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In our last issue we began our new Pepdix column devoted
to mathematics competi tions and to the question of problem
solving skills. These may be developed by gUided experience.
Tricks learned' in one context often turn out to be useful in
another. A problem may be the same as~ or very similar to,
one that at first sight seems qUite different. .These are the
matters that Perdix will discuss in each issue. His column
begins this time on p.29 and discusses modular arithmetic.

THE FRONT COVER

This issue's front cover shows two views of a Raba Teasa
scope. See the arti?le on p.2 .

.CONTENTS

Raba's Teasascope

The Forgotten Arts of Arithmetic: The "Long
Division" Process for extracting Square Roots.
J.A. Deakin

Gauss: The Mathematical Mozart. Trevor Halsall

Family Relationships and Graphs. Jacqueline Wong

Letters to the Editor

Problem Section

Perdix

2

5

8

13

19

26

2.9



2

RABA'S TEASASCOPE

Our front cover for this issue shows two views of a puzzle,
related to Rubik's cUbe, designed by the French sculptor,
Raoul Raba. .Figure 1 shows the .construction. Three overlapping
circles, themselves dissected by citcular arcs, are cut from a

Figure 1

flat board as shown. The pUZZle has fourteen pieces:

3 pointed cusp pieces, ~~b~a~

9 shields or "Tasmanias tf 1,2, ... ,9,
1 centrepiece,
the surround.

Each of the circles is free to rotate with respect to the
rest of the puzzle. Call each circle after the cusp ~iecet at
b or at contained in it. It will befo~nd that th~re are two
constraints on the motion:

1. The cusp pieces cannot leave their assigned
circles;

2. A circle: if it is to turn, must contain the
centrepiece.
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The first of these constraints allows the notation introduced
above to be applied unambiguously,

As with Rubik's cube, the object of the puzzle is to upset
an initially ordered design and then to re-establish it. From
any of the allowable disorderings (not all disorderings may be
reached "legallytr),we would like to get back, via some algorithm,
to the origi·nally ordered state. The analogy wi th the cube is
strong" (quite strong, as we shall see below)) but it is easier
to "cheat" with the teasascope by pulling it to pieces and re-
assembling it correctly. .

We may now use these same symbols atb,o to apply to 60 0

clockwise rotations of the circles a,b,o respectively, and
denote by a.li,o, the inverses (anticlockwise rotations) respec
tively of these.

Suppose now that operation b is applied. The centrepiece
now occupies the position of piece 2 which is common to circles
a,b. By the second of our restrictions,' these are the only
circles that can now turn. Furth~r application of b restricts
any movement of circle$ other than b, unless circle. b is
rotated so ~ar that operation b results. We thus neglect this
possibility. Application of. b immediately following application
of b restores the status quo an~ is uninteresting. We thus con
sider a,a.

If a is applied, only circle a can move and again a degen
eration has occurred, so we concent~ate on the final possibility:
a. This restores the centrepiece to the centre and so we may
proceed.

We have applied first b and then a, and we write this abo
(Note the reversal of order here.) W~ now have. permuted the
order of the pieces

by moving each into the position originally occupied by the next
term in the sequence. This is referred to as an elementary
operation for the puzzle, and is denoted C. (The bottom picture
on the cover is the result of applying operation C to the top
picture.) There are two other elementary operations: bat i.e.
A, and oa, or B. E~ch of these also has an inverse: C = bat
etc. Strings of these elementary operations may now be envisaged
as for the cube.

Raba called his device a taquinosaope from the French words
taquiner, to tease, and taquin, meaning puzzle. This dual mean
ing does not translate precisely into English~'but teqsasaope .is
probably the best approximation ..

We learned of the teasascope through a sister journal Le

Petit Arahim~det, with which Function has an exchange agr~ement.

t . .
Available through the library of the Mathematical Association

of Victoria.



They also sell teasascopes for FF5Q and solution booklets (in
French) for FFIO (FF50 == A$10). Complete the order form be
low and remit to ADCS-Abonnement-B.P.0222-80002 AMIENS Cedex
France, with the money, to obtain your teasascope. The edition
is limited to 1000 copies.

The teasascope is patented (French patents, Nos. 77-30347,
79-21130) but this does not prevent o.ne from making onets own,
which is what we did to get the photographs on the cover. The
numbering differs from that of Figure 1 as we wanted to get a
full clock-face. There· are severe problems, however; the
individual pieces must be very exactly cut if rotation as
described is to be possible. Furthermore, a low friction
material is necessary. (Ours, cut from strawboard, is very
poor in.this regard.)

The mathematics of the teasascope have been worked out by
Andr~ Deledicq, who has published two articles on the subject.
One is that available from Le Petit Arahim~de referred to above.
It is co-authored with Bab. and gives a full algorithm for
solution. The other is a beautifully illustrated one in the
French glossy La Reaherche (Hargrave Library at Monash and the
State Library of Victoria each have copies).

According to this latter one t Raba began by making a plane
"cube", illustrated there, . akin to but not equivalent to, Rubik's.
More recently, he has produced a mo~ified Rubikts cube precisely
equivalent to a slightly simplified teasascope.

Fo~ more on this topic, you could consult his articles:
Autour du cube de Rubik: une nouvelle g~n~ration de taquinst
La Reaherahe, No.128, Dec.19S1, p.1450; Le taquinoscope de Raba,
Le Petit Arahimede No.93-9~, Sept.19S3, p.23.

BON
DE COMMANDE·

Mme au M. : ~ _

demeurant a (adresse complete) ~--------__--_

prie rADCS de bien voufoir .Iui fair~ parvenir

_'__ PA-TAQUINOSCOPESpour fa somme de__x 50 FF =__ FF

et __etude mathematique du PA-TaQuinoscope :__x 10 FF =__FF
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THE FORGOTTEN ARTS OF

ARITHMETIC:

THE "LONG DIVISI.ON" PROCE'SS FOR

EXTRACTING SQUARE ROOTS

J.A Deakin,·

Shepparton College of TAFE

Calculate the square root of 823288249. Find the cube root
of 445943744. A student's nightmare? Yet not so many years ago,
such questions regularly appeared on secondary school arithmetic
examination papers. The long division processes for extracting
square and cube roo-ts of numbers and algebraic expressions are
arts which seem to have been forgotten by all except a few mathe
maticians of the old school.

The procedure for extracting the-square root of a number or
an algebraic expression is made to depend on the identity

(a + b)2 a 2 + 2ab + b 2

a
2 + b( 2a + b)

To find the square root of th~ expression a 2 + 2ab + b 2
t

note that the expression consists of the sum of two terms:

the square of a, the first term of the root, and

(ii) the product of b and the expression (2a + b), consisting
of the second term of the root added to twice the fir$t
term of the root.

In order to extract the square root of the given expression, we
simply reverse the process. and the work may be set out as follows.



6

a + b

a

2a + b

To extract the square root of the expression
proceed as follows.

we

(1) Arrange the terms of the expression in descending powers of
one pronumeral (a).

(2) The square root of a 2 , a t is written down as the first term
of the root, and its square is subtracted from the given
expression.

(3) The first term of the remainder is divided by twice the
first term of .the root to give the second term of the root, b.

(4) The second term of the root is added to twice the term al
ready found, to form the complete divisor, 2a + b.

(5) The product of the second term b and the divisor 2a + b
is subtracted from the first remainder.

By repeating steps 3,4,5, the square root of any algebraic ex
pression may be. found.

The rule may also be applied to extract the square root of
ordinary numbers. Thus, to find the square" root of 823288249,
we·proceed as follows.

