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ABOUT FUNCTION

Funotion is a journal of mathematics. It aims to present
interesting mathematics and applications of mathematics which
can be understood by students in their last years of secondary
school.

Usually there are a number of articles on some aspect of
mathematics. Such articles can deal with mathematics itself
(pure mathematics), with some application of mathematics, or
with that separate branch of mathematics known as statistics.
Then too there can be articles on aspects of the computer, its
hardware or software. Last year, for example, saw articles on
Projective Geometry, Mathematics in Tennis, Quality and
Statistics an~ Turing Machines.

Each issue has a feature cover, and usually there is an
articl~ to go with it. We try to pick one ~hat is interesting
both visually and mathematically. This issue's shows an old,
but still valid, way of demonstrating a rather surprlslng
result, which is itself only a small part of a very important
chapter in modern mathematics.

Another regular feature of Funotion is the Problem
Section. This is the aspect of our journal that most seeks
interaction with you, the reader.

We are always very pleased to receive material from our
readers. Over the last nine years, readers, especially
school students,have sent us articles, covers, cartoons,
letters and computer programmes. Especially, however, they
have sent us problems and solutions. Many readers have found
that this is the way in which they can best interact with
Funotion.

The key to benefiting from Function is this "aspect: inter
action. Even when you read an article, you get most out of it"
when you contribute most. There is an active way to read an
article - check the derivations, for example; ask your teacher
about difficult points; if exercises are set, try them.

This active involvement with the material leads to much
greater rewards. You will understand more, and you will be
developing skills that will stand you in good stead for later
work in mathematics.
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THE FRONT COVER

The graph below shows a function whose values, in
successive intervals of length w, are alternately ± ~J4.

This function is periodio in that its behaviour in the interval
- ~ to w is repeated exactly in each successive such interval of
length 2TI, whether to the right or to the left.

y
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'1rJ4 ,---
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'".-
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- -11"/4

Periodic functions can be broken down into components which
are either sines or cosines, the function itself being in each
case the sum of such components (in most cases infinitely many of
them). This result· is due to the French mathematician and physicist
Jean-Baptiste Joseph Fourier (1768-1830), Who developed it in
the course of his studies on heat conduction. The breakdown of
periodic functions into sine and cosine components is nowadays
termed Fourier analysis in honour of Fourier.

The function drawn above, f(x) let us call it, has the
following Fourier analysis:

f() . 1. 3 1. 5x = Slnx"+ '3 SlD x+"5 Sln x +

The infinite series on the right is called a Fourier series.
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When

o < x < 7T

the sum of the infinitely many terms will always be 7T/4. If
we approximate by taking finitely many the sum will be approx~

imately 7T/4, the approxi~ation being (as agen~ral rule) the
better the more terms we takeo

When ·x takes on any other value (except for multiples of
7T) the sum of the series will be ± 7T/4~ as may readily be deduced
from the previous paragraph and the properties of the sine
function.

When x = 0, or any other multiple of 7T, the terms on
the right are all zero and hence the series sums.to zero, the
mean value or average of the values ± 7T/4 to right and left of
such points e.

Our cover shows a graphical illustration of this result
for eight values of x in the range -n < x < 7T, specifically

+ 'IT +--'!!.- +.!. 7T- 32 ' - 16' - 8 ' ± 4"

(reading from right to left). Here is that picture again with
some more detail shown. (It comes from Carslaw's Plane
Trigonometry~ 1909 - a once widely-used school text.)

y

+~

~O~!§§§~====----_~ =x__

To see how it is constructed, take the top left-hand curveo



Draw a line of length 1
making an angle of w/4
(45°) with the x-axis.
The right-hand end of
this line will be sin w/4

~) above the x-axis.

Now starting at this
point, take a line of
length 1/3 making an

angle of 3~ with the right

ward horizontal thus:

In this way, we reach,
as the diagram shows, a

1 1
height of ~ (I + '3).

Continuing in this
way, we find. the spiral
shown on the cover. Note
that we have also proved
the relation

o

I

rYaI

1 ( 1) :.J; 1+3 :
I

o
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1!. = .-l:. (1 1 1 1 1 1 1 1 )
4 12 + 3· - "'5 - "7 + "9 + 11 - 13 - 15 + I)" I> ,

which you might care to check on a computer or calculato.ro

Similar formulae for w. come from the other sPirals; what
are they? What about other values, like 'IT /6 ~ 1T /3 .pr 1f/2? (This-

last is particularly interesting: the result is usually
referred to as Gregory's series - see Funation~ Vol.4, Part 1.)

As another interesting exercise, consider the horizontal
projections of the curves - what do we get from these? (Such
an investigation could make a nice project for (say) the Maths
Talent Quest - or you could write it up and send it to us.)

There is a ·lot more to this topic - just to show you one
more aspect, we give the result of a computer graphic approach
to Equation (*).

The series (*) was summed by a computer, taking in the
first ~nstance twelve, in the next case twenty-foun and
finally one hundred terms.

The results were compared with the value of f(x),
particular attention being paid to the reg~on near x = 0,
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where, because of the "corners", the approximation is least
accurate. It i~ readily seen that quite good approx~mations

are achieved (relatively) quickly, and in the final case~

only the near neighbourhood of the corner shows appreciable
error in the approximation.
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FUNCTIONS OF SEVERAL
:VARIABLES

Colin Fox, Melbourne e.A.E.
Given a square of side length t units, the measure of

its area A is given by the formula A = ~2 That is,
A is a function of $l,. Using function notation, this is
written A = f(i) .

