeding generations, married women of
the house of ,...tendelssoh.t;1: P.G.Lejeune-··Dirichlet, who accepted

Gauss' position in Gottingen, married Rebecka Mendelssohn
Bartholdy, the, composer'~ younger sister, E.E.Kummer married
Ottilie Mendelssohn, another of Moses' granddaughter~, and
Hermann Schwarz became the Kummer's son-in-law.

Mendelssohn's mind had been occupied with probability theory
ever since his first paper in German, 'On Chance Happenings'
(175:3) D In 1779'J he al so contr'i bL\ted to a reader' for the best.
pupils of a recently fOL\nded school, and one of his last great
works called 'Morning Hours', which refers to the part of th~ day
during' which he gave lessons to a numb~r of young people~

contains a section on probability.

In Bet-lin he became member o·f the "Learned Coffeehouse", a
closed society of about hundred people, Members of the Royal
Academy and other intellectual leaders of thel<i ngdom of 'Prussi all
There h~ met the mathematician Johann' Albrecht Euler, whose
prolific father Leonhard was then in Berlin, and l'1r k.irnberger'l
who gave Moses piano lessons so that, in the end, he managed to
playa minuet.

It was found about this time when Mendelssohn wrote the
logical commentary 'Bi'ur mllot hahigayon' on the famous w,ork
"Terms of Logic" by the philosopher Maimonides (1135-12-4), to
whom also a Function article was devoted (The Rambam, 'Function,
Vol.9, Part 5, October 1985). Also in this case, Mendelssohn
fell 'victim to an c3.pparently not quite honest publisher, who
presented himself as the author of the treatise: in those days,
pirates were identified as far upst~eam as Frankfurt on the Oder.

Mendelssohn's treatise on equal temperament begins with
translating the musical requirements for equal temperament into
mathematical language. Given two strings of equal thickness and
equal tension, but the one being only half as long as the other,
the shcirter one will produce a pitch which is exactly an octave
higher than that of the longer.
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The task is to cut out another 11 strings of
appropriate to produce all the semltones within the
mathematically this amount.:.; to the following pt-oblem:
longer string has length 2 and the shorter has length 1,

12_

r = ./2'1 then CJne ha.s to cut out str i ngs o·f 3. ength r,
a •• , rll'~ respectively.

lengths
oc·taven
if the

and i+

Note tha.t if 'two 1 i ne segments of lengths p and q are gi ven.,
then it is easy to construct a line segment of length h such that
p: h = h: q.. There are numerous ways of getti ng II: s .. 9 D draw a

'line segment AH of length p, extend it beyond H as far as B such
that HB has 1ength q; 1 et N be the mi dpoi nt. of AE' end draw a
semicircle c wit.h centre N having AB as its dia.meter; draw a
line 1 through H perpendicular to AB and let C be an intersection
of 1 with c; then He has length h, which is an assertion I ask
you to pr-ave ..

c

A H M

·Fi gure 1

c

B

Since 1:~& = r 6 :2, r' can be easily constructed.
since 1:r 3 :::: r 3 rEo and r; ~ r~ = ~"~:2',l we have
constructions for the string lengths r 3 and r9~

Li ke.wi se 'i

also simple

Since l:r = r:r 2 = r2:r3~ we will be able to const~uct the
strings of length rand r 2 (a~d all the other remaining one~) as
soon as we can sol ve the +011 oll-li ng constt-Ltct i on pt-obl em: g1 ven
tWb line· segments of 1engths p and q'] find 1 i ne segments 0+

lengths hand k such that p:h = h:k = k:q. Note that especially
3_

when p=l and '1=2., then h = ./:2..

