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THE FRONT COVER

MeADe Deakin, Monash University

If a cone is sliced through, the resulting cross-section
is a curve called a conic section. Our cover shows three types
of conic section: the ellipse, the parabola and the hyperbola.
Which type arises depends on the angle between the plane of the
cut and the side of the cone.

The Greeks began this study and the theory given above was
known to Menaechmus (4th century B.C.), a pupil of Plato's.
Euclid wrote extensively on the conic sections but these works
have not survived. The slightly later (3rd century B.C.) work
of Apollonius has, however r come down to us and it is an
impressive body of work .. Later wo~k by Pappus. of Alexandria
(about 300 A.D.) extended the theory developed by Apollonius.

Very little happened to expand on this body of knowledge
until the 17th century A.D., however~ In that tim.e
developments of both a practical and a theoretical nature began
to take place.

On the observational side, Kepler in 1609 pUblished his
first law of planetary motion: that the planets move in
ellipses with the sun at one focus. (The el.1ipsehas the
property that there are two points, the foci / in its interior,
such. that light emitted from one is reflected off the ellipse
into th~ oth.er~)

Later (about 1680), Newton showed that this implied that
gravity obeys· an inverse square law~ If wade this calculation
in reverse, and ask what orbit a body attracted to a larger one
by such a force must follow, we find that the path must be a
conic section.· That is to say that it could be elliptical, but
it could also be parabolic or hyperbolic. .

The conic sections in fact belong to a single family of
curves, distinguished only (apart from the scale on which they
are drawn) by a single parameter called e (standing for
"eccentricity" - in an ellipse, it measures the distance of the
foci from the centre). If 0 < e < 1 the conic section is an
ellipse, if e = 1 we have a parabola, and for e > 1 the
curve is hyperbolic. The very special case e = 0 is a circle
- a very particular type of ellipse.

If e is small, the ellipse is nearly circular, and this
is the -:ase wi th the planetary orbi ts. In the case of Mars,
e ~ 0.09 and this corresponds to a "f ~attening" of 0.4% in
the orbit - i.e. its longest diameter is only 0.4% larger
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than its shortest. It was Mars whose orbit Kepler succeeded in
computing and we see from these figures that this was a
considerable feat, requiring very precise data. Luckily this
was to hand following the work of the Danish astronomer Tycho
Brahe, whose pupil Kepler had been.

Only two planets have more eccentric, i.e. more
pronouncedly elliptical, orbits than Mars. These are Mercury
(e·::::: 0.20) and Pluto (e ~ 0.25). However, Kepler had no
knowledge of the second of these and the first is very hard to
observe as it 1 ies so near the sun. (Coperni eus 1 dying words
are said to have been "It grieves me to die without ever having
seen Mercury".)

For an ellipse, the eccentricity defines the shape;. higher
values of e corresponding. to longer, flatter ellipses. The
first notably eccentr ic orbi t recognised as such was
Halley's comet, whose return to visibility this year has
excited so much interest.

In 1750,' Halley, after whom the comet is named, suspected
that it moved in a highly eccentric orb! t, which ~onetheless

remained elliptical. It is now a matter of record that he was
correct in this. The comet follows an orbit for which
e ::::: 0.97.

In fact Halley's comet is one of a quite small number that
remain relatively close' to the sun. It goes to a farthest
point somewhat beyond the orbit of Neptune before swinging back
to visit us again.

Comets typically (there are exceptions) hav'e values of e
very near 1. This mean~ that their orbits are - very nearly
parabolas. (It is very unlikely that in any given case e
will be precisely equal to 1.) This has been taken to mean
that they come from very great distances and mayor may not
visit us periodically.

To travel these distances requires very great times (e.g.
Delavan's comet, 1914, was calculated to have an elliptic orbit
that took it round the sun every 24 million years). A lot can
happen in 24 million years and really all we can say is that
prediction over such eons is a very uncertain business.

The theoretical orbi ts are al tered by interactions wi th
planets and it is thought-that this process "captured" Halley's
and other close comets perturbing them out of their former long
period paths. It is believed also that the hyperbolic orbits
are due to the same process of interaction but that here it has
acc~lerated the comets to speeds that will ultimately (unless
some further interaction occurs) eject them from the solar
system altogether.

So there is a lot we still don't know and a lot that we
do. Perhaps the most surprising thing is that a purely
geometric theory, developed out of mathematical curiosity over
2000 years ago, should turn out to be of importance in so
different a field of research.
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POLYGONAL, PRIME AND PERFECT

NUMBERS

J.e.Stillwell, Monash University

This article is devoted 1;~o some mj.scellaneous topics in
Greek number theory which are -·""intriguing but somewhat outside
of the mainstream of mathematics.

The po 1ygona 1 number s were studied "by the Pythagoreans,
and result from a naive transfer of geometric ideas to number
theory. One has, e.g., the triangular numbers:

square numbers

•

pentagonal numbers

e-

3

4

6

9

10

16

5 12 22

etc. From these diagrams it is an easy exercise to calculate
an expression for "the mth n-agonal number as the sum of an
arithmetic series and to show, e.g. I that' a square is the sum
of two triangular numbers. Apart from Diophantus' work, which
contains impressive results on sums of squares, Greek results
on polygonal numbers were of this elementary type.
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On the whole 1 the Greeks seem to have been mistaken in
attaching much importance to polygonal numbers. There are no
major theorems about- them, except perhaps the following two.
The first is the theorem conjectured by Bachet [1621] (in his
edition of Diophantus f works) that every positive integer is
the sum of 4 integer squares. This was proved by Lagrange
(1770]. A generalisation, which Fermat [1670] stated without
proof~ is that every positive integer is the sum of n
n-agonal numbers. This was proved by Cauchy [1815], though the
proof is a bit of a let down because all but 4 of the numbers
can be 0 or 1~ The other remarkable theorem about polygonal
numbers is a formula proved by Euler [1750] and known as
Euler's pentagonal number theorem, since" it involves the
pentagonal numbers. .