Now consider a rectangle t units by w units~ To
calculate its area, we use the formula A = ~w. In this
case, A is a .function .of R, and w & That is, A is
a function of two' variables and this can be written
A = f(i,w). So, for ~ rectangle with width 18cm and
length 25cm

A f(25, 18)
25 x 18
450 .

Another familiar function of two variables is the
volume of a cylinder:

Here, we can write v f(r,h)

The' simple interest formula provides an example of a
function of three variables:

I

I

PET
100

f(P,R,T)

For example, the interest earned if $600 is invested for
two years at 12% per annum can be calculated as follows:

I !(600, 12, 2)

600 x 12 x 2
100

144

In many applications of mathematics, the functions
involved have two or more variables. For some nice examples
of this, see the article 'The Mathematics of Measurement' in
this issue of function.
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DESIGNING AN ARCH

Neil S. Barnett,

Footscray Institute of Technology

Recently a member of the Institute's maintenance crew
'dropped in' to obtain help in designing an arch that was
required to be built above an existing doorway (the wall above
the door had to.be cut out). "He related that as an apprentice
he vaguely remembered a technique .for drawing the shape of an
arch using a bi t· of chalk and a piece of string'; however, he
could not recall the method exactly. My visitor'was quite
adamant that he didn't want a circular arch but rather an 'oval
one' .

I assumed that his not wanting a circular arch meant
rather that he didn't want a semi-circular one (although with
the dirnens~on~ he gave this was not possible) and that a
circular cap would be an acceptable possibility. Given the
width of the doorway and the height to which the arch should
reach I set about providing some alternatives for design. He
was not of· course interested in the detail, just the end result
and an easy method of execution. This is an important prin
ciple that should always be kept in mind when offering a mathe-
matical solution to a practical problem. In most instances
the end user doesn't want to know (and probably wouldn't under
stand anyway) all the 'gory' mathematical detail - just the
relevant procedure and a rough method to see if the result is
reasonable. In this particular instance the drawing is
evidence enough of whether or not the method will provide a
satisfactory result.

Existing
doorway·
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Armed with the door width d and the required arch
height h , I prOVided the following methods for drawing the
arch.

Method 1: Circular Cap

d/:
2

The problem is to find r in terms of the known quanti"ties
d and h ( r is the radius of the circle of which an arc is
a cross-section of the arch).

So

By Pythagoras' Theorem

(r - h)2 + (~t

2 2-2
r - 2rh + h + ~

2
r

2
r

and we conclude that

r

The specified values were
r = 60.6 cm.

h = 2Qcm, d = 90cm, and so

The drawing of this arch requires the fixing of a batten
from the middle of the top door frame to the floor below in a
vertical position. A string of length 606~ with chalk or
pencil attached can then be held taut so that one end is in
contact with the centre batten and the other end in contact
with either of the .top corners of the door frame.. Fixing" the
string at this point to the centre batte.n enables ·the otQ.er
end of the string (still held taut) to be drawn across the top
of the door with 'the chalk describing the form of the arch.
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Centre
batten

Method 2:' Elliptical Arch

Taut
string

~ D<?or frame

It is possibl~ to construct the arch to be the top ~alf of
an ellipse.

Using an ellipse with major axis d and minor axis 2h
as the arch (both. are known) the equation of it is :

where the middle of the top of the door frame, the centre of
the ellipse, is taken to be the origin.

An ellipse can be defined in a number of ways. One of
these is that it is the path traced out by a point that moves
in a plane so that the sum of its distances from two fixed
points in that plane is constant. This means that if we take
a length of string and attach its ends to separate po~nts

(ensuring that the string is slack) a pencil or chalk looped
into the string and the whole pulled so that the string is
taut will, when moved round, describe an ellipse. The two
points at which the string is attached are called the foci.
~rom the practical point of tracing an elliptical arch the
only problem remaining is to find the exact location of these
foci. With these and using the above technique the elliptical
arch can easily be drawn.
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5 String

I~// . Pen
m/ hI .
/

a

d~
2

We need to find the distance a .

Let the string length be 2m, clearly then:'

2m ~ (~ + a) + (~ - a) i.e. 2m = d

thus the string length needs to be the same as the door width~

When the pencil or chalk is vertically above the centre 'at
its maximum height the geometry dictates that:

h2 + a 2 = m2 i.e. a =~~2 _ h2 .

Hence, for h = 20 em and d = 90 cm, a =40.3 cm .

. The two foci are thus 4.7 em from either side of the door frame.
The string, 90 em long, is attached to the top of the door frame
4.7 em from the sides keeping the string.pulled tight the chalk
can then be drawn a-cross the top of the doorway. scribing the
form of the appropriate semi-elliptical arch.

Method 3: Cycloidal Arch

Another simple method (although a little more'sophisti
cated than Methods 1 and 2) is to use "a rolling circle to draw
an arch. If a circle of prescribed diameter is rolled on a
horizontal surface, a pen attached to a fixed point on its
circumference will draw the following (called a cycloid):

o
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The height of each arch is equal to the diameter of the rolling
circle and each corresponds to one complete revolution of1t.
Thus AB, BC, CD are all equal to the circumference of the
rolling circle. (It can be shown that the length of one arch
is 4 times the diameter of the rolling circle.) Constructing
anarch in this manner means that there is a fixed relationship
between the height of the arch and the width, namely:

7T h = d

So if' d = 90 cm then h must be 28.6 em.

If WB can persuade the carpenter to settle for a height of
28.6 em rather than the requested 20 em, then an arch can be
traced using a rolling circle of diameter 28.6 em with a pen
attached to a fixed point on its circumference and the whole
rolled along the top of the door frame starting with the pen
point at one end'of the frame.