Msndelssohn remarks:

lilt thus depends simply on i:he well--kno~~n Delian problem
which, in antiquity, made so much S~lr. Plato, Hera of
Alexandria, Philo, Apollonius, Diocles, Pappus, Sparus and
Erathostenes, at various times provided solutions. These
great people found only mechanical solutions; it looks as though
the con s t. t--: LtC t ~ on mig h t bE i mpassib 1 e wit h DU t t. he he1 p of C LU- ves .. 1/

What did Mendelssohn mean by these remarks? In antiquity,
one school of thought in geometrical ccnstruct~ons was to limit
one':;el f to on 1 y, two tool s '1 name], y COfilp~.SS and rul el'~', and use
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thf.?~~~~ ~Ji thi n the const.t-at nts of the f~llowi ng rul es: suppos-e
you ha.ve al r~e.ady (Jb:td.i ned, a number of poi ntsand 1 et us c:a.ll t.hem
the 'I a ld point.s Jl

'! t.hen, new points can be construct.ed only as
PQints of intersections of twa,straight lines, of a stralght lin~

a.nd a c i t-c:l e., or of two c i reI ~s; . each of t.hese stt-ai.9ht 1 i. nes
must pass through at 1east. two 01 d poi nt.s I} and each of these
circles must have an old point as its centre and pass through at.
least one old point.

The Delian problem consisted of constructing a line segment
3 ._.

of length ./;;: +rom one of unit length, or', as i."t is often put, to
cOr1st..:.r-uc:t a cube o·f vol ums 2 from one of vol Ltme 1. The anci ent
Greeks found it i mpc,ssi bl e to perform thi s constructi on when
c:onstrai ned b'y' the rul es 1ai d down above and t-esorted to all
kinds o·f " mechanical ll solutions: the drawing Q·f v~rioLts curves
(e.g. spirals) or cheating by-surreptitiously carving marks into
the ruler which turned out to, be a~ some helpa

t~1endelssohn"s suspicion, that sl_tch a construction miqht. be
impossible without inf"-inging the rules, was prophetic, iJ:1deed:
it was only in the 19th century that it could be proved by means
of agebraic methods that no such constru~tion was possible~ No
less a mathematician than Isaac Newton, in his 'Arithmetica
univers~lis' was one of those transgressors ..

Mendelssohn explains:

IINewton . divides the line segment AB, the first 0+ the
two given line segments into two equal parts at E [Fig .. 2J. He
then dra",,'s do cit-cle with centt-e A through E and fits in the
sl~cDnd 9 i \len 1 i ne segment EC such th ..:;.t the poi nt Cis on the
cit-c:1E:~1: Ni:.'-?~·d: he e~{t.ends the line segments ED a.nd BC.. While
keJ::?ping t.he rulet- pla.ced at A, he moves it .between the 'two lines
just dralo-'Jn u.nti 1 Gf-- becomes as long as AEor EB and draws the
line F"GAII Aft.er this, he says, CF and A(;' will be the desit-ed
line segments un. Construct.io nata -est, adds Newton. I may be
permitted to prove what Newton assumes as known. Great geniuses
reach their aim in ane step where common minds must be led by a
long sequence of conclusionsw The'theorem was

AB :: Cf = CF : GA = Gj~ = CE. 1/

A E B
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Before letting Mendelssohn proceed to the proof,
resul t fir-om geometry.. PI ease send your- proof s of
Editors.

we need a
it to the

"Let c be do circle, P a point out.si.de the ci,""cle'l T a point
on c, PT a tangent of c, and Rand S two distinct points on c
such that the extension of RS contains P. Then

Pi~ X PS = PT'1.. II

p

Mendelssohn now continues:

"Proof ... II. E~·~tend FA as far as H ·(Fig.A) and draw the line
segment AK parallel to EC. Since AK is parallel to EC, we have

BA : BE = AK .EC.

Now, BE 2 Ali, hence al so EC
2

AI<~ Further since the

triangles FGG and KGA have the same an~les [i.e. are similar] (as
FC is, by construction, parallel to KA), we see that

CF" : FG KA : GA ..

assumption), KA 2 C£ (as demonstrated>, hence CF : AB
or, this turned around,

Consequent 1 y, CF 2 FO I<A
2

GA But 2 FG AB (by

CE : UA

Likewise,

<AB -+- GA)

AB

(CF + CE>

CF

AB

GA

CF

CE.

GA CE.
Now,

- AB + GA
because

AH + Ffi
and also

CF" + CE
~:het-efore

F"H : FOE

PH

AB,

FE;

AS CF" GA ct:".
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pOH
[by the result from geometry as stated aboveJ~

FE :"_-= i- C ~ r L..