[The 4 square theorem and the pentagonal number theorem
were both absorbed into a much larger theory around 1830,
Jacobits theory of theta functions.]

The' prime numbers were also considered within the
geometric framework, namely as the numbers with no ~ectangular

representation.- A prime number, having no factors apart from
itself and 1, has only a ulinear" representation. Of course,
this is no more than a restatemen~ of the definition of prime,
and most theorems about prime numbers' require much more
powerful ideas, however the Greeks did come up wi th one gem.
This is the proof that there are infinitely many primes, in
Book IX~of Euclid's Elements.

,Suppose on the contrary that there are only finitely many
primes Pl' ""Pn , But then, what about

ThiS number is larger than Pl,P2" .•• ,Pn , yet could have no

factors, since it leaves remainder 1 when divided by any
prime Pi' Thus P is a prime number diffel;'ent from

PI' . · . ,Pn · Contradiction,!

A per fee t number is one which equals the sum of its
factors (including 1 but excluding itself) .
E.g. 6 = 1 + 2 + 3 is a perfect number. So is
28 = 1 + 2 + 4 + 7 + 14.- Although this is a concept which goes
back to the Pythagoreans, only two noteworthy theorems about
perfect numbers are known. The first is in Euclid and the
second is a converse, proved by Euler [1849]~ Euclid concludes

Book IX of the Elements by proving that if 2n - 1 is a prime,

then 2
n

-
1 (2

n
- 1) is a perfect number. These perfect numbers

are of course even, and Euler proved that every even perfect
number is of Euclid's form. It is still not Known whether
there are any odd perfect numbers. In view bf Euler's theorem,
the existence of even perfect numbers depends on the existence
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of primes of the form 2n - 1, known· as Mersenne primes. It is
not known whether there are infinitely lllanyl1ersenne primes,
though larger and larger ones seem to be found quite regularly~
In recent years, each hew world record prime- h~s been a
Mersenne pr ime, giving a corresponding warId record perfect

< number. .

IN OBTUSE ANGLE'S STUDY

This excerpt is by the poet and artist William ·Blake. It
is taken from Chapter 5 of his manuscript fragment An Island in
the noon.

Obtuse Angle, Scopprell, Aradobo, &: Tilly Lally are all
met in Obtuse Angle's study.

tpray,' said Aradobo, 'is Chatterton a Mathematician?'
'No,' said Obtuse Angle. 'How can you be so foolish as to

think he was?'
'Oh, I did not think he was - I only as~rd,' said Aradobo.
t How could you think he was not, &: ask if he was? r said

Obtuse Angle.
'Oh no, Sir. I did think he was, before you told me, but

afterwards I thought he was not. f

Obtuse Angle said, 'In the first place you'thought he was,
6[ then afterwards when I said he was not, you thought he was
not. Why, I know that - ,

'Oh no, sir, I thought that he was not, but I ask'd to
know whether he was. ' .

'How can that be?' said Obtuse Angle. 'How could you ask
& think that he was not?'

'Why,' said he, 'it came into my head that he was not.'
'Why then,' said Obtuse Angle, 'you said that he was.'
'Did I say so? Law! I did not think I said that.'
'Did not he?' said Obtuse Angle.
'Yes,' said Scopprell.
'But I meant - • said Aradobo, 'I - I - I can't think.

Law! Sir, I wish you'd tell me how it is.'
Then Obtuse Angle put his chin in his hand « said

'Whenever you think, you must always think for yourself.'
'How, sir?' said Aradobo. 'Whenever I think, I must think

myself? I think I do. In the first place - , said he with a
grin.

Continued on page 17.
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ARE WE RELATED, YOU D 11

.Watterson, MOD ity

I inher i ted my genes from my parents. One hal f of my
genes come from my mother, and the other half from ~y father ..
I am not exactly likeei ther of them, but I do bear some
visible similarities wi th both of them.. You and I are not
brothers or sisters (Usibs lt

), that is, as we do "not have the
same parents, we are not very closely related.. But we are
related, if our ancestry is traced back far enough. Sometime
back in the remote past, you and I would have .shared a common
ancestor ..

How far back would we have to go in order to find a conmlon
ancestor? Of course if your surname is Watterson, you may be
related to me through a qui te recent common ancestor en our
fathers' side. If you have a different surname, nevertheless
we could be related by a common ancestor on our mothers' side,
or, for that matter, on our fathers' side, or even on both
sides. .

Let us investigate this. problem using very· simple
assumptions. The answer we get will not be qu.ite right"
because the assumptions are not quite rights But the way of
tackling the problem is the way th~oretical geneticists study
the theory of evolution.

Suppose a gene is chosen from me (say, one of my two genes
which determine whether my blood-group is A, B, AB or 0). And
suppose one of your blood-group genes is also chosen. Your
gene and my gene are copies of genes present in the population
of our parents I generation. Suppose that that population
consisted of N people. There would have been 2N blood-group
genes amongst them, as each person has two such genes.

. If my gene was a copy of oneo'f those 2N genes, chosen at:
random, then my gene would h~ve probabili ty 1/2N of being a
copy of the same gene that your gene is a copy of. [Of course,
we happen to know that that didn I t happen in our particular
case, because I don1t have any usibs". But if you and I were
replaced by two randomly chosen people, and if mating had been
at random among our parent generation, then the argument would
apply more accurately.]
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1
P = 2N

for the probability that our two genes are related because they
are copies of the same gene one generation ago. If, in fact r

our two genes are copies of two distinct genes one generation
ago, even so those two genes might themselves have a common
parent gene (in our grandparents' generation) . The
probability, that our two genes are not related w~th respect to
our parents I generation but are related wi th respect to our
grandparents' generation, is .