It is of course possible to draw a variety of arches using
different diameters for the rolling circle giving the arch
height and width exactZy as specified. This can be accomp
nshed by placing a horizontal batten be'low the top of the door
frame and rolling the circle along it rather than along the top
of the doorway as in the foregoing.

Door frame

Horizontal
qat ten

The cycloid approach necessitates making a circular tem
plate for practical use, so the method is somewhat restrictive.
It should be pointed out, however, that for regular construction
of arches over standard size doorways and openings a-template
of the arch would be the easiest tool to use. . This would



13

certainly be the case if the arch had to be built ratherthan cut out, in fact you will often see bricklayers doingthis very thing. The templates themselves have to beconstructed and so the foregoing methods c~n be used toconstruct these too.

So a little mathematics can indeed be a very usefulthing.

LETTER TO THE EDITOR
THE GREGORIAN OVER-CORRECTION

After reading 'The Calenda~' by S.Rowe, Funation s Vol.9,Part 4, I wish to suggest that the Gregorian correction overcorrects the perfect calendar by Ii days every 5000 years.According to Rowe's figures, the number of days in 1 year is365.242196.

When we work on a 365 day year, we are neglecting0.242196 of a day each year.

_ 1211 (neglecting 0.000004 of a day).o 02422 - 5000

This means that the 'perfect' calendar has to be corrected1211 days over 5000 years (or 121098 days over 500000 years).This may be accomplished by making every fourth year a leapyear of 366 days. (This adds 1250 days in 5000 years) unlessit occurs at the end of century. (From the 1250. days added,we now subtract 50 d~ys leaving 1200 additional days every5000 years), except that every fifth century is to be countedas a leap year. (Thus 10 days are added to the 1200 making
1210)~ At the end of every ~OOO years there would have to bea double leap year. (There would appear a February 30.)So much' for the 'perfect calendar '(neglecting 0.000004 ofa day in 5000 years).

However, the Gregorian correction to our calendar is asfollows: Every year the number which is divisible by 4 is aleap year, excepting the last day of each century, which wouldnot be a leap year unless perfectly divisible by 400. ThisGregorian correction requires that 9JO days be added" every4000 years.

Wnen 970/4000 is converted to a fraction with a denominator of5000, there is obtained 1212.5/5000.

Thus the Gregorian correction over-correc~s the 'perfect'calendar by' Ii days every 5000 years (neglecting .000004 of aday) .

Garnet J. Greenbury, Brisbane.
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THE MATHEMATICS

OF .MEASUREME.NT

Michael Deakin, Monash University
In February, 1871, Scientific American carried a report

of a highly successful heavier-than-air flying machine. It
was steam-powered, and proved itself capable of rising to a
height of 200 feet. It travelled horizontally for a distance
of "about a block" at a public display in San Francisco.. This
performance was considerably better than many logged .a$
"flights" by pioneer aero clubs. It must be remembered, how
ever, that the machines involved there were much larger 
large enough, indeed, for the machine's operator to become
airborne along with his machine. The quest for heavier-than
air flight involved not only the production of a flying
machine, but one that was capable of carrying its pilot (at
minimum) aloft.

The small toy demonstrated a hundred years ago was not
large enough for this. The production of a larger model
based on the same design has never proved feasible. Indoed,
despite the efforts of a few enthusiasts, practical steam
planes seem likely to remain beyond the realms of possibility
(and certainly beyond those of economic sense). Airplanes in
the strict sense became feasible only after the advent 6f the
internal combustion engine ..

The difficulty with the steamplane is one of scaling.
We are all familiar with the idea of a scale drawing, or a
scale model. All the geometric features of one system may,
by use of these devices, be reproduced (except for size) in
another. Who ha.s not taken del;ight in those intricately
constructed dolls t houses that go to such pains to reproduce
exactly all the appearances of a large mansion? Perhaps we
are partly captivated by the scale involved, but also the
intricacy of the workmanship holds our attention. For the
consiruction of a really good scale model demands enormous
care over details - the paint, for example, needs to'be
suitably thin. .

The idea that some modelling principle may apply beyond
the realms of geometry (as that termf.popularly applied) is an
attractive one. The simple-minded ~pproach, however, of
relying on geometrical scaling alone breaks down, as the case
of the steamplane shows. That an extension of the geometrical
laws of scaling (known to the Greeks via the theory of similar
figures) did not hold in the obvious manner is perhaps an
insight we owe to Galileo.
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Modern theory in this area begins with an.analysis of
measurement and what it entails.

Whenever we measure a quantity, this measurement must be
made wi th reference to some agreed unif. We have uni ts. of
length, such as the metre, units of mass, such as the kilo
gram, units of time, such as the' second, and so on.

The three units' just listed are, in fact, three of the
basic units of the very widely accepted 81 (for Systeme
·1nternationale). Australia has, for about a decade now,
adopted SI units (with some minor modifications) for its
everyday life, industry and commerce, and indeed so have almost
all countries - the only major exception being the U.S.A.

Furthermore, as we shall see, the three units already
mentioned suffice (in a way to be explored later) to deal with
all measurements in the science of mechanics (the response, in
terms of changes of observed motion, that bodies display when
they are acted on by forces). Other aspects of measurement
require further units for quantities like .temperature ,
elect~ic currerit,.and so on. .

But let us get back to mechanics. There is nothing
particularly sacrosanct about the SI units. They are conven
ient and widely accepted. But other systems exist - until
recently we used another ourselves. The choice of a system
of units is a social convention - no more. Until recently, we
used an older, "Anglo-Saxon", system and (with minor differ
ences) this is still in use in the U.S.A .. today.

What is required, if science is to progress, is that
researchers using different $ystems be able to talk to one
another. It has to be possible for two investigators each to
translate their measurements into the other's units and to
reach agreement as to results.