19

Since
rL Af7

(as A~ = A6, by assumption)~ we see that

PH : FE = FC ~ AG_

CDn~;equE·nt]. 'yO ~ +t-·Ofl1. the E'quati on (alto-·eaody shDv.Jn j

PH ~ FE = AB ~ CF = GA : CE,

~'Je c)bt.ai n

cr i~6'

<:.\nd finedly,
AB GA CE .. ,

All ~ CF = CF : AG ~ AG ~ CE,

which was the theorem to be proved~

K

Figure 4

q". Tha mechanical artist can accept this on trust if he does not
wish to concern himself with mathematic~ reasoning.. But he has
to apply all possible care to execute what has been prescribed to
hi rnu Ii

lVlendel sSDhn d:i. d undel.... sta.nd not anI y the concerns of the
lI m?chanic<31 ei.rtist" but also the day-to-day problems of many a
mathematician: One day, three of his friends, all of them
mathematicians, had a game of cards in which one. can score
twenty-one. They could net reach agreement on their individual
paints, and so asked Mendelssohn, who was standing nearby, to act
as their umpire. Mendelssohn helped out, not without
e~<claiming: liLa and behold, here ar-e. three mathematici.ans and
they cannot count twenty-one! II

******.*****~.

"PLlt-e !'''1athematic:s J.5 the mathematician ··s .":eal wand. 1I

1I0ne may be a mathemati Cl an o·f the f i t-st rank wi thout b~i n9
~.b I e tocomput.e II It. is possible to be a gt-eat computer without
having the slightest idea of mathematics.
[Navalis was the pen-nam~ of the German epigrammist von
Hardenburg, whb died in 1802~ E~s.]
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INFINITE LADDERS
M.A.B. Deakin, Monash University

(j

A 1adder is an expressi on of the "form abC or abc etc .. .,where a number a is raised to a power,which is itself a numberrai-:;ed to a power, etc. "rt is a 1 ittle easi er to wri te (and tothink about) ladders if we use a "different notation. In BASIC,exponentiation (the raising of numbers to powers) is indicated bya vertical arrow , and in this notation our ~xamples become

aj<bt c ) and a t (b t (c t d » •

Note that the bra~kets are important he~e:

2t(31 4 ) = 2181 = 2041785 •.• ex 102~ ,

a very big number indeed, compared with tha more modest

(213)f4 ~ 2112"= 4096 •

One questi on "that began to interest me was what sensecould giv~ to an infinite ladder made up of identical numbers:

( 1 )

Could any meaning be assigned to this?

My first move was to restrict the investigation to the casea > 0 and to look only at those cases where real (as opposed tocompleH) arithmetic was inv~lYed. These restrictions are notentirely necessary, but the w·hole flavour of the investigationalters if they are removed.

It neHt seemed that two approaches to the infinite ladder(1) were possible. Both proceed from the assumption that a neweHpression like (1) has no "intrinsic meaning at all. Theproblem is to define a meaning for it.

A simi la.r case arises in secondary school mathematics: a- 1
cannot be defined in the way that' a Z , a 3

, a q
, etc. are.However, where all the exponents are positive, we have

aP.aq = a p +q
and if we define a- 1

as lla, this property, along
1/,,")wi th others'.! t-emai ns. 8i mi 1ar1y, we def i ne a 4. as .;; to

1/2 2prese,"'ve pl'-ope~ties such as (a ) := a, and the 1 ike.



So in tryi nq tD d€~'f i ne the e~<pression (:t), Y.~e
a.ppro('aches which pr-ovide satis·f:ying and natLH-al waysth i s e~{prf.-?ssi on ..

On~ obvious way is to consider the sequence

and see what happened as the number of a's
infinity.I'11 come back to this, but I p~stponed
e~·~ploration, because I S<'aW what seemed 1 ike a' more·approach. It went like this.