(1 - p) p = [1 - ~N] ;N .
Arguing in a similar way, we can say that the probability

that our two genes are both descended from a common ancestor
gene x generations ago, but not more recently, is

(l-p)(l-p)(l ~p) (1 - p)p = {I - p)x-l P •
------ IlIIllflIl-....-- .---..... --

x-I terms

Call this probability P{x}. We have· shown that

P(x) = (1 _ p}X-l P ,

which applies for x=l, 2, 3, .....

The probabilities P(x) form a geometric 'sequence, because

P(l) = P t P(2} = (1 - p)p

so that each term is (1 - p) times the previous term in the
sequence.

Earlier, I said that you and I are definitely ttelated.
Under the above assumptions, I can prove that staterrien.t. Let
us agree that we are related if our two genes do haV:E: ~! COIftmOn

ancestral gene x generations ago, for S9me ){=1 or 2 or 3 or .. ".
The probability of that is

pel} + P(2) + P(3} + ....
2 .

p[l + (1 - p) + (1 - p) + ••• ] •

If we agree that we can go back into the past for an infin.1.tel.Y
long period, this series i$ an infinite geometric series, whose
sum is

1 1
Pl-(l-p)=P p =l.

So the probability that our genes (and we) are related sometime
in the past is 1.



9

You might have noticed in the above argument that I have
assumed that the population remained of size. N people every
generation. If so, the same value of p applies for the
probability that two'genes have the same parent gene, whatever
generation we are talking about. Actually, if· ·the population
size were smaller and smaller as we go back in the past, p
would get larger and larger and our chances of having a common
ancestor fairly recently would increase. Of course the
limiting value which we found above, 1, cannot increase! It is
the highest any probability can be .

. We may have to go back a very large number of generations
before your gene and mine shared a common ancestor. The
average ("mean" or "expected") number of generations whould be

average lxP ( 1) + 2xP ( 2) + 3xP (3) +

p[l + 2(1 - p) + 3(1 _ p)2 + .... ] generations .

Here, we have considered the possible numbers 1, 2, 3,
mUltiplied them by the probabilities of their being the case,
and summed the resul t. To work out the answer, you will
recognise that

1 + 2x + 3x
2 + ...

is the derivative .

This result shows that, if the population always
contained, say, N=15,000,000 people, then on average it would
be 30,000,000 generations ago before we would find a common
ancestor for two of the genes at present in the population.
And if we take 20 years (say) as being one generation, then we
sould have to go back 600 , 000 , 000 years to find a common
ancestor. Of course it may have happened more recently, or
even more remotely in the past, than this average value.

Incidently, some scientists say that 'the present human
race has been a species, separate from other species, for about
one million years. So we might have. to go back to some earlier
life-form to find our common ancestor gene! Other people argue
that all humans descend from Adam, so we need not go further
back than him for find our common ancestor gene.
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P L COM UTING:
BREACHING·

TIlE Ia"RO IER OF TIMEt

Anthony aeder, Monash University

Computers are usually thought of as extr~mely fast
electrica~ machines capable of performing millions of
calculations or instructions .every second. This behaviour so
greatly exceeds human abilities that it may seem pointless to
consider ways of making computers run even faster. However,
there are some tasks where attaining a particularly high speed
of computation is essential because only a short. period of time
is available until tne answer is needed. For example, a
program controlling the flight path of a spacecraft must solve
sets of complicated mathematical equations based on the craft's·
current spatial posi tion in time to make a course corl'tection
before the craft has moved too far from that position. This
urgency occurs in other control s1tuations ~uch as production
lines, chemical factories and nuclear reactors. High speeds of
computation are also required when processing large amounts of
data., for instance the radar or satellite information used in
wea~her forecasting 0 A few years ago, it was not possible to
produee an accurate 24 hour forecast based on all the available
data for the Northern Hemisphere in less than a day! This
situation has now changed due to the use of parallel computing.

One way of speeding up computers is to design them to do
several steps of a computation simultaneottslyo If certain
steps do not affect each other at all, they can be done at the
same time in different parts of the computer and the results
combined later 0 Consider the simple problem of adding 10
numbers together A • A conventional computer would add the first
two, then add the third to that sum, the fourth to the new sum
and so on, making the final sum available after 9 steps. In a
parallel computer capable of . simultaneous . addi tions of
different numbers, 5 pairs of numbers could all be. added in one
step, pairs of their sums added together when available and so
on, reaching the answer after only 4, steps. This form of
parallel computing is probably the most powerful but has some
disadvantages. It is often difficult to break up a computation
easily into parallel sections. In many c~ses, a whole new way

t see also' Function, VOI.5, Part 1, p.13
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of doing the computation (an algorithm) must be designed to
allow parallelism to be us~d effectively. This is because the
original algorithms were designed with conventional computers
in mind, where the- grouping of steps is less important.
Another disadvantage is that many electrical 'components are
needed to build computers able to perform multiple instructions
simUltaneously on different data elements, adding to the
complexity and cost of the machine.

In view of these difficulties, compromises have often been
made when constructing new parallel computers. Such machines
are suited only to a particular type of parallel behaviour and
will be very fast if algor! thms of that t"ype are used. The
most common parallel computer is the vector or array processor.
This is based on the idea that many computations consist of the
same operation applied to a set of several data items, achieved
by stepping through the operation with each data item in turn
on a conventional computer. A vector processor would apply the
ope"ration to each element of the data set at once. As the "name
suggests, these computers are well suited to vector and matrix
arithmetic, which forms a large part of mathematical computing.
The preVious example of a parallel algorithm will work on a
vector processor by first 'forming two vectors, each containing
5 data items, adding them and then continuing the process with
shorter vectors. Of course, the shorter the vectors used, the
less effective use is being made of the computer1s processing
power. Another -kind of compromise is made when computer
instructions are overlapped rather than each one being
completed before the next one commences. In the example of
adding 10 numbers one after another , the method used by the
computer to add the first pair of numbers might calculate the
rightmost digit of the sum initially and then form the next
digits. In this case work.could begin on adding the sum to the
third number before the sum had been completely' worked out!
Computers based on this principle are called Pipeline machines,
because they usually have several partly completed operations
'in the pipeline' at any moment in time.