This is trivially easy, as long as we stick to basic
measurements such as those of length, mass and time. All we
need are basic conversion tables, such as:

I mile = 1609 m I
1 po...und = 0.454 kg

1 hour = 60 s

Nor is the matter greatly more complicated when we
consider the so-called "derived tr quantities. "Derived"
because they are derived from the basic quantities. Consider
the case of speed.

Take two towns 70 km apart and suppose a car undertakes
this journey in the ~ime of three-quarters of an hour. In
81 units, it has travelled 70000 m in 2700 s and so its
speed has been 25.9 ms- I . But an American would say that it
has travelled 43.5 miles in three-quarters of.an hour and so it
has gone at a speed of 58 mph. So

25.9 ms- l = 58 mph.
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Let us now generalise this situation. Take two observers
A~B. Let i A be A's measure of, the length of the journey
and ~B be Bls measure of the same length. Similarly, lettA,tB be the corresponding measures of time. Now each
observer will derive, from his two measurements, a speed andthis speed will be a description, from each observer's viewpoint, of an event witnessed by "both.

Observer A finds a speed vA , where

vA = 2A /tA (2)

while observer B notes a speed vB , where

vB = 2
B
/t

B (3)

But, as long as we have a conversion table for our basicunits, t~ese matters can)be reconciledc Suppose ZA = LIE'
where L is an appropriate conversion factor like the 1609 ofDisplay (1) aoove. Similarly, we can suppose t A =' T t

B
•

We now wish to find the appropriate conversion factor, V say, forfor speed. I.e. if

(4)

what is V?

A little manipulation ofBut this is very easy.
Equations (2,3,4) produces

V =L/T = LT- l
. (5)

This equation' is often put into words by saying ~hat speed hasthe dimensions of length over time. It comes out in everydaylanguage in our use of phrases like "metres per second" orshorthand like ms-1 .

Other, more complicated, quantities also have dimen$ions~i.e. appropriate relations to the basic·units of measurement.Take, for example, g , the acceleration due to gravity at theearth's surface. This quantity is not precisely constant, butis almost so, and its value is normally quoted as 9.81 m ,s-2 .How would an American measure it?
-2 -2Well rns translates into LT ,where L is the numberof feet _( the basic unit our American would use) in a ,metre, andT (the number of seconds in' a second) is one. We find, fromDisplay (1) and a bit of work, that L = 3.28 and 'this meansthat g = 32.2 fs- 2 (f standing for feet). This is in factclose to the accepted value in the USA, 'though it is frequentlyrounded to 32, the neares~ integer.

Force is connected to our basic units by an empirical
relation~ Newtonfs second law. If F represents force,
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m mass and a acceleration, this reads

F ::: ma t (6)

So force is measured in units of mass times acceleration.Its dimensions, commonly denoted by [F] , ~re thus given by

[F] ::: MLT- 2 , (7)

where L,T have their previous meanings and M is a similarratio, referring to mass~

We can do the same thing with other equations, too.Take Newton's law of gravitation

The left hand side, as we have just seen, has dimensions-2
!l!LT .• ~o, ,therE?fore, for consi~tency, bas the right. Butlts dlmenslons are clearly [G]M~L 2; where [G] stands for"the dimensions of Gft

• Hence

or

(9)

Similarly, we may find 'the dimensions of any mechanicalquantity.

One point does, however, need to be made - abo~t angles.The radian measure of an angle is the ratio of two distances,arc-length divided by radius. So, in fact, are all othermeasures of angle (degrees, etc.). These others, however,measure the two distances in different units, a complicationbest avoided. So we will measure all angles in radiansand say they are dimensionless~ Their dimensions are
L t -lor I , as it is wri tten. I behaves like 1 does inordinary algebra. Angles are, in fact, measured as purenumbers.

Now all this has been qUite straightforward and youmight quite legitimately ask why we make such a fuss about it.We now move on and see that such considerations can aqtuallybe used to deduce physical laws.

Suppose, for example, we wish to know the speed withwhich a particle, dropped from rest at a height h, willstrike the earth. Neglecting air resistance, we write downall the relevant physical quantities, with their dimensions:
v (the required speed) LT- 1
h (the given height) L
m (the particle's mass) M



18

and we mustn't forget

-2
g (the 'gravitational constant) : ~T .

Our physical law must be of the form

v = f(h,m,g) . (10)

where f is some functiontof the three variables given.
This must have the dimensions LT-l , as it is to give us a
velocity. Immediately we see that mass cannot be involved,
and almost as immediately we see that h,g must combine as

Ihg . Thus

v=klh5 (11)

where k is some constant.

Theoretically, the value of k is 12, and this could
be learned ap~roximately by one experiment, instead of the
many we might imagine we need to determine f in
Equation (10).

To proceed further, we repeat the calculation in appar
ently more complicated form. Rewrite Equation (ll) as

v/1h5 = k . (12)

Here both sides have dimension I; they are purely numerical.
The left-hand term is called a dimensionZess ratio. It is
usual to proceed by forming from the mechanical quantities
invo~ved, all the different dimensionless ratios that can be
formed. If n quantities are believed to be involved and if
there are r basic quantities (in mechanics, r ~ 3) , then
there are n - Or such ratios. As these are designated
TI l ,n2 J •• , ITn - r with the capital Greek letter pi, and as it

was first stated by the physicist.Buckingham, this result is
called Buokingham's pi theorem.

This theorem goes on to state that the physical law sought
must have the form :

(13)

If we apply this to our ~ase, we see that n = 4 r = 3
and so there is·only one dimensionless ratio, namely vilh5
Thus Equation (13) becomes

f(v/!hi) = 0 • (14)

Assume Equation (14) :has a root, k say, and so reach

v/!hi = k
i.e. Equation (12).

t See the article "Functions of Several Variables" in this
issue' of Funotion.