~-':IUt.
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look for
to reg.al·-·d

tended to
it in my
promising

Then
.'>i.' aj(at(aj(at< .11. (2)

at x = af<afCaf<at
or in more usual notation

the graphs of y = aX and y = x.

Graphically·,
a'

X
: == .~'.

we sol ve thi s by
(4) ..

finding the intersection of

Now the behavi ou.r Df the graph o+" aX' depends on the val ue of
a.. If (> <: a -::: 1" a':>':' dect-eases as .>':' i ncreases ~.'Ild we get (seeFi gu.r-e 1) a si ng1 e i ntersecti on wi th y = ."X.' If a = 1 '1 thegraph is a straight line which intersects the line y = x whenx = y = 1. So we have our first result

as l
X

has a single solution : x = 1.

(5)

When a > 1, matters are more campI i.cated. For some valuesof a , ther-'e wi 11 be two. i n·tersect ions, bLtt. beyond a certai n
critical value, the curve y = a A rises too steeply to reach thegraph o·f y = .., and there ~H-e no i ntersecti ans.. In between., atthe cFitical value of a, the twa graphs would just grazetangentially, for a unique solution.

See Figure 1. a.gain. The top gr"aph has a == 2 and clearly 2exceeds the critical value. Thus we do not expect any. meaningto be available for the expression

On the other hand,
two intersections,

when a = ./2
at }( == 2, x ::::

(the $econd
4, since

case shown), we get

__ J.

-/:"2: 2 4
. "'--- , (6)
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So

./2 r (./2 f (./2 f (./21" ( = 2 or- 4. (7)

This last example is also instructive in "another way. For
._ 1/__,

we can write /2 = 2 L and the first of Equations (6) now becomes

1 / ...., .-,
(2 L)"::'" 2 'J

an equation which easily generalises to

1 _
"( .~_ I x ) x = x (8)

so that we have a form equivalent to Equation (4):

l/.x:
a = x (9)

l/ xFigure 2 shows the graph of y x (For an "account of

the related function y = xx, ~hich also considers negative x and

1 1/2
the negative values introduced by (e.~.) (2) = ± ./ 2 If see

Function, Vol. 6 Part 2 .. ) The e}{pression HI j~.~ is known to tend
to zero as x get s very small and to one as .~o get s very big. It
is also known to r-i$e steadily to a maximum height and to ~all

slowly once this is attained.

It is also known at what value of x that maximum is
attained. The value in question is e. e is the base, of the
natural logarithms, also known as Euler's constant, after- the
very great mathematician who discovered many of its properties.
Perhaps ,the si mp lest way to·· define e is to say that· it is that

value of a for which the gr-aph of y = a'~' passes throu9.h the
point (0,1) with a slope of 1. There are, however,manynther
ways of looking at e] and those of you studying Year 12
mathematics might have met it in other ways.

So

0
•

1 /.~'It is known that the graph of y = x achieves its maximum
li

ewhQh x = e, and that maximum value will of course be e

. .. . 1>e
If a lIes between 1 and e ,Equation, (9) ·will define two values
for x and these correspond to the two values that may be assigned
to Expression (1).

To view it another way, we could include more members of the

set of functi ons -[ (.l\:0, y): y = aX}. in Fi gure 1. One of these
would just graze the line with equation y = x and for this one we
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y

4

3

2

t ...........-..--- ...-.. ...........====_

2 3 4 5 x

Figure 1: Graphs of y

y

2

7 )(652

. .
--~-------~~---~---------------~--~---~----------~~---

e

Figure 2: Graph of y
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would have a = take place just at the point x =" y = e.

Now let us come back to our other approach. Put

and so on .. We then have the relation

~(n,a) = aff(n-1,a) " ( 10)

This provides a convenient way to compute f(n,a) ..

For e~·:ample, consider a ./2 I put ./2 into the store 0+
my HP-35 and also entered it into the register" I next pressed

RCL .'X,.Y to find 1 .. 632526919, a. good appro~{ i mat ion to ./2 T,/2 To

apply Equation (10) again press ENTER RCL .x,.Y to get

1 .. 760839555, a good apprQ~{i mat ion to f(3, ./2)" Continuing in

th is wa.y'1 I generated successi ve val L~es of t' (n ,,/2) '1 ti 11 I call ed

it quits at f(50,/2) = 1 .. 999999989, convergence,to 2 being quite
evident.