A number of very powerful computers based on these and
simi lar ideas are now being produced. Some of these are so

"much faster than any conventional computer that they are termed
supercomputers. They" are usually used for long mathematical
calculations, such as simulating a natural phenomenon or
producing successive frames of an animated movie, which would
occupy conventional machines for hours or even days. Two
supercomputers, the Cray and the Cyber 205, are in everyday use
in Australia for just these purposes!

What is the next step? A lot of researqh effort has been
put into automatically finding parts of programs which can be
computed in parallel and now some experime~tal computers which
work on this principle have been bull t. The existence of
parallel computing has aided the development of artificial
intelligence, a process reqUiring the evaluation of a large
number of statements of factural information. A new generation
of computers based on parallel logical rather than mathematical
operations is now being bUilt~ While there is still a long way
to go before parallel computing is commonly available and
useful, it has certainly served its original purpose for
various types of computations: to break through the barriers
of time.
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THE GROWTH OF FERN FRONDSt·

U Stephen Murphy;

Year 6, Wesley Collge
-Ferns are common in nature.. Most live :in moist shady

situations and some live entirely in water~ Usually they are
found in regions of high rainfall.

The largest species are the tree ferns which may reach a
height of eight metres. The leaves of some tree ferns are more
than three metres in length.

The leaf, or frond, is the largest part of most ferns.- It
is usually the only part of the plant to be seen above the
soil. Tree ferns are unusual in· that the stem is erect and
trunk-like, bearing a thick crown of leaves at the top.

Ferns have spores on the undersides of their leaves. When
released, these spores germinate in four to eight weeks if the
conditions are moist and cool. When they germinate, the result
is a small flat plant, often resembling a heart in its shape v

After a few weeks this small, heart-shaped plant dries up as
the fern develops.

A furled frond grows out from the crown, as it is calledo
In time this will develop into the stem of the frond, with
other, feather-shaped, nfrondlets" attached tC:J itc These are
referred to as the secondary rachi s . At first, these toe
develop as spirals along the length of the crozier.

This, the growth of the spiral crozie~, is the first of
three growth stages I identified. It gives way to "the second
and ·most rapid stage as the frond unwinds, so that the frond
increases in length while the crozier (the curled portion) gets
smaller and smaller until the unwinding is complete a

There is then-a third stage when the frond is completely
uncurled. In this stage some tip growth takes place before the
frond stops growing altogether.

I studied the growth of a tree fern during -the spring and
the autumn and found that the autumn growth was much qUicker
than the spring growth, but that the resulting leaves were not
as long.

t Article based on a project selected as a finalist in this
year's BHP Science Prize.



14
For a short ,period, I studied day-night patterns of growth

and,found that t~ee fern fronds continue 'to grow at night, but
day growth is much faster.

The sort of growth I found is illustrated in Figure 10
This plots the spring growth of four different fronds on the
same tree fern. They all grow fairly slowly for the first

200

25 50 75

Figure 1.

100 days

twenty days and then rapidly until about Day 60. After
seventy-five days the growth had almost come to a halt with the
secondary rachis fully grown at about 180-190 em in length.

Figure 2 shows an idealised form of this growth so that
the various stages are readily identifiable. Also drawn on the
same diagz;am is the radius of the crozier. This goes to zero
at the end of the second stage.

GROWTH OF FERN FRONDS
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Figure 2.



15

Figure 3 shows a frond in the second stage of growthQ For
easier visibility the secondary rachis have been removed. In
Figure 4, I $how the shape of the frond at this time. This was
drawn by carefully tracing around the 'frond and then using a
French curve to "even out" the appearance of the diagram.

To simulate the shape of the crozier at this stage, I used
the turt,le. graphics package to produce a computer-drawn
C!quiangular spiral. This gives a good fit as Figure 5 shows.
(Compare its shape with that shown in Figure 4.)

Figure 3.

Figure 4.



Figure 5.

Here is the programme used to produce Figure 5.

10 HIRES2, 2
15 FORJ=2eT015STEP-5
20 F=l :PI=3 .14
38 AL=8S*PI/1Sa
40 B=COS(AL)/SIN(AL}
sa FORI=BT010S0STEP5
6a TURTLE1:BYE n TURN98:TUP:C=C+l
~a RA=I*PI/1S0
Be R=3*EXP(B*RA)
90 T=I-I*2:TURNT:MOVER:X=TPOS(X}:Y=TPOS{Y)
10B IFF=lTHEN12So
l1B DRAWPX,PY,X,Y,l
128 PX=X:PY=Y:F=0
136 NEXTI
148 NEXTJ
150 DRAWX,Y,X+3e,Y,1
155 DRAW174,lee,181,100,1
168 FILLX+5,V-5,19

Finally, Figure 6 shows the variation in growth between
day and night. I measured day and night growth from Day 10 to
Day 15. During this time day growth was larger than night
growth, except for Day 13 when they were the same.
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Continued from pag'e 6.

=Pooi Poo!' said Obtuse Angle. 'Don't be a fool.'
Then Tilly Lally took ~p a Quadrant & ask'd, 'Is not this

a sun-dial,?t
'Yes,' said Scopprell t fbut itVs broke.'
At this moment the three Philosophers enter'd, and

lowt~ing darkness hoverfg over-the as~embly.

~Come:l't said the Epicurean, 'letts have some rum & water,
« hang the mathematics! Come, Aradobo! Say something. I

Then Aradobo began, 'In the first place I think, I think
in the first place that Chatterton was clever at Fissie
Follogy, Pistinology, Aridology, Arography, Transmography,
Phizography, Hogamy, Hatomy, &: hall that, but, in the first
place, he eat every little, wickly - that is, he slept very
little, which he brought into a consumsion; & what was that
that he took? Fissie or somethink, ~ & so died!'