28693

2 8 23 28 82 49

4

48 4 23 48

3 84

566 39 28 566

33 96

5729 5 32 82 5729

5 15 61

57383 '17 21 49 57383

17 21 49

2(20) + 8 (cf. above:
a =20 t b,=8.)

2(280) + 6

2(2860) + 9

2(28690) + 3

In numerical examples s~ch as this, it is customary to omit.the
ciphers in the successive steps. The procedure may be summarized
as follows.

(1 ) Divide the number into p~riods of 2 digits, from right' to
left, as shown.
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(2) Belo~the first period on the left, write the largest
square that is equal to it, or less (4), and write its
square root (2) as the first digi t of the :root.'

(3) Subtract the square from the first period, then bring down
the next period to make the first r~mainder (423) ..

(4) In a second column to the right, double the quotient so far
as it goes, adding a zero (40).

(5Y Now estimate the digit which must be added' to this number so
that when the total is multiplied by the same digit, the
product will be the largest possible number equal to or less
than the first remainder (8). Write this ~igit as the
second digit of the quotient.

(6) Wri te the new product, 8 x 48, under the first remainder, .
subtract, and bring down the next period to form the second
remainder.

(7) Repeat steps 4,5,6 until all the periods .are exh~usted.

The process can be used to extract the square roots of numbers
which are not perfect squares, and of decimal fractions, to any
desired number of significant figures. It will be instructive
fcir the reader to use this process to find the square root of
(1 + x); and to ~compare 'the result with the bi~omial series ex-_

.1.
pansion for (1 + X)2 under what conditions do these series
converge?

In a similar way, an algorithm for extracting cube roots ca~

be constructed depending on the identity

(a + b)3 a 3 + 3a2b + 3ab 2 + b 3

a
3 + b(3a2 + 3ab + b 2 )

Can you work out the steps in it?

It is' of 'interest that the procedures for extracting square
roots and cube roots are both easier to apply to algebraic.ex
pressions than to nuinerical examples. In simple c'ases, the
square roots and cube roots of algebraic expressions can be found
by direct factorization; however,the above algorithms provide a
systematic procedure for use when the factors of the given ex
pression are not readily found b~ insp~ction~ Also,' with a little
practice, the reader should be able to find mentally the square root
of any perfect square less than 10 000 and the cube root of any
perfect cube less than 1 000 000; ·this skill was expected of

, students in the author's own junior secondary school days.

THE LAW OF AVERAGES

The most important questions of life are, for the most part,
really only problems of probability.

P.S 4 Laplace, 1812.
Th~orie AnaZytique des Probab~Zites
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GAUSS:

THE MATHEMATICAL MOZART

Trevor Halsall, Ursula College, A.N.U.

Many consider Johann Karl Friedrich Gauss to be one of the
three greatest mathematicians of all fime. He is c~.assed wi th
Archimedes and Newton. His work encompassed a.ll branches of
mathematics - an extraordina~y feat in itself. Although crowned
as the "Prince of Mathematicians" Gauss had a very humble back
ground indeed.

His father, a bricklayer, wanted him to follow in a similar
career. ,Gauss~ however, started to show his genius early. At
the age of three, he is said to have spotted a mistake in his
fatherfs calculations and' promptly stated the correct answer.
His schooling was dotted with such achievements, but on a much
grander scale. As a twelve year old, he was already question
ing the universality of Euclidean geometry. Fortunately, an
assistant at the school, Johann Bartels, had a similar passion
for mathematics. The two studied together. Through Bartels,
Gauss ·came to the attention of·Duke Ferdinand of Brunswick.
From then on, he was educated at the expense of the buke.

Like Mozart, Gauss showed his genius at an early age and
continued to display it throughout his life. Like Mozart too
he was versatfle, "conversant with the entire body of the mathe
matics of his ,day and indeed greatly 'extending it. Gauss and
Mozart,· each in his own field, reached the very highest levels
of geniUS, enriching the world of today. The two men were'
approximate contemporaries, Mozart being 21 years the senior.
However, Mozart's early death in 1791 occurred before any of
Gauss's major achievements:

At fifteen, Gauss entered Caroline College in Brunswick.
He was gifted at languages and literature as well as mathematics ..
A year later, the concept of a non-Euclidean geometry was intro
duced to him.

By 1795, Gauss had invented the method of "least squares".
It has direct applications in surveying, astronom~cal calcula
tions and making predictions based on a large number of statis
tics. Essentially, it involves finding the best curve to fit



9

Gauss entered the University of Gottingen in 1795~ It was
here, at nineteen years of age, that he gave the first proof of
the law of quadratic reciprocity (a result that shed light on
the division of a square number by a prime leaving a prime re
mainder).- He went further and gave a total of six different
proofs. In 1796, Gauss decided ~hat his career lay in mathe- ,
matics (he had been considering philology!). '

While at university, he constructed a regular polygon of
seventeen sides using only a straightedge and compass. This
was an unsolved problem left by the Ancient Greeks. He showed
that only polygons of certain numbers (related to the Ferma~ num-

2
n

bers, primes of the form 2 + 1)' of sides could be constructed

by c1ass}.cal methods. t Gauss made many more discoveries in the
field of number theory before returning to Brunswick in 1798.
Here he earned a modest living by giving private tuition. He
disliked teaching and so had few students.

Gauss began a small diary in 1796, which he continued- until
1814. It contains 146 very concise statements relating some of
his discoveries. Most are remarkable in themselv~s although
they were never pUblished in his lifetime. All traces of how

-he arrived at them were destroyed. It took several decades for
mathematicians to provide their own proofs. Many of Gauss's
contemporarles would communicate a result to him only to find
that he had'reached the same conclusion many years before.

Gauss is reported to have said that It ... he undertook his"
scientific works only in response to the deepest promptings of
his nature ,and it was a wholly secondary consideration to him Oft
whether they were ever published for the instruction of· others."
Many other important and extensive papers were discovered un
published after "his death. 11 ••• He could have advanced mathe
ma~ics by a half-century or more if he had chosen to make his
knowledge available during his lifetime."§

Gauss held steadfast to his personal motto tfFew, but ripe".
There were untold numbers of brilliant, original ideas in his
head but be chose carefully. He released them to the world only
when he had found an entirely rigorous proof. Despite his
attention to detail, Gauss still managed to publish over 155
papers.

In 1799, he proved the fundamental theorem of algebra.
Simply stated, it says that every algebraic equation in one un-

known has a solution of the form a + hi (where i 2 = -1; and
a,b are real numbers). For this, Gauss received his doctorts

Tsee courant and Robpins, What is Mathematics?

ttBell , E.T.: Men of Mathematics (Penguin, 1953) p.25l.

§Siedel, F. & J.M.: Pioneers in Science (Houghton Mifflin, 1968)
p.78.
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degree in absentia from the University of Helmstedt, He
came to the notice of many' fine mathematicians with the publica
tion of Disquisitiones A~ithmetiaae in 180~. In the same year,
he prov~d the fundamental theorem of arithmetic: that every
natural number can be represented as the product of primes in
only one way. .

After calculating the orbit of a new planet, Ceres, Gauss
gained international fame. He declined an offer of a Professorship
in St Petersburg in 1803. In '1806, when his sponsor, the Duke,
died fighting against Napoleon, Gauss had to find an alternative
means of support. His work on Ceres led to an appointment as
director of the Gottingen Observatory and Professor of Astronomy
in 1807. The wages were minimal but adequate for Gauss's needs.
He remained in these posts until his death. In fact, he only
once slept away from the Observatory - due to a scientific con
gress in Berlin.