Indeed it was possible to prove that the limit was exactly
2. To do this, we need to prove first that if f(n,a) < 2, then

t(n,a) <: fen + 1, a) <: 2.

So f~,a) increases as n increases but remains always less
than 2. This impli~s that fCn,a) tends to a li~it ~ (~ < 2) as

n gets larger and larger. It is fairly easy then to show that
€ c~nnot, in this case, be less than 2.

So it seemed that the Jllimitllway of.iooking at the question
gave only one of the two possible values of Equation (7). What,

wondered," had ha~pened to the other? Where, in the case

a =./2'1 -was the solution 47 Well, it took a while to find it and
it t~rned up i~ what you might think of as an unusual way.

Equation (10) follows a line which
which included the statement

1'- (1, a) = a ,

1ef t unnumbered, bLtt

(11 )

a natural eno\-\gh thing to require. But, as I reflected on it,
it see~ed that it wasn't forted on us.

Why not try
f (1 ,a) b (say)? ( 12)
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Then f(2,a) = arb, f(3~a) = at<afb), and so on; the recalcitrant
b, as n gets larger~ disappears off to ,infinity and, wh~n

Equation (1) final,Iy gets re-established, does it matter if, way
out on the right, where nO~Qne will ever see it, is a b and not
an a? Intuition would say 'no'.

Well, intuition is partly right a~d partly wrong. And the
place where intuition fails give~ the answer to the question as
to where the missing value went.

Fi gure ::::; (on p a 28) shows graphs of y of (n ,./2) 'for b =

·f (1,,/2) = 1, ,/2, 2, ,3, ~~;.9, 4, 4.1. (The graphs are the sets
of dots joi ned t.ogether by lines not themsel ves part of the
graphs.) The first five of these graphs converge to the value y
= 2 ~Jhen n is 1arge, the cOllvet-qence bei ng most obvi ous in the
special case b = 2.

For b -::: 2, f(n,h)
from EqL\at ion (10) and
toward the val~e 2.

.> f (n-'l, ./2).
so the graph

Thi sis easi 1y proved
tends upwair-ds, ul t imatel y

For 2 -::: b -::: 4, t~ (n , ./2 ) <: t~ (n - 1, ./2),
proved, and so ,the graph tends downwards,
value 2.

which is also readily
ultimately toward the

BL\t if b > 4, f' (n, \/2) :> f (n-1, ~'2) and the gr~.ph conti nues
to rise, more and more steeply.

The special value 'b = 4 allows f(n,J2) to merely duplicate

f (n-l ,/2), but any value of bdiffet-.ing from 4, no matter how

slightly, will mean that f(n,/2) tends to 2 or increases forever.

We speak of 2 as being a stable value, and 4 an unstable one.

So we see t.hat the 'two approaches to the 1adder (1) gi ve
consistent ansWers, but with s6me differences of emphasis.

***********

liThe real mathematician is an enthusiast per se.
enthusiasm no mathematics.:'

Navalis

Without

I! Insofc\t- as the theorems of mathemat i c:s reI ate to reI ai ty,
they are not c~rtain. and, insofar as they are certain, they do
not relate tb reality. II

Albert Einstein
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PRODUCTS
OF CONSECUTIVE INTEGERS

John Mack, University of Sydney
We begin with a. simple eNample. Can the product of two

consecutive positive integers be the square of a positive
integer? That is, are there positive integers m and n such
that

·It is easy to construct a proo1: that this cannot.
Two consecLlti ve pasi ti ve integers a1 ways have great.est
factor 1, so the given equality implies that both n .and
squares of integers. But for any integer k 2 1,

and hence consecutive lntegers cannot be squares.

The same argument shows that

happen.
common

n+1. are

n (n + 1)
.g

m

(where -€ ::: 2, 3, •.. ) is also impossible.

What
integers'?