19

As a further example of the use of the pi 'theorem, we
deduce Kepler's third law of planetary motion. !he quantities
involved, with their dimensions are :

The time taken to orbit the sun, T T

Newton's gravitational G M-1 3 -2
constant, L T

The mass ot the sun, m Ms
The mass of the planet, m Mp
The average distance of the planet from ·the sun, a L

The eccentricity (or deviation from the
circular) of the planet's orbit, e I

These six quantities combine into three dimensionless ratios
that can be found by inspection. They are

IT
I = G M" '"[2 -3 IT

2 = m 1m ll3 =(;.. a , , e. s p s

So We have

2° -3
f(G)fs T a ,mp/ms ' e) = ° . (15)

This is an equation in the three quantities in the parentheses;
suppose we can solve for the first of these. This yields

G m 1"2 a- 3 = ~(m 1m ,e) (16)
s P s

for some function ¢ .

Now in our solar system, m Ims and e are both small
in almost every case, and so wePmay approximate them by zero
and write 4>(0,0) = A (say). Equation (16) now becomes,
after some rearrangement,

~
T '" / :s a

3
/

2

or, to a good approximation,

T 0: a~/2

which is Kepler's. third law.

Mo~e exact analysis gives

~(mp/ms ' e) = 4~2/(1 + mp/ms )'

(e turns out not to be involved after all.)

(17)

(18)

Orie of the most spectacular such calculations concerned
the first atomic test in 1944. The U.S. military wished to
keep secret the actual energy of this blast, but in 1947 they
declassified a film of it. On the basis of an analysis he had
carried out in 1941, the British physicist G.l.Taylor was able
to compute the still supposedly secret energy_ So too was the
Soviet physicist L.I.Sedov.
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Here is how they did it. As before, we begin with a list
of the quantities involved and their dimensions. We have

The energy of the explosion, ~

The time since detonation, t

The radius of the fireball, R

The density of air outside the fireball, Po

The density of air inside the fireball, Pi

The pressure of the air outside the fireball,
P . ML- l T- 2

o .

The pressure of the air inside the fireball,

P. : ML-1 T- 2 .
1,

So
ratios,

n = 7 and r = 3. There are four dimensiqnless
which are not too hard to find. We get

We can now write, applying the Buckingham pi theorem and the 
argument used to reach Equation (16),

TIl = ep (II2 ,II3 ,IT4 ) (19)

Now, very plausibly, TI 3 and IT 4 are very small. TI 2 is

a little harder, as it involves the unknown energy E ~

Howev~r, p 5 ~6 p- 3 i~ measured in units of Bnergy squared and
o 0

c:tll its components refer to qUite normal pressures, densities
and times. So we would expect it to be the square of a normal
energy - i.e. much smaller than an energy released by an atomic
explosion. So we assume TI 2 is small also. We thus write

¢(O,O,O) (20)

Taylor wrote, so he could test it, this formula as

R = A t 2/5 (21)

where

( E 1/5
A = P ep (0,0,0)) (22)

0

He now took the logarithm of Equation (21) and so rewrote it as

R = A + ~ T (23)
5

where

R log R, A log A , T log. t
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so a plot of R versus T should be a straight line with

slope 2/5. By analysing the film frame by frame, Taylor
(and presumably Sedov also) was able to verify this. The
formula is exceptionally accurate for t~mes less than about
a tenth of a second.

A, or log A,is the intercept of the graph and this can be
read off, so tha~ A is known. From experience with conven
tional explosives, ~(O,O,O) could be found, and so Equation (22)
completes the calculation.

What this analysis achieves is the scaling up of an
experi~ent involving conventional explosives and relatively low
energies to one involving atomic bombs and their high energies.
To appreciate the question of this scaling - the step in devel
opment from model to prototype - consider a simpler case.
Let us consider again our opening example.

If now we scaled the model plane up by multiplying all its
linear dimensions by a factor of L, flight (for sufficiently
large L) would cease to be possible. The reason for this is
that the lift on the plane - the force that holds it up - is
roughly proportional to the

2
area of the wings, and this

increases by a factor of L·· in the scaling up. The down
ward force, the weight, however, increases by a factor of L 3 "

and since, in scaling up, L > 1 , £3 > L 2 , so that this
downward force will ultimately become too great for the lift to
overcome it. When this happens, flight becomes impossible.

This effect can be seen in Y
nature. Small birds are capable of
extremely agile and acrobatic flight,
whereas the largest birds are flight
less. The heaviest flying bird, the
South American condor, only manages
to stay in the air by using updraughts
to keep it aloft. The largest bird
capable of sustained power flight is
probably the trumpeter swan.

This same effect - a scaling of
volume as L 3 and a scaling of area
as L2 "-' appears in other areas as
well. Figure 1 shows the graphs of
kL 2 and KL3. Initially the second
of these lie~ below the £irst, but
ultimately it overtakes it. In the
example, the power required for
flight comes to exceed the power
available for flight.

i
I
I
I
I
I

y=KL 3
- J

I,
I - v=KL 2

I
I
I
I
I
I
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Figure 1. L
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Suppose a horse weraenlarged to the size of an elephant.
The weight increases as L3 while the structural strength 0"£
its legs· increases only as L 2 . There are animals the size
of elephants, but they have comparatively thicker legs than
horses.

Another example comes from atomic physics. If a mass of
plutonium is collected together, some of the neutrons gener
ated in its interior will trigger the production of further
neutrons by nuclear fission. The number of plutonium atoms
available for fission is proportional to the volume, i.e. to
L3. Other neutrons escape out the surface of the plutoniumr

- this number is proportional to the surface area, i.e. to L 2 .