Gauss's first wife, Johanne, .died in 1809 after the birth
of their third child. They had been married for four years. It
i~ said that their first son, Joseph, inherited his father's
skill for mental calculations. Still grief~stricken, Gauss wed
Minna Waldeck and they had a further two sons and a daughter.
Minna died young and only one of Gauss's six children survived
him.

After many years involved in astronomical discoveries, Gauss
returned briefly to pure mathematics. In 1811, he developed the
theory of analytic functions of a complex variable but never pub
lished it. The following year saw him publish a masterpiece on
the hypergeometric series. Logarithms, trigonometric functions
and the general binomial theorem. are just some of the special
cases of this series.

From 1821 to 1848, Gauss ventured into the field of geodesy.
He was scientific adviser to the Hanoverian and Danish govern
ments for an extensive geodetic survey. From his investigations
into certain types of curved surfaces, Gauss began the branch of
mathematics called differential geometry. He devised a helio
graph, which uses the sun's rays as straight lines to mark the
earth's surface. This allowed more precise trigonometrical
measurements of the planet's shape to be calculated. Gauss made
numerous original contributions to the theories of surfaces and
conformal mapping (that is, preserving angles (at, for example,
road intersections) on a two-dimensional map). The latter has
important applications in electrostatics, hydrodynamics and
a,.erodynamics.

Gauss concentrated on mathematical physics between 1830
and 1840. In 1832, he introduced a logical set of units for
measuring magnetic phenomena. Working with W.E. Weber, he in
vented the declination instrument and the bifilar magnetometer.
In the following year, they devised an electromagnetic telegraph
system which sent mes~agesone and one quarter miles. Samuel
F.B .. Morse patented his telegraph four years later. Gauss's
instrument could have made him a fortune if he had been interested
in developing it commercially. However, "he was not inspired by
the prospect of practical applications, for he sought truth for
its own sake, finding his reward and pleasure in the success of
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his efforts alone,,,t

Terrestrial magnetism was another area in which Gauss
'specialised'. He instituted the first observatory designed
specifically for work in that field, His calculations con
cerningthe location of the,magnetic poles were amazingly
accurate. It was Gauss who pointed out that the units of
quantities such ~s density and energy could be expressed in
terms of a few fundamental units (for example, length? mass
and time).

The endeavours of the 'Prince of Mathematicians' were both
extensive and ahead 'of his time. His work helped to establish
the branch of pure mathematics. He was the first mathematician
to pay due attention to the question of the convergence of in
finite series. He made many and deep contributionS to number
theory (e.g. the theory of Fermat numbers), to geometry,
topology and the theory of optical-instruments. His work on
the capillary action of a fluid led eventually to the principle
of the conservation of energy. He worked out theories of per
turbations that helped towards the discovery of the planet Nep
tune. His methods for astronomical calculations are still in
us~ today.

AS.can be surmised, his intense concentration resulted in
reduced contact with humanity. He did find time to read the
classics of European literature and keep up with world politics
in all the newspapers. His hobbies included foreign languages
and the new sciences such as botany and mineralogy. A fascina
tion with numbers led to a large collection of numerical records.
They included such oddities as the length of lives of famous men
in days. As regards his disposition, it is generally agreed that,
"Gauss was deeply religious, aristocratic. in bearing, and con-
servative". t

Sartorius von Walterhausen wrote, !tAs he was in his youth,
so he remained through his old age to his dying day, the un
affectedly simple Gauss. A small study, a little work table
with a green cover~ a standing-desk painted white, a narrow
sopha (sic) and, after his seventieth year, an arm chair, a
shaded lamp, an unheated bedroom, plain food, a dressing gown
and a velvet cap, these were so becomingly all his needs".tt

Even in old age, his agile mind constantly searched for
knowledge. He taught himself Russian at the age of sixty-two.
Within two years, he was writing and speaking the language
fluently. At sixty-eight, Gauss completed the huge task of re
organizing the Fund for Widows and Children of Professors. Two
years later, he gave his fourth distinct proO:f of the fundamental'

tEnayaZopaedia Brittaniaa-Macropaedia (Volume seven! 1979) p.967.

ttBell , E.T.: Men of Mathematics (Penguin, 1953) p.269.
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theorem of algebra. The city of G~ttingen made him an honorary
citizen.

Early in 1855, Gauss began suffering from an enlarged heart
and shortness of breath. The symptoms of dropsy appeared. He
passed away peacefully in February at seventy-eight years of age.
Coins were struck in his honour and a statue was raised.

His name lives on in many scienti·fic laws and theorems.
Magnetic flux density has the gauss as its unit. The 1001st
planetoid discovered was named Gaussia. Most of all" he is
remembered as the last man to contribute significantly to all
branches of mathematics.

It is unlikely that his achievements will every be surpassed.

BibZiography

Asimov, I., Asimov's Biographical EncycZopedia of Science and
Technology (David & Charles, Great Britain, 1978).

Bell, E.T., Men of Mathematics 1 (Penguin t Great Britain, 1953).

BUhler, W.K., Gauss: a BiographicaZ Study (Springer, Berlin,
1982) .

Howard, A.V., Chambers' Dictionary of Scientists (Chambers,
Great Britain, 1964).

Rogers, J.T., The 'Story of Mathematics (Brockampton Press, Great
Britain, 1968).

Rouse Ball, W.W., A Short Account of the History of Mathematics
(Dover, U.S.A., 1960).

Siedel, F. & J.M., Pioneers in Science (Houghton Mifflin, New
York, 1968).

EnoycZopaedia Brittaniaa - Maaropaedia (VoZume seven, 1979).

CoZZier's EncyaZopedia (VoZume ten, Macmillan, New York, 1981).

NOT SO SURPRISING AFTER ALL!

Eddington once told me that information about a new (newly
visible, not necessarily unknown) comet was received by an ob
servatory in misprinted form; they looked at the.place indicated
(no doubt sweeping a square degree or so) and saw a new comet.
(Entertaining and striking as this is~ the adverse chance can
hardly be put at more than a few times 106 .)

J.E. Littlewood, A Mathematician's
Miscellany, 1953.
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FAMILY RELATIONSHIPS

AND GRAPHS

Jacqueline Wong,

Student, Monash University

In graph theory., a graph is considered to be a set of
vertices (usually drawn as dots or small circles) and an
associated set of edges (drawn as li.:nes). Each edge must
begin at a vertex and end at a vertex (either the same vertex
or a different one); a vertex mayor may not be attached to
the rest of the graph by edges. Graphs are character~sed in
various ways. A simple graph is one in which there are no
loops (edges which begin and end at the same vertex) and no
more than one edge between each pair of vertices; a connected
graph is one which cannot be divided into two isolated parts ..
A complete graph has every vertex of the graph connected to
every other vertex; a complete bipartite graph consists of two
disjoint sets of vertices, va and vb: each vertex of vb

being connected to all vertices of v , and each vertex of v toa .a
all vertices of vb. We will see an example of this below.

( a)

simple

complete
- - --,

I

v I
__a__,

I
I

_I

(f)~
•

(h);- - - - - - - - - - 

I
L_

I
I
1- _ _ _ _ _ _ _ _ _ _

complete b~partite

connected

non-complete

(e)\
(d)\7

V non-connected

(g)[2J
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Note that some features of the graph (such as the arrange
ment of the vertices and the shape and length of the edges) are
not important; if two edges are shown in a graph diagram as
crossing at a point which is not a vertex, they are treated as
if they 'did not touch.