~bout the product of three consecutive positive
Is there a solution in positive integers to

n(n + l)(n + 2)= m~

or more generally, to

n (n+l) (n+2) m·e , .g =: 2, :,::;,

One ~~~n constru.ct a d i rec:t pt-oof that th is is 81 so nat
pos5ible. A recent Australian Mathematical Olympiad test
problem asked if the product of five consecutive positive
integers is ever a. square" This was, understandably., found
rather difficult by those who tried it.

In fac:t '. i·t was c:anjectL(red 1eng ago that the product of
consecutive integers is never a power, that is, the equation

1'1 (rt+l) ..... fn+k) ::: m-€

has no solutions in positlve integers n :> 1, ,E..:' .> :l i:\.nd .e :> 2 ..

How might one try to attack such a problem?
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Clearly, as we increase the number 0+ terms in the product,
~~e increase the likelihood of common fa.ctot-S in ever'y fc)ur
consecutive terms, for example~ two are even and one is at least
a multiple of 4, while at least one is a multiple of 3 - so the
chances of grouping terms into relatively prime blocks and
arguing in that way don1t seem to be very good. Thus we might
e)·~pect that the larget-' the value af k', the mar-e diff·icult the
problem becomes for that value 0+ k. Fortunately, a simple idea
provides a different attack when k is large com~ared to n .

Suppose we could guarantee that one of the integers
n, n+l,· ••• , n+k ~A~as a prime p. Since i:he multiples of pare p
apart and si nee p.':> n '1 it fall o~..,s that there can be no other

multiple of p among the int.eger£5 Tl, ••• , n+k if n+k -::: 2rt, that
is, if k <: n. In -this case~ i.:he product n (n+l) (n+l..;:)
contains p to the first power only and cannot b~ an ~th power.
So, what do we know about the occurrence of primes in a set of
consecutive integers?

ThE~ si mp 1 est and best known t-esul tis II Bertr a.nd "s F'ostul ate iI

(proved in the nineteenth century) that~ for any integer n~ there
is a prime p satisfying n < p -::: ·2na This prime p could happen
to be the integer 2n-l, so to apply this result to our problem we
~..,ou.ld need to have the ent.ire product n (n+1) (2n-l) on the
left-hand side. Thus we obtain the result~

n (n -I- 1 ) .. • • (2n '-1) =:; m~

has no solution in integers n ) 1, m ~ 1~ ~ > 2.

Can we not obta.i n a·ny more fIr-om Bert.r'and IS Postul ate",? We
can, by t-emembet- i. ng t·.hat. if pis C\. pr i me '1 then there are no
multiples of p less than p. So if we work with n+k instead of
fI, we see that there is a prime p satisfying

n+k > P > (n+k)/2.

[If n+k is even, this lS

Br=~rtrand IS postul ate t<j the
integer just below Cn+k)/2.J

obvious_
set {r, - ... ,

If n+k
2r},

i s ad d , ap pI y
where r i. s the

From this, we see that if (n+k)/2 ~ n, then there is exactly

one power of p in the product n(n+l)_ •• Cn+k) and so this product
cannot be an ~th powerp Thus the problem has no solution if k >
n_ Combining the two results we h~ve so far, we see there is no
solution if k > n - 1.

Thus, the " p r-oblem zane l
' is identi·fied as t.hat fot

relatively small values of k. By use of a different result on
prime fact.ot-s, which stat.E:1S that if Tl > k+1, then among the
numbers n, n+l~ n+k, at least one is divisible by a prime p
greater than k+l, we can deduce that
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n(n+l) ••• (n+k)

has no solutions if n < (k+l)~.

No easy method of proof is known f or the case n :::- (k+ 1) -« •
When ~ = 2, a proof was given by Paul Erdos in 1939 and he and
John Selfridge gave a proof for i!, 2: 2in 1975. This latter

proof. depends on showi ng the e~·~ i stence of a PI'"' i me f actor of the
product which occurs to a power which is not a multiple of ~.

Paul Erdos visits Australia regularly and will celebrate hIS

75th birthday next year. Maybe someo~e will present him with a
simplef~ proof of the resu~t that the product of consecu~ive

integers is never a power.