So all the people in the book enter' d into the room, &
they could not talk any more to the present purpose.
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...~ .....~DRONt

Bruce Henry,Victoria College,
Rusden

Pascal's Triangle. is well known to senior school
mathematics students:

1
1 1

1 2 1
1 3 3 1

1 4 6 4: 1
etco

Each row has a 1 on each end and each intermediate number
is the sum of the two numbers 'above ito Al.ternatively, we can
think of the Triangle as growing out of an infinite sea of
zeros:

0 0 0 0 0 0
0 0 0 1 0 0 0

0 0 1 1 0 0
0 0 1 2 1 0 0

0 1 3 3 1 0
0 1 4 6 4, 1 0

etc.

Then any number is the sum of the two numbers above it.

The (n+l)th row gives the coefficients of descending
n'powers of ·x in the expansion of (x + y). For example,

(x + y) 3 = Xl + 3X2.y + 3xy2 + y3, where 1, 3,' 3, 1 is the
fourth row of Paecal's Triangl~. This is usually why we use

the Triangle - to help us 'to expand (x + y)n o' The relation
between the rows 1s easily seen - given one row, to get the

coefficient of xryn-r. in the next row, we must multiply the

t·e·rm in x r - 1y n-r by x and the term in x r
y n-r-l. by y and

add the two togethe~. This corresponds to adding the two
coefficients immediately above the one reqUired 1n the
Triangle.

t See also Function, Vol. 8, Part 1, pp.25-26.
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Further, the rth term of the (n + l)th row of Pascalfs

Triangle is [rz] This is a direct consequence of ther-l . ~

(n'+ l}th row giving the coefficient of (x + y)~.

We will

coefficients of
useful pattern.

investigate -the relationships between the

(~ + Y + z}n, in the hope of getting another

We h~ve (x + y + z) 0 1 I

(x + y + Z}l X + Y + Z ,
(x + y + z) 2; ):2 + 2xy + 2xz +. y2 + 2yz + Z2

Let us arrange the coefficients like this: .

T 1
0

T 1 1
1 1

T 2 1
2 2

1 2 1

In order to put the right coefficients on the right '~erms,

imagine the top C01:~ner o'f the triangle as the "x" corner, the
lower left one as the n y " corner and the other one as the Itz tf

corner c: The· top 1. is the c<;>efficient of x 2 ; as we go do'wn a
l"'OW', the power of x decreases by 1 and that of y and Z

increases by 1, so that this row gives the coefficients of xy
and XZ o The last row has the coefficients of y2, yz and Z2 in
that order. Notice that we could just have easily have started
from the y corner - that moving one row away decreases the
power of y by one and increases the powers of x and z by one.
The 'ttJhol~!t triangle of numbers is symmetrical in the way the
numbers are applied to the powers of x, y and z as well as
about the centre.

Since (x + Y + z)~ x 3

.+ 3x 2 y + 3x 2 z
+ 3xy2 + 6xyz + 3xz 2

+ yi + 3y2z + 3yz2 + Z~ ,

T 3 1

3 3
3 6 3

1 3 3 1

And you can check for yourself that

T 4i 1

4 4
6 12 6

4 12 12 4
1 4 6 4 1
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Before reading further you might like to try to find a way
to deduce T i when T i -1 is known. This is the kind of thing

that REAL mathematics is about - trying to find a pattern, use
it to get new results and prove these results. And after all,
this is what we do with Pascalls Triangle.

·The pattern here becomes very straightforward if we
visualize each of the T' S as a layer in a tetrahedron. I
expect you have already noticed that the edge of each T is·a
row of Pascal is Triangle; now we are talking about a
tetrahadron of numbers whose three upper faces are each a
portion ~f Pascal's Tri~ngle and the base 1S the last T i we are

investigating. So now we can get the edge numbers of the next
T - it is the interior numbers that are difficult. But each is
just the sum of three numbers in the layer above it - the three
numbers which are nearest to it. In the same way as we add the
two numbers directly above a number in Pascal's Triangle (and
these are the two numbers nearest to it), in Pascal's
Tetrahedron we must add three numbers in the layer above, and
these will be the nearest ones.

Again it is useful to float each layer in a sea of zeros,
for example:

0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 3 1 3 0 0 0 0
0 0 3 2 6 2 3 0 0

0 0 1 1 3 2 3 1 1 0 0
0 ·0 0 0 0 0 0 0 0

The layer above fits over the circles containing . the
numbers - it is easy fa see that each number in the lower layer
is the sum of the three numbers which surround it.· (Some 1 ines
indicate the numbers added.)

If the pattern is correct, you should be able to write
down- T 5 :

T s 1

5 5
10 20 10

10 30 30 10
5 20 30 20 5

1 5 10 10 5 cl

We can justify this pattern in the same 'way as we
justified it in the ca~e of the ordinary Pascal's Triangle; to.
get a certain coefficient, certain coefficients from the layer
above must be multiplied by X, Y or z and added together. You
can qUickly check which numbers these-are.

We also seek a relationship between these numbers wi thin
one layer of Pascal=s Tetrahedron and the binomial coefficents.
In T s you will notice that the numbers in each row have a

common factor which is the first (non-zero) number in the row.

This is [5) where n is the number of the row. With the
n-1

common factor removed, the layer becomes
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1
1 1

1 2 1
1 3 :3 1

1 -4 6 4- 1
1 5 10 10 5 1

and these numbers are easily recognized as the binomial
coefficients as displayed in Pascal!s Triangle! We can
therefore expect the rth number of the nth row of the kth layer

of the Tetrahedron to be [n~l] [~=~]

'l'his formula can be checked by a consideration of the
binomial coefficients and the way they operate in the expansion

of (x + y + z)n 0

So we have an easy t>~ay to get the coefficients in the

expansion of (x + Y + z)i'l 0 I wonder what happens in

(x + y + z + w)n?