From Figure 1, the first process must eventually pre
dominate if we increase L sufficiently. This is why
plutonium has.. a critical mass. Above this, the neutrons are
captured in large enough numbers to overcome the leakage and
a chain reaction occurs.

from The Loves of the Triangles

Stay your rude steps, or o'er your feet invade
The Muses' haunts, ye sons of War and Trade~

Nor you, ye Legion Fiends of Church and Law,
Pollute these pages with unhallow ' d pa~!

Debased, corrupted, grovelling, and c9nfined,
NO DEFINITIONS touch youP senseless mind;
To you no POSTULATES pref~r their claim,
No ardent AXIOMS your dull souls inflame;
For you no TANGENTS touch, no ANGLES meet,
NO CIRCLES join in osculation sweet!

For me, ye CISSOIDS, round my temples b~nd

Your wandering Curves; ye CONCHOIDS extend;
Let playful PENDULES quick vibration feel,
While silent CYCLOID rests upon her wheel;
Let.HYDROSTATICS, simpering as they go,
Lead these light Naiads on fantastic toe;
Let shrill ACOUSTICS tune the tiny lyre;
With EUCLID sage fair ALGEBRA conspire;
The obedient pulley strong M~CHANICS ply,
And wanton OPTICS roll the melting eye!

John HookhamFrere: 1798
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RADICAL EQUATIONSt

When we solve an equation each line of the solution is
usually a statement equivalent to the statement made on the
line above it. That is to say the solution set is preserved.
Sometimes, however, we need to Use steps that do not possess
this property, but ar.e "weaker" - and. merely say that the new
solution set will include 'the original solution set'. When
this happens we say that the step is irreversible.

To illustrate this point~ consider

:/: = 3

This is a very simple equation and the solution set- is clearly
"{3} •

If, however, we square both sides we get

x 2 = 9

whose solution set· is ' { -3, 3}, which is not the earlier
solution set, but includes it. The squaring operation is
irreversible.

These considerations become important with radioal
equations - those involving a square root or "radical" sign.
Consider for example

i.e.

i.e.

x - 13x - 2 = 4 .

To solve this equation, put y = 13:/: - 2 •

y2 = 3x - 2

Equation (1) now becomes
y2 + 2
- 3 - Y = 4

2
Y - 3y - 10 = 0 .

Then

(1)

t This -~rticle is based on one by Bill Bompart, Augusta College,
G~orgia, USA, which appeared in The Two-Year College Mathem
atics Journal (now The CoZlege Mathematics JournaZ), Vol.l3,
No.3- (June 1982) pp.198-199. We thank Professor Bompart fyr
his permission to use this material in Function.
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This has the roots 5, -2

We thus have either

13x - 2 5

or

13x - 2 = -2

(2)

(3)

But Equation (3) has no solution, as the left-hand side
(with no sign attached to the square root sign) is taken to be
positive and so cannot equal -2. Thus we must have
Equation (2) and this has the clear solution x = 9. This is
readily seen to satisfy Equation (1).

Suppose we tried to solve Equation (3). We might square
both sides and simplify to reach x = 2. This does not
satisfy Equation (3), as. it gives a left-hand side of +2, not
-2. Nor does it satisfy Equation (1), but rather the related
equation

(4)

The more usual technique for solving radical equations
like Equation (1) is as follows. From Equation (1), we find

Square both sides

13x - 2 = x - 4 . (5)

3x - 2
2

(x - 4) , (6)

~ i. e.

x 2 - llx + 18 0

x = 9 or 2 .

It is now necessary to check these by substitution back
into Equation (1). We find that x = 9 is a solution, but
x :::: 2 is not.

This method, by which the square root is isolated to allow
a squaring) does not distinguish, after that squaring, between.
Equation (5), eq.uivalent to Equation (1), and

- -/3x - 2 (7)

equivalept to Equation (4). When Equation (5) ·is squared,
the result is Equation (6), and when Equation (7) is squared,
the result is also Equation (6). If we ~ake the square root
of Equation (6), we get

± /3x - 2 x - 4 • (8)
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The process of squaring Equation (5) is i~reversibZe - i.e. if
we try to undo the effect of the 'squaring, by taking a square
root, we do not return to Equation (5), but reach the a~biguous

Equation (8). This is the reason for the extraneous root
x = 2 found by the usual approach. This is a root of .
Equation (7), or equivalently Equation (4), not of the
equation we ~et out to solve,

Compare the logic of the first method. Here, because we
know ~~x - 2 is positive, we reject Equation (3)~ ~ad this
read - /3x - 2 = ~2 , we would reach x = 2, which is a
valid solution of this equation, but not of the'equation we~et

out to solve. Thus we reject, without its ever really arising,
the line of reasoning that lea~s to the spurious solution.

This technique depends on two simple facts.
represent constants and x the unknown quantity.

Let a~b.3a

Then:

(1)

(2)

Squaring both sides of the equation

lax + b = a (9)

where a is known to be positive~ is a reversible
operation;

The equation

lax + b = a (10)

whe~e c is known to b.e negative" has no real roots.

The method given first, that is to say the new, as opposed
to the usual,method, is designed to make systematic use of
these facts and to reach, in a systematic way, equations ~ike

Equation (9) or Equation (10).

Let us now see this method in operation in a more com
plicated situation. Consider

First replace each radical with a new quantity.
duces the defining equations

(11)

This intro-

y

z

12x + 3 (12)

(13)

and rewrites the original equation as

y =. 1 + 2z .. (14)

Equations (12); (13), (14) now form a system of three
simultaneous equations in three unknowns. To $olve this
system, square each of Equations (~2), (13) to reach
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2Y 2x + 3

z2 x - 7

which allow us to eliminate x and write

y2 2z 2 + 17 .