A graph is essentially an,abstract diagram of the relation
ships between a set of points (vertices), but it may represent a
great variety of physical or mathematical concepts - for example t

a map of towns and their connecting roads, an electrical network,
a chess problem. Here, I consider the relationships between
members of a family and how they can be represented by a graph
diagram. In general the graphs of family relationships are

.simple t usually connected, and can be split up into a series of
bipartite (mostly connected) sUbgraphs.

To consider family relationships as graphs let people be
vertices, and lines of descent (parent to child) the edges, (1
have put in "marriage" relationships as dashed lines - these are
not really part of the graph, but serve t6 t±e parts of it to
gether e.g.,- to include someone who has 'married into a family
but left no des~endants.)

We have to impose a restriction on the arrangement of the
verti~es - they must be so ordered that we can ~ee whether or
not· people are in the same generation, and; more importantly,
whether we are travelling "up" or "down" :the family tree as we
traverse the edges. (It would be possible to label lines of
descent with arrows pointing from parent to child,. in which
case we would speak of going ttback" -up the tree or "forward"
down the tree). For clarity, I will put vertices representing
people of the same generation in a horizontal line t those of
one generation earlier in a row above, those of a generation
later in a row below.

Note that each person should have 2 edges going 'fUp" the graph
(connecting to his parents); each person has as many edges going
"down" the graph as they have children. ttMarriage It lines are
the only horizontal lines in the graph.

Then a path of length 2 (i.e. containing 3 vertices) with
all steps down goes from grandparent to grandch~ld, and if the
steps are all up, grandchild to grandparent. A path 9f length
3 wi th 1 step up then 2 do~n connects aunt or ·uncle to nephew
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or niece, and with 2 steps up then· 1 down, nephew or niece to
aunt or uncle. If all steps are down, the path connects great
grandparent to great grandchild and 'vice versa if all steps are up.

Paths of ~ength 4 connect great great grandparents to great
great grandchildren or vice versa and ther~ are also these
possibilities:

.' uncle} niece I1 step up then 3 down: great aunt to grand·nePh.ew.
nePhew} aunt3 steps up then 1 down: grand niece to great uncle

2 steps up then 2 down: the two vertices represent first cousins.

As to other cousins, English family relationships have a
rather confusing nomenclature for the more distant cousins, but
by this method we can define them fairly accurately. If the
path lengths up and down are equal, the two people are 1st, 2nd,
3rd cousins, etc. if the path lengths are of 2, 3 and 4 steps
respectively. If the path lengths (up and down) are unequal,
the shorter path decides if people are 1st, 2nd etc. cousin (by
the same rule as above) while the difference between the path
lengths tells how many times "removed" they are.

E.g. (a) 2 up, 3 down - 1st cousin, once removed,
(b) 4 up, 6 down - 3rd cousin, twice removed.

(Notice that the "removed" number is really an ;indication' of
.difference in generation level - one of the cousins in (b)
belongs to a generation two steps earlier than the other.)

Th.e "nuclear family" forms a complete bipartite graph of
the form U2 ,n where n is the number of children:

e.g.

U2 ,4"

It should be possible, for any given family~ to isolate from the
total graph a subset of the form of the above - i.e. a family
"tree" is composed of interlocking- family groups.

< Tracing the relationship between any two individuals in the
graph. consists in counting the path length between them, noting
(a) the number of edges "uptf and tfdown" (b) how the path changes
from lt up " to "down" (c) in some cases, the number of paths
joining them.

Parents and children are· connected by a path ~ength of 1,
going up or down depending on how we view the relationsh~p. In
this graph, 1 _ _ _ 2
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1 is parent of 3 (1 step down), and 3 is child of 1 (1 step up).

Sisters and brothers are connected by paths length of 2,
one step·up and one down. Full ·siblings will each be connected
by two different paths, half-sisters and brothers by only one.
Step-brothers and sisters are only connect~d by descent lines
if you go up, then down then up then down (or across the
marriage ·l~nes). If you have to go down then up at any stage,.
no blood relationship exists.

For example this graph

1 2

r----
V
5

4

--~

shows a family with two divorced parents each with one child
marrying and producing two further children. 2 and 3 are the.
parents, 1 and 4 their divorced spouses; 5 and 8 the children
of the previous marriages, 6 and 7 the children of the present
marriage.

6 and 7 are full siblings (2 different pathsof length 2:
6-2-7, 6-3-7), while

5 and 6 are half-brothers (one path of length 2:

5 and 8 are step-siblings (no path of length 2) .

The only ways to. get from 5 to 8 are

5 up 2 down 6 up 3 down 8
5 - 2 7 - 3 8
5 - 2 3 - 8

5-2-6) .

The fact that you have to change direction from "down" to
"up", or else go across the marriage line; means that 5 and 8
are not related "by blood", but only "by marriage".

(Similarly, a child's two sets of grandparents are not
related by blood, because to reach one from the other, you
must go down then up:

c ---- c3

c
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Here is a more complicated example ..

I

II

III

IV

V

112 and 113 are siblings, as are 1112, 1115, 1117 and 1118; 1119,
11111 and 11113 and IV9, IV10, IV11 and IV12 (etc.).

114 and 115 are half brothers ·(and the relationsh~ps between the
descendants of 114 andII5 should probably be designated "half"
relationships e.g. half-uncle, half-cousin etc., but this is
usually ignored, and certainly, from the point of view of near
ness of relationship, becomes less and less meaningful as- you
go down the generations). .

13 and 14 are the common. grandparents of 111.2, 1115, 1117 and
1118 and of 1119, 11111 and 11113, 11 and 12 are grandparents
of 1112, 1115, 1117 and lII8·but not of 1119, III11 and 11113.

112 is 1119's aunt; III can be described as 1119's' "uncle by
marriage" - descriptions such 'as "my cousin's father" or some
thing of the sort are ambiguous and not usual in English.

1119 and 1115 are first cousins.
IV9 and 1115 are first cousins once removed.
Vi and 1115 are first 'cousins twice removed.

Note that 1113 is not related to the family except by marriage.
He could only be described as limy daughter's first husband" or
something of the sort.

In English usage, except for the case of aunt, niece,
uncle, and nephew, it is not necessary to specify the gender
of th.e people concerned in order to specify the-ir. relationship.
(Gender-specific terms are common, of course. but there are
Itnon-sexist" terms available, e. g . grandparent, sibling.)
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In some other cultural systems, the sex of the two people con-
. cerned is very important, as may be whether they are related

through a female or a male. This is true of Chinese family
nomenclature; as well, one needs to know which of the two people
is older or younger, and sometimes where they rank in their own
generation. For instance, there are different terms for: an
uncle who is onets fatherts older brother; an uncle who is onets
father's younger brother; an uncle who is one's mother's· older
brother, etc.

This makes it much more difficult to reduce the family
relationship to. a graph. One can write different symbols .for·
male and female e.g. 0 for female 0 for male , as is common in
most ways of writing family trees; but to include information
about relative ages one would have to introduce some sort of
horizontal stratification into the generations, e.g. older
persons are always found to the right·of younger persons - but
as cousin's families tend to overlap a great deal in age, this
would produce a very complicated and confusing graph.

Another complication sometimes arises where there is
(between cousins) marriage across the generations, e.g. between
IV6 and Vi in the example given above. Offspring of such a
marriage are related to the other members of the family in two
different ways, which can 'only be accurately specified by giving
both rel~tionships- "through the mother" and "through the
father" [like J.R.R. Tolkien's characters Frodo and Bilbo
Baggins, who were "first and second cousins, once removed either
way, as the s"aying is t,] .

MATHEMATICS APPLIED

I am convinced that the future progress of chemistry as an
exact .science depends very much indeed· upon its alliance with
mathematics.