LJ.'7' l~~~'{~R~··S·. TO THE· ED·ITO.·R~IJ .I;, A. JL,~ -.

Ht\LLEY IN 1066?

Th? ~llu~tration below, taken from the Bayeux tapestry,
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is commonly and erroneously .believed to represent Halley IS

comet.

For a start, it looks nothing like Halley's comet, or any
other comet for that matter. Furthermore, Halley's comet has a
period of 75 years, whereas

(1986 - 1066)/75 = 12.26 I

a number which is clearly not integral, as it should be were
the usual explanation correct.

Simple inspection of the picture shows that what is
depicted is a rocket. We now know that the visi tors in the
rocket {c.f.· Chariots of the GOdS} were induced to side with
the invading Normans rather than the defending Saxons. This
has affected permanently the history of these British Isles.

Dai Fwls ap Rhyll,
Llanfairpwllgwyngyll
gogerychwyrndrobwyll
llantisiliogogogoch~

Wales.

ELEGANT POWERS

52 :::::: 4 2 + 3 2

6 3 = 53 of" 4
3 + 3

3

15 4
14

04
+ 94 + 8

4 + 6 4 + 4 4

12
5 = 11

5 + 9
5 + 7 5 + 6

5 + 55 + 4 5

28 6
23

6 + 22 6 + 21 6 + 206
+ 186 + 166

+ 15
6 + 13

6 + 12 6 + 9
6

+ 7
6 + 6

6 + 56 + 4 6 + 2
6

+ 1
6

Relations of numbers such as those ak;love probably don't
have more importance than possibly somewhat stimulating your
curiosity: what do you think of these relations? Are there
any more? Which are the simplest? I will just make a: few
observations.

The first one is more than ·well-known. You probably know
more of these. triads from Pythagoras' proposition. But the
second is also worth remembering. The divisions of 15 and 12
can quickly be checked by a calculator. But you will need
qui te a bi t of paper for checking 28. There aren t t so many
divisions of higher powers. Or should we say: owe haven't
found those yet? There exists a division of 1827 into 127
eighth powers and one of 9339636 into 90 with ninth powers.

Which division is the "nices't n ?

Here you can use various yardsticks:

1. Keep the
possible,

number's
but

into
avoid

which you
doubles.

divide as
For

small as
example :.
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2. Look for a division wi th the least possible numbers. Fo!'

example: 8
4 = 3154 + ~724 + 1204 + 34 can be shorter a

How large is a?
This also occurs in fifth powers:

This division was found in 1966 (aided by a computer). It
disproved the supposition of Euler who believed that the
number of terms must be at least as large as the exponent.
So in the example there-are not 5 terms but only 4.

3. Use only consecutive numbers:

24
2 + 23

2 +
28

2 + 27
2 +

14
3 + 13

3 +

+ 2
2 + 1

2

+ 19
2 + 18

2

12
3 + 11 3

You can find a nUTaber of divisions yourself by using the
following formulae:

( (2n + 3). n + 1).n /6

(en + 2).n + 1).n
2
/4

However, if you
possibility that
Thus:

don't
you'11

limit
come

yourself~ then there's the
across various possibilities~

65 2 + 63 2 + 162. = 602 + 25 2 = .. a or
10S

3
106

3 + 38
3 ~ 24

3 = 89 3 + 82 3 + 15
3

NEGATIVE AND FRACTIONAL EXPOliENTS

It -isn't so difficult to make a division with fractional
exponents. Try it:

or etc.

The negative exponent .is a bigger problem. . For the. expon~nt
-1 I know the division:

Who knows any other divisions with exponent -1? Are there
divisions with exponent -2, -3, etc.?

S. van den Horst,
Gemeentelijke
Scholengemeenschap
Woensel,
Eindhoven, Nederland.
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THE FIVE TWOS·

1 2 + 2 2 2/2
2 2 + .2 + 2 2 -
3 2 + 2 2 + 2/2

4 2 x 2 x 2 - 2 -
5 2 + 2 + 2 - 2/2
6 2 + 2 + 2 + 2 -
7 =. 22 ~ 2 - 2 - 2
8 2 x 2 x 2 + 2 -
9 2 >.< 2 x 2 + 2/2

10 2 + 2 + 2 + 2 +
11 22 + 2 + 2 - 2
12 2 x 2 x 2 + 2 +
13 (22 + 2 + 2)/2

14 2 x '2 x 2 x 2 - 2
2 15 22 + 2 + 2 + 2

16 (2 x 2 + 2 + 2) x 2

2 17 (2 x 2)2 + 2/2
18 2 x 2 x 2 x 2 + 2

2 19 22 - 2 - 2/2
20 22 + 2 - 2 - 2

2 21 22 2 + 2/2
22 22 x 2 - 22

2 23 22 + 2 - 2/2
24 22 - 2 +. 2 + 2

2 25 22 + 2 + 2/2
26 2 x (22/2 + 2)

Garnet J. Greenbury,
Taringa, Queensland.

ABOLISHING DISTINCTIONS

No sharp dividing line can in fact, be drawn between
'pure'arid 'applied' mathematics. There should not be a class
of high priests of undulterated mathematical beauty,
exclusively responsible to their own inclination, .and a class
of workers who serve other masters. Class distinctions of the
kind are at best the symptons of. human· limi tations that keep
most individuals from roaming at will over broad fields of
interest.

R. COURANT
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·PROBLEM SECTION

We begin by giving solutions to the rest of the problems
posed la_st year.

SOLUTION TO PROBLEM 9.4.1.

Begin with a sequence of integers

These are divided by. another integer
remainders

l1l (say) to give

The proposext
,. Garnet A. Greenbury, asked for the next

number in this second sequence.