********

Continued from p.25.
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Figure ~5 • <n ,v":2) fat"' f ( 1 .,..12) 1 .;75 2, ~;, :::::.9, 4, 4. :I., , ..a:.. ,
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PROBLEM SECTION
MORE ON PROBLEM 10.1.1

This problem, submitted by D.R. Kaprekar, read as fallows.
A man had 115 doll cU-S Q He spent. 40 af them and 75 were

left. He went aut again and spent 46, lea·v'ing.29". ?) third time
he went out and spent 1 '-:") 1 eavi ng 1 <). Fi naIl y he went out and
spent the 10, leaving nothing. Here is a table.

Totals

~3pent

·40
46
19
10

115

Left
75
29
10
o

:l1.4

The total at t-ight is 114, not 115.. Where is the missing
doll ar'~?

In our last issue, we printed a comment by Garnet J.
Greenbury and after going to press we received two more letters
on the subject.

David Dyte (year 12, Scotch College) writes:
Let us suppose the man had x dollars which he spent in four lots,
a,b ,c and d dollars each (a:....b+c+d = ~.~) II This r'eadi Iy gives us
the lISpent II tabl e:

his·ussent

75
29
10

<)

114
to see how the

also

and shows that

Then

thus:

o
b+2c+:~d

It is interesting

40
46
19
10

115
interpreted

b+c+d
c+d

d

be

a
b

table should
~< - a
(~{-a) -b
(}~ -'-a-b) -c
(>~ -a-·-b --c) -Md

But the II Le-Ft II

Obviously b+2c+3d a+b+c+da
numbers were chosen, though:

a+b+c+d-l = b+2c+3d
<=> a-I = c+2d ,

which is verified by examining the figures,
second number does not alter the resul~s_

Simon Kong (year 11, Trinity Grammar)
analysis.

Let YO be "the total num~er of dollars.

Totals

Spent
'Y'l

Y2·

'>":::;;

Y4

A

Left

o

B
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Now Y4

Also,

since he spent the last money left which is

;< 1 YO _. Y 1

;.~ 2 ~.~ 1 - y 2

(Yo _. "1 1 >- Y2

Yo - Yi

~{2 y:::::

(Yo - Y1 - Y2)- Y3

YO - "1 1 - Y2 - Y3 "

Adding up the numbe~ of dolla~s spent,
. A y 1 + Y2 + Y3 + Y4

= Y1 + Y2 + Y3 + (Yo - Y1 - Y2 - Y3) since "1 4 x 3
= YO"

Adding up the numbe~ of dollars left,
B ... +v + --,\ 1 "2 >~:.::;

= (Yo - Y1) + (Yo - Y1 - Y2 ) + (Yo - Yl - Y2 - Y3 )

= 3yo - 3Y 1 - 2Y2 - V3 '

since there exist many possible combinations of Y
i

,

O,l,2,3,such that B ma~ be greater than A or less than A.
It is irrelevant to compa~e the total amount spent (A) and

the total amount left (B) ..
For the missing dollar trick, let B = YO - 1,

i.e. B = 3yO - 3Y 1 - 2Y2 - Y3 = YO - 1 D' (1)

Any combination of Vi' i = 1,2,3, that satisfies (1), subject to

the conditions establjshed below, will lead to the missing
dollar:
<i) Since the number of dolla~s left must be greater than zero,
we have

~·~1 :> (>

..:::=>. YO - Y1
>. 0

.:::=:::- YO :> Y1
}{2

). <)

.<=:> YO Y1
- Y2 ••':t 0

.(=:> YO ) . Y1 + Y2
>:-r > 0.::..

). 0

<=> YO > Y1 + Y2 + Y3· (2)

(i i ) Furt.her·, si nee the numbe~ of doll ars spent must be greater
than zero, we have

Y
i

::=- 0 = 3. ,!2.,~3:. (3)

Note that we do not include )/4 as y 4 = ~.~::~; and in the" 'condition

stated above~ it is seen that x
3

> o.

1. ,2') ::::.

For the problem given
B = 3(115) - 3Yl -

=> 3Y1 + 2Y2 + Y3

Subject to (2) 115 > i
C:::;) Y

i
> 0

2y,..,
.(..