A. FRANKLAND

In mathematics we find the primitive source of rationality;
and to matbematics must the biologists resort for means to carry
on their researches.

A. COMTE

In the near future, mathematics will play an important part
in medicine; already there are increasing indications that
physio~ogy, descriptive anatomy, pathology and therapeutics
cannot escape mathematical legitimation.

M. DESSOIR

The permeation of biology by mathematics is only beginning,
but unless the history of science is an inadequate guide, it
will continue. Mathematics may very often help in proving the
obvious, but the obvious is worth proving when this can be done.

J.B.S. HALDANE
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LETTERS TO THE EDITOR

NEWTON/S FIRST THEOREM

The square root of every odd number that is not a perfect
square generates (in a way I will make clear) at least one in
finite set of Pythagorean triads such that for every triad in a
given set there is the same mathematical relationship between a
pair of corresponding sides in that triangle, and such that that
same mathematical relationship is unique to that 'particular set,
and hence to the square root of that particular odd number.

Every odd number can be written in the form (2n ~ 1) ,
where n is a whole number. For 13 and 15 the relation-

ship is that the shortest side and the
hypotenuse are approximately in the
ratio (n - l):n. If that were the
precise ratio, then 13 and 15 woul~
not be irrational. The 13 triads are
a different set from the 15 triads,

(n-l) because the ratios are not the same.
For /3 the ratio is approximately 1: 2 ,

(i) 12n-l ··while for IS it is approximately 2: 3 .

For the square roots of the other
odd numbers the relationship is that the

second shortest side and the hypotenuse are approximately in the
ratio (n - 1):n, provided that that odd number is not a per
fect square.

Does the theorem hold for even
numbers? Yes, if and only if that
even number is. not a perfect square,

and is of the form r 2 ± 1, where
r is an integer.

The square root of an even num
ber with the above properties
generates only one infinite set of
Pythagorean triads. If the square
root is of the form ~. ,
it has as its mathematical relation
ship that the shortest side and the
hypotenuse are approximately in the
ratio l:r.

If the square ~oot is of the
form ~ +h=n +hro. ............. 1 ••

( ii)
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has as its mathematical relationship that the sides which
form the right angle, that is the two shortest sides, are
approximately in the ratio l:p.

The square root of an odd number which is not a perfect

square and whi·ch gives the form '/p2
± 1 where r is an integer

generates not one but two infinite sets of Pythagorean triads,
with the mathematical relatidnshi~s that appertain to each set
being distinctly different, apart from the case of 13, which
is a special case for the following reason.

If n in diagram (i) andp in diagram (ii) are such that
n = r = 2, the triangles are identical. 'For every higher
value of nand r the two triangles in diagrams (i) and (ii) are
quite different triangles. That is why the two sets of triads
generated form a single set with the relationship between the
hypotenuse h and the shortest side s being

h = 28 :+ 1 .

If the hypotenuse was precisely double the shortest side,
and there was not this discrepancy of just one unit, then 13
would not be irratipn~l.

I will now make clear just in what way the Pythagorean
triads are generated by generating them for the square root of .
three.

4= -1 '.2x

Let 2x 3. Subtract 4 from both sides of the equation

The left-hand side is the difference of 2 squares.

(x 2)(x + 2)

-1x-2=X+2

-1 .

-1
4 + {(x + 2) - 4}

-1
4 t (x -,2)

-1
1

·4 - 4 + (3: - 2)

-1

(substituting for
(x-2) from the left
and side)

14 -
1

4 
4 1

- 4 - ... ad infinitum.

If the rth rational approximation to this infinite fraction is
n 1 -1 d- d' then the (r+l)th approximation is - ---n (4d-n) = 4d-n .

4 - d d
-n1 1

The first approximation d
1

is obviously -"4.
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and so on.

Now write each fraction as a parameter pair (p,m) , glvlng
(1,4); (4,15); (15,56); (56;209); and so OD. Use the well-known
formulae for generating a Pythagorean triad from a pair of inte~

gers (p,m) that do not have any common factor. That is

(m 2 + p2); (m 2 _ p2); and 2mp. (1,4) gives the triangle
(8,15,17). Now 17 = (2 x 8) + 1, and the triads obey the
general law h = 28 + 1, when h is the hypotenuse and s is the
shortest side.

Observethat Ix - 21 '= 113 - 21 < 1. My' routine works
only when the modulus of the infinite fraction is less than one,
and it w~s not necessary to go negative in order to achieve that.
What can we do to obtain the other infinite set of triads?

The above fractions form an infinite sequence in which the
fractions tend to the limit (13'- 2) as r ~ 00. To obtain
the infinite sequence in which the fractions tend to the limit
13 as r tends' to infinity, it is only necessary to add 2 t'o

. . 1. 7 4 26
each of the above fractl.ons. Thus - '4 + 2 = '4; - 15 + 2 = 15 ;

and so on. Taking (4,7) as the first parameter pair '(p,m),

generate a triad using formulae m2 + p2; m2 p2; and 2mp.

49 + 16 = 65; 49 - 16 = 33; and 2 x 7 x 4 = 56 .

Observe that
general law h
shortest side.

65 = (2 x 33) - 1, and the triads obey the
2s 1, where h is the hypotenuse and s is the

These two sets are different, and yet they may also be
viewed as one set with one missing triad in one. case, the (3,4,5)
triad. The mathematical relationship for this one set is
h = 28:+ 1, where in each triad the hypotenuse is double the
shortest side alternately minus or plus one, being·minus one for
the first and missing (3,4,5) triangle.

The most significant thing about this missing 3,4,5 triangle

is that 3 2 + 4 2 = 52 = 25, and I have discovered the second most
significant thing about it, that the perimetep 3 + 4 + 5 = 12 .

For just as the Newton sequence for 13 is 1,4,15,56, ...
taking four times the previous term and sUbtracting the term
before that to get the next term in the sequence, the sequence
for 12 is 1,2,5,12, ... taking twice the.previous term" and
adding the ,term before that to obtain the next in the sequence.

What are the next four terms in the sequence?

(i) (2 x 12) + 5 29;
(iii) {2 x 70) + 29 = 169;

(ii) (2 x 29) + 12
( v) (2 x 169) + 70

·70;
408.

If the next triangle in the set generated by 12 after
the 3,4,5 triangle has a perimeter of 70 and a hypotenuse of 29,
we shall discover that this gives a 20, 21, 29 right-angled

triangle, for 202 + 212 = 292 .
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And if the nex~ triangle in this sequence after that has a
perimeter of 408 and a hypotenuse of 169, we shall discover
that this gives a 119,120,169 right-angled triangle, for
1192 + 1202 = 1692 . .

What is the mathematical relationship that is true for a
pair of corresponding sides in everyone of these 3 triangles
(3,4,5); (20,21,29) and (119,120,169)? For every triangle in
this infinite sequence you will discover that the two shortest
sides forming the right angle differ by only one unit.

"S •J. Newton,
348A Bourke Street,
Darlinghurst, N.S.W.

[Pressure of space has forced us to ~mit many other
interesting details supplied by Mr Newton, following his
eaTtier letter (Function, Vol.8, Part 1). Newton's First
Theorem generalises a similar result, referred to in Vol.5,
Part 2 as Cohen's First Theorem. Eds.]

PROBLEMS AND CORRECTIONS

Two problems, not numbered as such, were posed on p.3 of
Function, Vol.S, Part 1 ..Here are the solutions.

First, let x = 1 0 2345678901234567890 .... Clearly

1010x - x 12345678900, and so

x = 12345678900 1371742100
1010 _ 1 = 1111111111

This fraction cannot be simplified; since

and

1371742100

1111111111

22 x 52 x 3607 x 3803

11 x 41 x 271 x 9091 .