Perdix j fo~rn@rly a regular columnist with Function, wrote
to us en this p~obl~m.

Fo~ any n r th~re exist integers «,m such that

n - 2 ~tJl

{n + 2} - 4 /(m

(n + 6) 8

{n + 3} - 5 1</11

This ca.~ b~; seen merely by
prime, either k = n-2, m=~

So, taJ;te

factor ising n-2
or k=l, m = n-2 .

If this .is

Provided that m > 8, 2, 4, 8, 5 will be the remainders on
division by III 0
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Now {ii -}- S - 2 r - s N.m
and this gives

tis =: :'1 + s - 2

with a remainder of S , as long as s < m + 1

The proposer tells us that the sequence he had in mind
was: 2, 4, 8, 16, ·32, ; wi·th 1.1 as the di-=lisOl'. This gave
remainders: 2 i 4, 8, 5,10: 9, 7,3" 6/ .l.t The other
questioilS' asked relied OT.::.. tb.J.s intf.:1rpretatjon. A solution
along these i.fries was Sl::nt 111 by David ShG.~'\1 of Geelong West
Tecihnical School.

SOLUTION TO PROBLEM 9.5.1,

I have N weights
Remov~ the weight m kg

of 1 kg, 2 kg,
and require

N kg respectively.

Sum of (weights < m kg) = Sum of (weights > m kg)

For what values of H,m is this possible?

The requirement boils down to this.

1 + 2 + ... + em - 1) = (m + 1) + (m + 2) + ... + N •

This, using the sum formula. for an ar i thm~'t ic progression 1

gives

or

(m.- 1)1ll
~---

N{N + 1)
--2---

m(m + 1)
---'2~---'-~

Since

m
2 N{N + 1)

N
2

<N(N + 1) < (N+ 1}2,

N(N + 1) always lies between two adjacent square number~ and
so cannot itself be square. The condition cannot be achieved.

SOLUTION TO PRObLE~ 9.5.2.

In the diagram opposi te f representing a folded piece of
paper I how must the fold be made to maximise the length ED?
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~.G

B

c D

F

E

b

Let A CBD = 6 • Then A BFG = 29 • Also BC = SF andwe wish .to maximise BD which equals BF leas 6 ButSF sin 29 = a So BF = a Is1n 29 , and we must minimisea/sin 29 cos 9 i. e. we need to Illax i 8li se sin 28 cos 6
which is 2 sin 9 (1 - sin2

6) This expression is maximisedwhen sin 9 = 1143 .

Note that the a~swer is independent of the shape and sizeof the paper.

SOLUTION TO PROBLEM 9.5.3.

Two cylinders of equal radius r meet at right angles insuch a way that their axes of symmetry intersect. Find thevolume of the region common to both cylinders.

Domenica Turkiewicz, then of Year 12, All Hallows' School,Brisbane, wrote:
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"It is very hard to draw this figure but the common volumeis made up of eight pieces like this. The diameter of thecircle shown is 2r and so is the diameter of thecorresponding circle for the other cylinder. So h = r .

I
"The volume of such a figure is i r

3

So the volume v of the common region is eight times this, or
16r

3

---r- ·

Finally, here are some new problems.
1985 School Mathematics Competition.

PROBLEM 10.2.1.

Both come from the

The dots in the diagram represent towns which a travellingsalesperson has to visi t. Two dots (towns) are joined by aline if there is some direct road-link between them~

5 2

4 3
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A circuit is a trip through successive dots along the
specified lines which starts and ends at the same dot and which
visits any given dot at most once.

An m-circuit is a circuit that involves m dots. Hence
the circuit 1, 2, 3, 4, 5, 1 which starts and ends at 1 and
goes through the dots 2, 3, 4, 5 is a 5-circuit.

For convenience the travelling salesperson would like to
find a lO-circuit so that each town would be visited once and
only once on any sales trip.

Show that no 10-circuit existsc

For what values of m do m-circuits exist? (Give reasons
for your answer.)

PROBLEM 10.2.2.

What is the smallest value of C( so that

F (x) 7~11 + 11x 7 + 10ax is divisible by 77 for every value
of x?

PERDIX

Several outstanding resul ts were achieved in -the
Australian Mathematical Olympiad Examination this year and we
have the strongest hopes for the success of our team at Warsaw.

The team selected is:

Adrian Chen, Prince Alfred College, Adelaide, S.A.
David Hogan, James Ruse High School, Car11ngford, N.S.W.
Ross Jones, Rosney College, Rosney, Tasmania.
Catherine Playoust, Loreto Convent, Kirr1billi, N.S.W.
Ben Robinson, Narrabundah College, Kingston, A.C.T.
Terence Tao, Blackwood High School, Eden Hills, S.A.

The reserve for the team is

Bruce Cox, Sydney Church of England Grammar School, North
Sydney, N.S.W.

The IBM May training school for the team will also be
attended by:

Daniel Calegari, Melbourne Church of England Grammar School,
Melbourne, Victoria.

Kin Van Chung, Duncraig Senior High School., Duncraid, W.A.
Mitchell Porter, Toowoomba Grammar School, T~owoomba,

Queensland,
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all three of whom will be eligible for selection for theAustralian team in 1987._

Congratulations to all of the above!

I am tol-d that the team selectors had great difficul tythis year in making their final selection because of theoverall excellence of performance in the AustralianMathematical Olympiad.

* * * * * * * *

Problems

The 'Perdix column in the last issue of 1985 was devoted togiving a solution to the final problem, number 6, set in theInternational Mathematical Olympiad (lMO), at Prague, JUly 5,1985. The problem is:

For every real number Xl' construct the sequence, Xl' x
2 '

, by setting

(l)

for each n ~ 1.

Xl for which

Prove that there exists exactly one value of

for every n ,.