But Equation (14) gives

and so

4z
2 + 4z + 1

or, after simplification,

z2 + 2z - 8

This gives

o .

z = 2 or -4 .

But we know, from our second simple fact, that z ,
defined by Equation (13), must be positive, and so cannot
equal -4. We thus have z = 2 and so find, from Equa~ion

(13) and the first simple fact, that x = 11 and this is the
only root of the original equation.

Admittedly the procedure for this second example is a
little involved" but compare it with the usual approach. This
begins by squar~ng Equation (11) :

2x + 3 (1 ,+ 2~)2

- 1 + 4(x 7 ) + 4/x-::::-7

4x - 27 +4~ •

So we find

that is

- 2x + 30 4~,

- x + 15 = 2/x - 7 .

A second squaring will now eliminate the radical sign.

x
2

- 30x + 225 = 4(x - 7) .

x
2 - 34x + 253 O.
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The ro6ts of this equation are 11, 23 and these must
now be tested in Equation (11). It is found that the first
of these works, but not the second, which satisfies the
related equation

- 12x + 3 = 1 - 2~ •

PROBLEM SECTI,ON

Each issue of Function contains a number of problems which
readers are invited to 'attempt. We are always pleased to
receive problems and/or solutions from our readers. Many find
that this is a way in which they can interact constructively
with Funotion.

We begin by solving some of those still outstanding.

SOLUTION TO PROBLEM 903.2
This problem asked for a proof that 'a tI':t.a,ngle wi th angles

A,B,C is equilateral if and only if

cot C + cot B + cot C = 13 .

Devon Cook (Urrbrae Agricultural High School, Netherby, S.A.)
sent us his solution, which tollows.

since C = 1f - (A + B) •

(1) If the triangle is equilateral, A

cot A + cot B + cot C = 3//3 = /'3 «

(2) If cot A + cot B + cot C = 13
cot A + cot B - cot(A +B)= 13

B = C = K (60°) and so
3

Now we let x = cot A, Y cot Band

cot(A + B)
tan A tan' B-1
tan A + tan B

.!....::EL
x +y

thus

x+y+~
x +Y

y~+Y(X - 13)+(x
2

- /3x +1)

13

o

so

where the discriminant is -(;I3x - 1)2' .



28

Since the discriminant is always negative unless

x = 1/13 and therefore by substitution, y = 1/13 , we

have uniquesolutions cot A = 1/13 and cot B = 1/13;
'Ifthus A,E are ~/3. Thus C = 3 and the triangle must be

equilateral.

The proposer, John Barton, of Drummond Street, North
Carlton, also supplied a solution. We give this also.

Pro~e that a triangle with angles A,B,C is equilateral

if cot A + cot B + cot C = 13 .

For the present, keep C fixed, and use the fact that
B = 1T-A-C.

Let r(A) (Jot A + cot B + oot C

(Jot A eot(A + C) + eot C •

Then ff(A) -cosec
2

A + coseo
2

(A + C)

= _oosec
2A + aosea

2B

sin2A - sin2B
. 2 . 2

s~n A S"l"n B

sin A + sin B . 2 (Jos A + B sin A - B
sin2Asin2B ---2-- ---2--

Since' sin A sin B, 1
(A + B) are. all positive, f' (A) ·hascos '2

the sign of sin l(A B) and hence that of !(A - B), since2 2

!(A - B) is in 1 1 It follows that f' (A) is
2 (- 21T , 211")

negative for A < B , positive for A > B

Hence f(A) is absolute minimum when A B
I .!.Can 2"11" -

and t;hen 2

f(A) 2 tan £ + eot C2

where

2 I
3 tan 2"C + 1

1
2 tan 2C

3t2 + I
2t

t denotes

The domain of ~ is (0, 00) since 0 < C < 1T •



Now 3t2 + 1
2t

has absolute minimum value 13 when
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t = 13 . (Simple exercise~)

-It follows that, of all triangles (of whatever shape),
eot A + oot B + cot C has its minimum value when A = Band

1 1
tan 2"C = 13 so that and then A = B = i ' that is,

the triangle is equilater~l. Since for any triangle which is
not equilateral oot A + eat B + cot C > /3 , it follows that
if eot A + cot B + eot C = 13 , then the triangle is equi
lateral.

-MORE ON PROBLEM 903,1
We also had some more correspondence' on Problem 9.3.1.

This consisted of three parts:

(i) Show that any positive integral power of the product
of the first four odd numbers leaves a remainder 1
when divided by 8 or 13. -

(ii) Find the set of numbers, such that anyone of them
when divided into (5 x 7 x ll)n ,where n is any
positive integer leaves a remai~der of 1.

(iii) Is there a similar result for (.7 x 11- x 13)n ?

This problem was submitted to us by Garnet J. Greenbury of
Taringa, Queensland. Both he and John Barton sent solutions
and a composite of these was printed in Volume 9, Part 5.
A similar solution, but with different notation, came from
Devon Cook. We also re6eived, too late to print, the follow
ing solution from David Dyte, then in Year 11, Scotch College 0

(i) Show that any positive integral power -of the product of
the first four odd numbers (105) leaves a remainder 1 when
divided by 8 or 13. -

To solve this problem I now draw on modulus
i.e. instead of writing ~ leaves remainder
a :: a (mod b) • b

I proceed by mathematical induction.

notation,
a , I write

Firstly, we know:

1051 = 105
:: 1 (mod 8)

10Sl = 105
== 1 (mod- 13) .