Secondly, to prove Colin Fox's Theorem 1, note that

tan en+1 _ )sec2
Sn+l - 1

tan a - 2 "
n sec an -"1

As n -T (Xl, this will behave like (sec en +1 )/(sec en)' i.8.
(cos en)/(cos an+1 ) .

But cos en = cos(90 - 10-n) ° = sin(10-n )O, and similarly

cos en+1 = ~in(10-n-~)o. But, for such small angles, we may

approximate the sines as

sin(lO-n)O - (l~O) x lO-n etc.

and from this it follows that

tan an +1
lim tan a
n-+co n

10 , as stated.
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On p.25, a minor correction is needed. (a + b + c)2 should

read (a + b + c) n .' It would be possible to take an n-dimen
sional analogue to give the kth "layer" of the sum to n terms of
the kth power. These coefficients are given by kI/(a1 !a 2 !·· .an !),

where the numbers ai sum to k and each is non-negative.

Finally, a word on the problem of finding 100 consecutive
composite numbers. The smallest such set begins with 370262 and
continues for 111 consecutive integers. I found this by leaving
a computer searching for a couple of days.

J~ Ennis
Year 12, M.G.S.

[For the Zast paragraph 3 refer to earZier accounts in
Function~ Vol.7 3 Parts 334~5o The improvement given here is
enormous. Eds.]

MORE ON THE PAPERMOBILE

I would like to draw attention to the article by Jean-Pierre
Declercq entitled "A 'Papermobile' to Multiply Po).ynomials"in the
August, '1982, issue of Function.

Since, for example,

x 3 + 9x 2 + 8x + 4 = 1984 if x = .10 ,

the "papermobile" method may be used to mul tiply base 10 numbers.

Example: 1984 x 123 .

Write 1 9 8 4 on a sheet of paper. Reverse the digits of
123 and write 3 2 1 on the papermobile, a narrow strip of paper.
Place the papermobile as shown

1 9 8 4

~
1

and multiply the adjacent digits, i.e. 1 x 1 = 1 . Then move
the papermobile to the right one space at a time and calculate'
the sum of the products of adjacent digits. The final stag~ is
shown.

1 9 8 4
1"""'-3--'-'-2----'1l

1 11 29 47 32 12

Now, Preallocate" the place values, i. e. 12 = .10 + 2, 33 = 30 + 3,
50 = 50 + 0 and so on, giving the product

244 0 3 2
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The method can, of course, be applied to numbers in other
bases.

My students (at all levels) have enjoyed using the Ilpaper
mobile" algorithm.

David Shaw
Geelong West Technical School

OOPS!

Oh dear! And after such a hooray-feminist article, too!

I.D. Rae
Monash University

[Function is properly chastened. Eds.]

HAMILTON THE STONE-CARVER

In Function Volume 5, part 3, page 27, you quote from Sir
William Rowan Hamilton (via Crowe's A History of Vector AnaZysis)
some comments he recorded about his discovery of quaternions.
You then 'add:

"Bell (in Men of Mathematics) has Hamilton pulling out' a
pocket-knife and carving the basic table on the stone of the
bridge, but this story (like much else in Bell, see p.27) would
seem to be apocryphal."

The following is a quotation from a letter by Hamilton to
his son Archibald.

"In October', 1843, having recently returned from a meeting
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of the British Association in Cork, the desire to discover the
laws of the multiplication of triplets regained with me a certain
strength and earnestness, which had for years been dormant. bu~

was then on the point of being gratified, and was occasionally
talked of with you. Every morning in· the early part of the above
ci ted month, "on my coming down to b~eakfast, your brother William
Edwin and yourse~f used to ask me, 'Well, Papa, can you mUltiply
triplets?' Whereto I was always obliged to reply, with a sad
'shake of the head, 'No, I.canonly add and subtract them.' But
on the 16th day of the same month - which happened to be. a Monday
and a. Council day of the Royal Ir1shAcademy - I was walking in
to attend and preside, and your mother was walking with me, along
the Royal Canals to which· she had perhaps been'driven; and al
though she talked with me DOW and then, yet an under-current of
thought was going on in my mind, which gave at last a result,
whereof it is not too much to say' that I felt at once the impor
tance. An electric circuit seemed to close; and a spark flashed
forth, the herald (as I foresaw immediately) of many long years
to come of definitely directed thought a.nd work, by myself if
spared, and at all events on the part of others, if I should
ever be allowed to live long enough ·distinctlyto communicate
the discove~y. I pulled out on the spot a pocket-book, which
still eXists, and made an entry there and then. Nor could I
resist the impulse - ttnphilosophical as it may have been - to
cut with a knife on a stone of Brougham Bridge, 'as we passed it.
the fundamental formula with the symbols, i,j,k;

-£2 :I j2 :2 1(2 == ijk = -1 ,

which contains the solution of the Problem, but of course, a.s an
inscription, has long since mouldered away. A more durable
notice remains, howeveI~,'on the Council Books of the Academy for
that day (October 16th, 1843), which records the fact that I
then asked for and obtained leave to read. a paper on Quaternions,
at the First Genera.l Meeting of the Session: which reading took
place accord.:tngly on Monday the 13t.h of November following .. "t

This e):traci: from a letter of Hamilton disposes of the doubt
you raise about Bell's story. One wonders wbether the denigrating
comment "like mucb else in Bell" th9...t you throw .. in, has any better

. justification.

We offer for your consideration the following comment of
E.T. Bell (Preface, The DeveZopmen~ of Mathematics, 2nd Ed.
McGraw-Hill, New York, 1945). I

"It has, .unhappily, been necessary. in writing the book to
consider many things besides the masterpieces of mathematics.
Rising from a protracted and not always pleasant session with the
works of bickering historians, scholarly pedants, and contentious
mathematicians, often savagely contradicting or meanly disparaging
one another, I pass on, for what it may be worth, the princ~pal

thing I have learned to appreciate as never before. It is con
tained in Buddha's last injunction to his followers:

3eZieve nothina on hearsau. Do not beZieve in traditio~s

because ~hey are oid~ Qr in anything on the mere authori~y of
myseZf or any other ~eacher~

Bamford Gordon, 7 Burnside .Ave. Hamilton

+Prom Sir W.R. Hamilton to the Rev. Archibald H. Hamilton, August J,
1865. See R.P. Graves, Life of Hamilton, Volume II, p.434, Arno
?~essF New York, 1975.
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PROBLEM SECTION

The problems in Vol.8, Part 1 brought a most gratifying
response. Here are the solutions.

SOLUTION TO PROBLEM 8.1.1.
The problem read:

How many permutations are there of the digits 1.2,3, , .. ,8
in which none of the patterns 12,34,56,78 appear?

Jonathan Ennis (Year 12, M.G.S.) writes:

"There are· at permutations of 8 digits. Of these, 7! will
contain the pattern 12 and similarly for the other patterns. But
some of the 4 x 7! permutations just considered contain two

such patterns, so we have overcounted by (~) x6!. But again
some of the permutations may contain three such patterns, so we

have undercounted by (~) x 5!. Finally, 4! pe~utations will
contain all four patterns.

Thus the 'total number of allowable permutations is

8~ - (~) x 7! + (:) x 61 - (~) x 5! + 4!, which works out to be
24 024.

The problem may easily be generalised to the case of 2m
digits and the pairs 12,34, . .. ,(2m-l)2m

SOLUTION TO PROBLEM 8.1.2.
Ten people form the queue'at a bank. The first has a bank

balance of one cent, while the tenth has a little over
$5 million." The accounts of the others' are each computed by
adding ten elevenths of the account of the person ahead to one
eleventh of the account of the person behind. Can the sixth
person afford to bUy a new car?