(2 )

The solution offered was presented so as to beunderstandable to anyone having done mathematics up to finalhigh school year. With more mathematical knowledge much of thelong argument for the solution could be omi tted because theresults established were reasonably standard. There have beenseveral. requests for al ternative. solutions and furtherdiscussion.

Let me 'begin by summar~s~ng the solution already given. Ishall then give the official solution that was available at theIMO at Prague.

SUMMARY of solution given in Function, Volume 9, Part 5.

Step 1 The discussion may be restricted to C-sequences Xl'
x 2 ' ••• , x n ' ... for which o < x0

1
< 1 .

~L
Type I:

There are two types of C-sequence:_
such that there is a largest term x

k
' say, and then
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Xl -< x 2 <

k
x n < ~~+l

Type I I :
Xl < X 2 <

for all n .

such that the sequence steadily increases,
. .. < X k < ..• < x n. < ..•

and

i.e.

_~..t~~. Call the set of all numb£.-:,rs x with 0 < x '< 1; thatstart a C-sequence of type I I the set A; and denote by B theset of the remaining x with 0< x < 1. Thus B is the set ofnumbers starting a C-sequence of type II.

~.!~l?....-1._ A and Bare nonempty and there is a number c such thata ~ c ~ b for a 11 a e A a.nd b E .B c

~~~p_~ No number a E A starts a C-sequence that satisfiesthe inequalities (2) for every n .

..§~_§.. If b e Band c < b, then the C-'sequence startingwith b does not satisfy inequalities (2) for every n .

._~t~._L The number c does n.ot lie in A; and hence c is theleast number in B.

~__~ The
inequalities (2)

C-sequence
for every D.

starting with c satisfies the

Hence c' is the sole number satisfying the condi tions ofthe problem.

OFFICIAL IMO solution

is a polynomial

Note that P isn

ObserVing that the

> 1 - 1
thex n In

there is a unique

p
n

1 1 and P n(b n) = 1 respectively.Ii

( 1 .!) (1 1
+ ~) 1 - 1

andn Ii n n
Since p

n+l
is increasing, it follows

Pn+l(an )

1 __1_
n+l

Note that

Let x 1 = x. Then x
n = P n (x ) where

of degree 2
n

- 1
with positive coefficients.

increasing(a} and convex(b) for x ~ o.

Pn+l(an +1 )

condition x n +
1 > "n is equivalent to

problem can be reformulated as follows:
positive real number t such that 1 - ~ < Pn(t) < 1 for all
n ~ 1. Since Pn is increasing ,for x ~ 0 and Pn(O) = 0, it
follows that for each n there are unique values for - an and

b
n such that P n(d

n )

of closed intervals and its intersection

Similarily r Pn+l {en}

b n +
1

< b
n . It follows that

~ 0

~. 1

is

in

and

and

1+1

for x

o ~ x

"is convex

< _x /b. n

p
n

Pn(x)that

Since

t ha t 8 n < a n +1

Pn +1 (bn +1 } 1, so

a nested sequence(c)
is non-empty(d}

Pn(O) = 0, we find
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particular 1 - ~ = P (a ) < a Ib Together wi th the factn n = n n
that 1 = 01 > b

2
> b

3
> ... this means that b n - an ~ lin

for all n. Consequently there is only one point t that
belongs to all the intervals. This point satisf ies

1 - ~ < Pn(t} < 1 for all n and it does so uniquely. For any

point x ~ t, either x < an or b n < x for sufficiently large

n meaning that Pn(x) < 1 - ~ or else Pn(x) > 1.

EXPLANATION OF SOME TERMS

then

P is
n

a < bmeans that if

x ~ 0) means that the graph of

"increasing"isp
n

Pn(a) < Pn{b).

P n is "convex" (for

convex downwards.

(a)

(b)-

For example each of the functions x
k

k = 1, 2,
convex for x ~ O. Consequently any sum of

is
positive

(c)

(d)

multiples of powers of x is convex for x ~ O.

[sn,bnl denotes the set {x f an ~ x ~ b}.

A sequence of intervals, or sets, 1
1

, 1
2

, ••• 1 In'

"nested" if, for all n, I n ~ I n+l .

That the intersection of a nested sequence of closed
is non-empty is a basic property of the real numbers.
Chinn and Steenrod, referred to below.

is

sets
See

A good source for further explanation of the ideas used
in the above solution is the book, addressed to High School
students, "First concepts of topology" by W.G. Chinn &
N.E. Steenrod, New Mathematical Library No.18. Consult this to
try and sort· out what is involved in the above proof.

In any event Chinn & Steenrod's book is compelling reading
and should be read by any aspiring Olympiad competitor.

COMMENTS on the official solution and comparison with
Perdix solution.

The official solution finds a sequence

< a < ...
n

and a sequence

> b > •..
n

such that B j < b j for all and j. Eachan e A, i.e. starts a

type I C-sequence and each b nEB, i. e. starts a type II

C-sequence. This is clear because the defining condition for



an' namely, P (0' ) = 1 - ~ , says that the C-sequence starting
n n. n

wi th a n has reached its maximum' at the term P n (a n ), and

similarly, since Pn{b
n

} 1" the C-sequence starting at b n

K
does not have all its terms less than k+l for any positive

integer, K, and so is of type II.

Thus the sequence a l , a 2 , , an' is a strictly

increasing sequence of elements of A, each less than each
member of the strictly decreasing sequence b 1 , b

2
,

b , of elements of B. Since b - 0 < ~ , these twon' n n = n
sequences converge to the same point, namely to the number c,
the sequence (an) converging from below to c, the sequence (b n )

converging from above to c.

* * * * * * * *

Function is published five times a. year, appearing in
February, April, June, August, October. Price for five issues
(including postage): $8.00*; single issues $1.80. Payments
should be sent to the business manager at the above address:
cheques and money orders should be made payable to Monash
Universi ty. Enquiries about SUbscriptions should be directed
to the business manager.

*$4.00 for bona (ide secondary or tertiary students.
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