Now assume this is true in each case fpr lOSn .
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10Sn - 1 (mod 8)

.. .lOSn + 7 - 0 (mod 8)

.~ft 10S( 10Sn + 7) - 0- (mod 8)

:.10Sn+1 + 735 - ° (mod 8)

But 735 - 7 '(mod 8) I
:..105n+l - 1 (mod 8) I

10Sn ~ 1 (mod 13)
.. 105n + 12 == 0 (mod 13)

:.10S(IOSn + 12) ::: 0 (mod 13)
:.IOSn+l + 1260. == 0 (mod 13)

But 1260 == 12 (mod 13)
:. 10Sn+1 ::: 1 (mod 13)

So, if each case is true for 10Sn
, it is true for

105n +1 .

But we know each case is true for 1051
we know each ease is true for 1052

we know each case is true for 10S3

and so on.

Thus each positive integral power of 105 leaves -remainder 1when divided by-8 or 13.

I note that the above modulo arithmetic works for
only if x(y - 1) :: y - 1 (mod y) (y ¢ I) 0

.. for x = 105 , as above, x k = I (mod y) for all
if y E'{~,~,8,13,26,52,104} .

( i i) and (i i i ) :

k
~ if and
y

k in IV

Also, from the above condition,
for x = 385 , x k

== 1 (mod y) for all k in N
if Y E {2,3,4,6,8,~2,16,24,32,48,64,96,128,192,384}

(x = 5 x 7 x 11)
and for x ~ 1001, x

k
== i (mod y) for-all k in N

if Y E'{2,4,S,8,lO,20,25,40,SO,100,125,200,250,500,lOOO}
(x = 7 x 11 x 13) .

More generally;

For a given x , the remainder when each positiveintegral power of x is divided by y is one iff the set ofprime factors of y (repeated factors counted separately) isa subset or equal to the set of prime factors of x-I .

MORE ON PROBLEM 9.3.3
This problem concerned a circle, centre 0 and a point Mon its circumference. Two points A,B lie outside the circleand it was required to show that AM + ME was maximised whenOM bisected 4 AMB.
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The problem came from Hai Tan Tran, whose solut~onappeared in our last ~ssue. Lack of space prev~nted our,publishing there a letter from John Barton on th~.same topic.:We i.nclude it here.

IIIf our s~arting point allows use of the principles ofoptics, including the principle of least (statio~ary) time of·travel as well as the principles of reflection, the resultsfollow immediately.

llBecause, for stationary (either max or min) values ofAM + MB , the incident ray, AM say, and the reflected ray MBmake equal angles with the normal OM to the reflecting 'surface'(the cylinder whose cross-section is the given circle) and allthree lines AM, MB '. OM are coplanar.

II Otherwise , if we are required to give a 'pure mathematical.solution, we might perhaps argue as follows to find the stationary values of AM + MB •

11 Let the circle be x = a cos a, y = a sin a foro ~ a < 2~ , and let A be (f~g) and B be (h~k) .
. 2 2 .1-S = AM + ME = {(f - a cos a) + (g - a sin e) } 2

+' {( h - a cos a ) 2 + (k - a sin a ) 2} t
is to be made stationary, so that 0 = ds/da

We have

ds 1 .
da AM {(f -a c~se)a sina - (g -a sina)a cose}

+ M~' { ( (h - a cos e)a sin a - (k - a sin a) a cos a }

qL sin e - ag cos a + ah sin a - ak cos a
AM ME

The required condi tion is thus, cancelling a,

Then

f sin e - g cos a
AM

h sin e - k cos e
ME

If we write this in vector style, using ~
we have

f cos 6 + J sin e

1MB ICfi + g~) x U,..., ,.., - IAM I(hi + kj) x u
,.,."., ~ ...., ""

_IAM Iu x ( hi + ki)...., ...,

Since u x U o we can write this
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that is

IME IMA x u = IAM Iu x ME
,.., 1"'tJ""""

The products of the magnitudes of the vectors on the two sides
are clearly equal, each being IAMIIMBI , to the required
condition that

" A

MA x u = u x MB [A denotes a unit vector]

that is the angles between AM and OM on the one hand, and
OM and MB on the other be equal or supplementary.

If they are supplementary, AMB is a straight line, which
presumably is the solution for A and B on opposite sides
(one in, one out) of the circle. We require the other
solution, where A and B are on the same side (both in, both
o~t) of the circle."

We conclude with some new problems.

PROBLEM 10.1.1 (Submitted by D.R.Kaprekar)

A man had 115 dollars. He spent 40 of them and 75 were
left. He went out again and spent 46, leaving 29. A third
time he went out and spent 19 leavi~g 10. Finally he went out
and spent the 10, leaving nothing. Here is a table.

Spent

40
46
19
10

Totals 115

The total at right is 114, not
dollar?

Left

75
29
10

°114

115. Where is the missing

PROBLEM 10.1.2 (From the 1985 School Mathematics Competition)

Show that, given any 17 numbers, it is always possible to
choose 5 of them ~o that their sum·shall be divis~b1e by 5 .



Function is published five times a year, appearing in
February, April, June, August, October. Price for five issues
(including postage): $8.00*; single issues $1.80. Payments
should be sent to the business manager at the above address:
cheques and money orders should be made payable to Monash
University. Enquiries about subscriptions should be directed
to the business manager.

*$4~00 for bona fide secondary or tertiary students.

Registered for post:ing as a periodical - "Category B"t


	Cover
	Contents
	About Function
	The front cover
	Functions in several variables, C. Fox
	Designing an arch, N.S. Barnett
	Letter to the editor
	The mathematics of measurement, M. Deakin
	Radical equations
	Problem section