Let
account.

Tn be the number of dollars in the nth person's
Then

Tn_1 (lO/11).Tn _2 + (1/1~).Tn

i.e. T
n

David Halprin (P.O. Box 23, Carlton North) now solved this
equation to find

where AtE are constants. But T1 = 0-01 and T
10

. is a little



27

over 5 000 000. So

A + lOB 0-01

A + 1010B ~ 5 x 106

These relations give A e: 0·01, B e: 5 x 10,...4, which may then

be checked. Then T6 ~ 106B ::= 500. This will not at today' s

.prices buy a new car.

Jonathan Ennis, who also solved the problem by a slightly
different method, using approximations earlier in the calculation,
remarked that T6 wo~ld not pay for a new car, but the account's

owner might try holding up the teller!

SOLUTION TO PROBLEM 8.1.3.
We asked for the value of

(9 + 4/5?/3 + (9 - 4/5?/3

David Halprin and Jonathan Ennis both reasoned as follows.

then

If (a + b)1/3 + (a _ b)1/3
a + b + a - b + 3.(a + b)2/3.(a

+ 3. a + b ~/3. a -

b)1/3

b 2/3

Therefore 2.a + 3.(a2 _ b2)1/3.((a + b)1/3 + (a _ b)1/3)

2.a + 3.s.(a2 _ b2)1/3 .

In this problem a = 9 and b = 4./5, a 2 - b 2 = 1, and so

8 3 - 38 - 18 = O. Thus (8 - 3)(5
2 + 38 + 6) = 0, which gives

S = 3 as the only real root.

A similar approach was used by R.P. Hale of Deakin University
and it was most likely this method of attack that the editors of
Mathematical Spectrum had in mind when they proposed the problem.
There is a formula fQr solving cubics and, in the case of the
cubic reached above, it gives the expression in the problem. How
ever, we got three other answers also.

Devon Cook, editor of Scientific Austral-ian, put

(a + b/5)3 = 9 + 4/5 to get two simultaneous cubics

a 3 + 15ab 2 9, 3a 2b + .5b 3 = 4.

He then put a = mb and found

4m3 - 27m2 + 60m - 45 ~ o.
This equation has one real root: m = 3. This enabled a,b
to be found and so the problem was solved.
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Leigh Thompson (RMB 5110, Bairnsdale) had yet another
approach. Having been working witl1the Golden Ratio *(1 ± 15)
and investigating its successive powers, he noticed that'

{H 1 ± IS)}6 = 9 ± 4/S .

This meant that

(9±4/SY/3

and so the problem fell out!

!( 3 ± 15) ,

Ricardo Montebon (Zamboanga College, Philippines) had yet
another approach. Setting

(1)

he mUltiplied to find

x 2 - Y = (81 - 80)1/3 = 1 (2)

(by the difference of two squares in each side). He also cubed
Equation (1) to find

/ 3 2,. /9 + 4v5 = x + 3x vy + 3xy + yvy

and equated the rational parts to get

39 = x + 3xy . ( 3)

He then solved Equations (2), (3) by eliminating y and using
3 5'

trial and error to find x = "2' y = '4' giving now the resul t
as above.

SOLUTION TO PROBLEM 8.1e4.
111 players enter a tennis tournament. How many games must

be'played to determine the winner?

As such tournaments always adopt the.convention that a
player who loses one game. is eliminated, the winner is the only
player to have su~tained no losses, while all other players have
sustained precisely one. Thus 110 matches have been played.

This solution was submitted independently by Jonathan Ennis
and by David Dyte,(Year 10, Scotch College).

We hope our re~ders can do as well with this set of problems.

PROBLEM 8.3.1'(Submitted by D.R. Kaprekar.)

In the year 1949, a man turned 67. His four sons turned 37,
31, 29, 23 respectively. All five reached prime age in a prime
year. It was the golden year for that family. When was or will
be their next golden year?
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PROBLEM 8.3.2 (Submitted by Garnet J, Greenbury.)

Are there Pythagorean triangles whose perimeters equal
their areas?

PROBLEM 8.3.3 (Su~mitted by, Jonathan Ennis,)

Toss a fair coin 100 times and keep a tally of progressive
numbers of heads and tails. How many' times (on average) will
the lead change from one to the other?

PROBLEM 8.3.4 (Submitted by Jonathan'EnniE.)

Find a cuboid such that its sides and the diagonals of its
faces all have integral lengths. Alternatively, prove no such
cuboid exists.

PROBLEM 8.3.5 (From The MathematiaaZ Gazette.)

In a common type of logic-puzzle, we are confronted with
two categories of person: those who always lie and those who
always tell the truth. A traveller reached a land in which the
inhabitants all fell into two such classes and, seeing a house,
he wished to ascertain whether it was an inn where he could spend
the night. Approaching two people, he asked the first, but
received a cryptic reply, insufficient to give him his answer.
He addressed ,exactly the same question to the second person and
received exactly the same reply. He then knew the house to be
an inn.

What was the cryptic reply?

00 00 00 00 00

PERDIX
The 1984 International Mathematical Olympiad will take place

from July 2 to July 10 in Prague. Australia will send a team of
six.

The Australian government will provide no help towards costs.
In 1983 Algeria, Austria, Brazil, Bulgaria, Columbia, Cuba,
Czechoslovakia, East Germany. Finland, France, Great Britain.
Hung~ry, Italy, Kuwait, Luxembourg, The Netherlands, Poland,
Roma~ia, Sweden, U.S.S.R .. U.S.A.,Vietnam, West Ger~any, and
Yugoslavia each provided full financial support for' correspondence
instruction, regular training sessions, final training camps for
up to four weeks f duration together with all travel costs for team
and officials. Except for three countries, namely Belgium. Morocco,
and Spain, where I have been unQble to find out what government
support was given. I find that every country except A~stralia sub
stantially supported its team. DO WHAT YOU CAN TO URGE AUSTRALIAN
GOVERNMENT SUPPORT.FOR ITS MATHEMATICAL OLYMPIAD TEAM.

Support for the International Mathematical Olympiads is not
just support for a g'ame. Al though only a handful are selected
for the final team the process of finding the right team involves
ext~a training in mathematics being given, or offered. virtually
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t~ all high school students t The consequent great interest
generated in mathematics directly helps all Australian techno
logical and scientific development. Australia has made a magni
ficent start in the Olympiads. We must make certain that the
sustaining interest in mathematics continues and that Australia
has the best team to compete for it internationally. There must
be no possibility that anyone is excluded from the Australian
team because they cannot personally pay all the'costs involved.
URGE THE AUSTRALIAN GOVERNMENT TO SUPPORT THE AUSTRALIAN MATHE
MATICAL OLYMPIAD TEAM.

, * * * *
If you wish to try to get into the Australian Olympiad team

enquire at your school. In each State there are arrangements for
selecting possible members of the team. It is important to prac
tice problem solving and the training sessions set up in va~ious

centres in each State provide you with the opportunity to prac
tice and also.offer'you guidance to improve your skills. If you
cannot get the information you need from your school, ccintact the
State organiser in your State. Here are'their names and addresses.

New South Wales

Tasmania

Victoria

South Australia/
Northern Territory

Western Australia

Queensland

Australian Capital
Territory

Mr G.R. Ball ..
Department of Pure Mathematics,
Building 807, Sydney University',
SYDNEY, 2006.