... y::S (11.5) -1
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Al tet-nat. i. ve~. Y OJ

constt-a.J. nt.:;; (2)

E a 9 .. Y 1 = ::::;0,

<Yo = 115)

any

and

y , q. 1 .

C~;)

60,

:30
60
21

4

wi ,11

1.2,3, subject to

do the same trick.
21

Left

B~j

25
it
o

-the inequality

115 114

SOLUTION TO PROBLEM 10.1.2
David Dyte also sent us his solution to -this problem - to

show that, given any 17 numbers, it is always possible to choose
five in such a way that their sum i$ divisible by 5. Here is his
solution.

If we r'efet- to the numbers in modulo 5 notation, then we
need only consider 5 numbers: 0,1,2,3, and 4 .. Other integers are
simply an addition of one of these and a multiple of 5, and so
need not be used.

Now there are at least two ways of making 5 of these numbers
add to give 0 (mod 5):
Method I: (a set) 0+1+2+3+4 = 0 (mod 5)
t1ethod I I: (5 of a ki nd) n+n+n-+n+n :: <mod 5).

There are other~ ways but these need not be consi dered D Now '1

if we try to choose a set of 17 numbers satisfying neither Method
I not- l"1ethod I I :
(i) To avoid a Method set we mus~ avoid choosing one

particular number and only choose from the other four;
(ii) To avoid a Method II set we must choose at most f6ur of each

number- .

In order· to mainta.in these conditions, having chosen 16
numbers we will have a set of four of the numbers repeated four
times.. In chCising a 17th number we must choose a fifth of one
number (Method II) or complet~ a set of all the numbers (Method
f). So in any set af 17 numbers one of these two methods must be
sat i sf i ed, and so i n ~3.ny set of 1'7 numbers 5 can be chosen so
that their,sum can be divided by 5.
CUe may note that the number 17 is not the smallest number with
the stated property. Uhat IS? Eds.J

SOLUTION TO PROBLEM 10.2.2

We asked for the smallest value of a such that F(x) = 7x 11
+

1 1. ~,~ '7 + :l Occ-~ i s d i vis i b 1 e by 77 f or all
solutions from David Shaw and Devon Cook.
solution. David Shaw's is similar.-

val ues 0+ }.~"

Here is Devon
We had
Cook "s
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and l1x 7 11x ~ 0 (mod 77)0

For all lntegral x,
~7

and x - x ~ 0 (mod 7), thus1 1 .-- \) (mod t :I. )~< ~.~ "-
'J'}~

1 1 - ;;., }.~ (mod 77)--

Adding the"la$t two congruences,

7x 11
+ l1x 7

- l8x 5 0 (mod 77)

and clearly therefore,

7 ~{ i 1. -I- 1 1}~ 7 - ( 1 8 :t 77k ) ~{ __ 0 ( mod 77 )

The lowest multiple of 10 which equals -18 T 77k is 290
Thus lOa ~ 290, thus a = 29.
In general,
100: = -18 ± 7 7 k ..

PROBLEM 10.4.1 (from Parabola>
Let 0 be an operation that combines twa integers to form a

third. Given that
~.~ 0 (y+z) y 0 }~ + z 0 >~,

prove that
u 0 \) = \i 0 U'l

f or all Ll , \) 0

PROBLEM 10.4.2
The mathematician Roland Sprague invented the following

sequence: u 1 = 1, sn = u 1 + Ll2 + •• -. + un' Lln+i = 1 /sn. Al though

there is nd simple formula for sn it has an approximate formula

which is very simple.. Can you find it and say why it works.

NEWS UPDATE

In Function, Vol.6, Part 2, we reported on the ten year old
Huth Lawrence's admission to OHford University amid pessimistic
accq/_lnts that she'd II come to nothing ll

• Well four years later she
hasn ' t ful f i 1], ed these proph~ci.esc She recentl y gradLlated wi th
first class h9nours in Mathemati~s and Physics and, at 14, is the
youngest graduate ever to emerge from Oxford.
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