Mr J. Kelly,'
Mathematics Resources Centre,
2 Edward Street,
Glebe, 7000.

Mrs Judith Downes,
46 Hill Road t

North Balwyn, 3104.

Mr V. Treilibs"
Mathematics Project Team,
Wattle Park Teachers Centre,
424 Kensington Road,
Wattle Park, 5066.

Dr Phillip Schultz,
Department of Mathematics,
University of Western Australia,
Nedlands, 6009. '

Dr N.H. Williams,
Department of Mathematics,
University of Queensland,
St Lucia, 4067.

Dr R.A. Bryce,
Department of Pure Mathematics,
A.N.U. f

·P.O. Box 4 i Canberra, 2600.

* * * *
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The International Commission for Mathematical Instruction
organises an International Congress on Mathematical Education
(ICME) every four years. This'year (1984) it is bei~g held for
the first time in Australia and will take place in Adelaide from
24 'August to 30 August. Over 2000. mathematicians and teachers
of mathematics are expected to attend.

At ICME 1'984 there will be six separate sessions devoted to
discussing mathematical competitions. The sessions are entitled:
The Creation of Competition Questions; National Mathematics Com
petitions; A .aleidoscope of Competitions; The International
Mathematical 'Olympiad; Why do 1 in 55 Australians enter a Mathe
matics Competition? [Quarter of a million took part in such com
petitions in 1983.]; World Federation of National Mathematics
Compet'i t ions.

Also at ICME '1984 will be a poster display of journals
(Function will be there) having problem solving sections for
school students. Some video films giving information about
some successful competitions will be shown.

If you need further, information please contact Mr P.J.OtHalloran,
ChiefOrganiser, Competitions ICME-5, Canberra College of Advanced
Education, P.O. Box 1, Belconnen, A.C.T., 2616.

* * *. *
Solving problems

Olympiad problems are chosen so that they will stretch the
abilities of the contestants. Thus many of the Ol~mpiad ~roblems

are difficult. However, what makes a problem difficult? After
you have solved a problem, or after you have been shown a solution,
a problem that was found difficult often seems simple, and you
could kick yourself for not seeing how to do it sooner.

How should one set about trying' to solve a difficul t p'roblem?
Clearly knowledge helps. The more mathematical results, i.e.
facts t that you know which are related to the questions posed by a
problem, the more likely you are to solve the problem.

We now consider a problem concerned'with divisibility of
integers.

PROBLEM (First International Olympiad, 1959, problem 1)

2ln + 4Prove that the fraction 14~ is irreducible for every
no tUl--a Z number n.

Note fi:t;"st that a natural number is the same thing as a posi

tive integer t . Note secondJy that a fraction is irpeducible if
its numerator and denominator have no common factors other than 1
(we may clearly restrict ourselves to positive integers). ~e now
understand the problem.

tNowadays ,0 is often counted as a natural number. Not in 1959.
However in this problem it makes no difference: when n = a ,
2l~ 4 is· irreducible.
14n + 3 3
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As the next step it is often useful to carry out some ex~e-ri

ments, i.e. look at some special cases. These special cases may
give you a feel for the situation and, by noting some common fea
ture, ,may lead to a general argument.

Experiments.

n
1
2
3
4

(2~n + 4) / (14n + 3)
25/17
46/31
67/45
88/59

(21n + 4) - (14n + 3)
8

15
22
29

Two integers that have highest common factor 1 are said to
be ao-prime, or to be prime to eaah other. The above experiments
clearly show that (21n + 4)/(14n + 3) is "irreducible when
n = 1,2,3, and 4, for 25 arid 17 are co-prime, 46 and 31 are co
prime, etc. Can we glean any other information?

Well, 25 - 17 = 8 is prime to each of 25 and 17; similarly
'46 - 31 = 15 is prime to each of ·46 and 31. Is this generally
true? Yes. We have

(*) Let 1 and m be 'eo-prime pOBitiveintegers~ with 1 > m .
Then 1 - m and 1 are ao-prime~ as are 1 - m and m.

Proof. Suppose that the positive integer d divides t - m and 1.
Thus, there are positive integers k and h say, such that

i.e ..

R, = kd
-1 - "m = hd .

Substituting from (1) in (2) gives

kd - m hd
m = (k - h)d .

(1)
(2)

Hence d divides m.
1 and m. Hence d
co-prime.

~hus d divides each of the co-prime integers
l. This shows that 1 - m and 1 are

Similarly, 1 - m and m are co-prime.

Exercise 1. Show that the" following resul t holds.

(**) Let t and m be ao-prime positive integers. Then 1 + m and
R, are ao-prime~ as are R, + m and m •

Exercise 2. Results (*) and (**) may be generalised. Show that

(***) Let R, and m be positive integers with highest common faator
d (>0). Then the highest common factor of each of the pairs R,.- m
and t; t - m and m; t + m and 1; R, + m and m is aZso d.

As a corollary to (~*) we have:

(****)
R, - m

Let t and m be positive integers such that R, > m
and m are co-prime. Then 1 and m are co-prime.

and.
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Proof. By (?/C*),
(~ - m) +. m and

since R,.... m
m~ i,e. i

and m are co-prime so also
and m are co-prime.

It is a good idea when finding small results, such as C*)
here~ that seem relevant to the solution of a problem, to note at
the same time other closely re+.ated results such as (**), (***)
and (****), here. At this stage·of solving the problem, you do
not know which facts may be relevant: collect facts as you go
along.

We haveenougb facts(tog~therwithsome that are not
necessary) to solve our problem, For, by (*) and (****»)

·(21n +4)/(14n + 3) is irreducible, i.e. 21n.+ 4 and 14n + 3
are co-prime if and only if (21n + 4) - (14n + 3) and 14n + 3
are co-~rime, i.e. if and only if 7n + 1 and 14n + 3 are
co-prime.

But, if d di~ides 7n + 1 and 14n + 3. then d divides
14n + 3 - 2(7n + 1) (=1), and so d divides.1. Hence d = 1 . and

'7n + 1 and 14n + 3. are always co....prime.

Hence (21n + 4)/(14n ~ 3) is always irreducible. Q.E.D.

Knowledge of some facts about divisibility was necessary to
solve Problem 1. ProblemscQllcernedwith divisibi'lity have fre
quently turned up "in the International Mathematical Olympiad' tests
and other competitions.' This is,perhaps Dot surprising, because
the· idea of divisibflitYisasi·mple one and divisibility is at
the heart of a major ~reaof study in mathematics, the area
called the theory of numbers. In the same area is the next problem.

PROBLEM 2 (Sixth International Olympiad, 1964, problem 1)

(a) Find all positive integers n for which 2n - 1 is
divisib le by 7.

(b) Prove that there is no positive ~nteger n for which
2n

+ 1 is divisible by 7.

Send to Perdix your solutions to the problem - or your
attempts at a solution. Hint:' if n 3 m, k and r are integers and
m = 7k + r, then mn and rn g~ve the same remainder'ondivision by 7.

PROBLEM 3 ( Twe·lftll International Olympiad',' 1970, problem 4)

Find the .set of all positive integers n wi·th the property
that the set {n ,n+l,n+2,n+3,n+4,n+5} can be partitioned into t~~c

sets such that the produot of the numbers in one set equals the
product of the numbers in the other set.

Note that a set A is partitioned into two sets when it is
divided into two subsets such that each member of A belongs to
one of the two subsets and no member of A belongs to both the
subsets.

PROBLEM 4. Let m be .an odd positive integer. Show that there is

a positive integer k such that m divides 2k - ~.

Turn to Perdix's column next issue for a discussion of
solutions to some of these and further problems.
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