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The world of robotics is· one which is fast· coming upon us.
The advent of the cheap computer and its marriage with other
aspects of modern gadgetry are now making possible the auto
mation of many once exclusively human tasks. In our major
article for this issue, Robyn Owens, a mechanical engineer,
writes on this - in particular with relation to her work on
mechanical sheep shearing. Undoubtedly such devices will
become, as her article indicates, more common in the decades
to come. The more complex question of how society will adapt
to them seems as far from solution as ever.
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THE FRONT COVER

M.A.B. Deakin, Monash University

Last issue we illustrated a device for drawing ellipses.
This time we show another - a practical device for drawing them
on blackboards (as in this illustration - but we have printed
the photograph in negative). The device, manufactured by the
German company Leybold-Heraeus, attaches to the board by four
suction cups at the back.

(x,Y)
P
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A

The points A, B slide in
grooves and, as the arm thus moves,
the point P traces out an ellipse.
To see why this should be so, put
AP = a, BP = b. Then, by ele
mentary trigonometry, the co
ord~nates (x,y) of P are given
by x a cos 8

y = b sin 8.

Eliminating 8 now gives

2 2
:E-+L=l
a

2
b

2

the standard equation of the
ellipse.

The instrument allows a, b to be adjusted to give ellipses
of different sizes and shapes. Here we illustrate two different
cases. (See opposite.)

The instrument demonstrates the connection between the
ellipse and another curve - the astroid. The astroid was the
cover subject for Volume 2, Part 4. The easiest way to picture
an astroid is to imagine a ladder up against a wall - then
visualise the ladder beginning to slide. As an exercise, draw
successive positions of the ladder as it slides in such a way
that its top point maintains contact with the wall and its
bottom point with the ground. Successive positions of the
ladder are tangent to the astroid, which is referred to as
their "envelope ll

• (On page 4, we reproduce o:ur Vol. 2, Part 4
cover - a picture of an astroid generated by a computer drawing
of the sliding ladder.)

The section AB of the elliptical compass is the analogue
of the sliding ladder - its successive positions are all tangent
to an astroid, whose equation is

2/3 + 2/3 _ ( b)2/3x Y - a - 0
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The connections between ellipse and astroid are extensive and
deep.

Each small section of arc that goes to make up the ellipse may
be approximated by a circular arc. As we move along the ellipse,
this circle will vary. The centre, in particular, will take up
a new position. The path traced out by this centre is referred
to as the evoZute of the ellipse. This turns out to be the
astroid referred to above.

Conversely, the ellipse is r~ferred to as the involu~e of
the astroid. Involutes can be realised geometrically, by
wrapping a thread around the curve (here the astroid - the
thread wraps from the inside) and then unwinding it. The end
point of the thread then traces out the involute. So if a
pendulum were suspended from the top point of the astroid over
leaf and its length were sUitably chosen, the bob would trace
out an elliptical arc.
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A THEOREM ON SERIES OR THE ART

OF ADDING ARBITRARILY MANY
SMALL NUMBERS t

Our intention is straightforward: take a sequence of real
numbers

all less than one, all strictly positive, and form partial sums
like this:

Sn U1 + U2 + 000 + un

The series, denoted by u 1 + u 2 + 000 + un + 000 , may be viewed

as a sequence of partial sums. If a limit exists for this
sequence, we say that the series converges. (Otherwise, it
divergeso)

Let us suppose that a series with general term u n is con-

vergent, let us say to s . We can write

lim s = s and lim s n-l = snn-+oo n-+oo
and since s u + s

n-l
we deduce immediately that

n n

lim u o 0nn-+oo

So this last condition is necessary for the convergence of the
serieso But it is not sufficient 000 •

t This article is a translation from the Frencho It first
appeared in Math-Jeunes No 016.. l.Ja-ch-c.Teu.nes is a Belgian counter-
part of Functiono The article appears here under an exchange
agreement between the two journalso



6

The display on the page opposite deals with an example
~:.Thich Ilwo r ks lt

: the .case of the series formed from the geo
m~tric sequence. The rest of this article is more concerned
with the harmonic series and several of its variants.

1 l' 1
The harmonic series 1 + 2 + 3 + 4 + certainly satis-

fies the condition lim un = 0, but nonetheless it diverges.
n+oo

Demonstrated for the first time in 1650 by the Italian
MENGOLI, the divergence of this series rests on the elementary
arithmetic result

~ + ~ +~ > ~ , where n is a natural number.

By reducing the fractions to a common denominator, this result
is easily proved. Then

so that

1+ 1 + ( 1 + 1 + 1 ) + (
1

s > T "2 '3 4 5 +

and, regrouping,

s > 2 + 1 +

and so s > k (k being any natural number) .

Another technique consists of grouping the terms according
to the number of digits in their denominators.

s = 1 + ~ + ~ +

S = (\ 1 + 1:2 + 0 0 0 + -91 ) ( 1 1 \ (1 1 )+ TO + 0 •• + 99) + 100 + + 999 +.0.

S > (~ + .. , +~) + (l~O + ..• + rBo) + (iioo + + 10~O)+'"
9 90 900

s > 10 + roo + 1000 +

999
s > 10 + 10 + TO +

which clearly proves divergence.

For a shorter approach~ try this.

= 1 + 1 + .! + !. + 1 + 1
+s 2" 3 4 "5 6"

1
+

1 1 + ! + .! + .! +s > "2 "2 + -4 4 6 6

1
1

+
1

s > + "2 "3 +

s > s.
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~~~~~~~~~~~~

~ ~

~ THE GEOMETRIC SEQUENCE !
~ ~
2 ~
~ A geometric sequence (or, formerly, progression) is a ~

~ sequence of numbers, such that each is equal to the pro- ~

~ duct of its predecessor and a constant called the constant ~

~ ratio. ~

q ~
q We can readily show that if u

1
is the first term ~

~ and q the common ratio, then un is gi yen by ~
~ n-l ~
~ un = u 1q q
~ Let us now calculate the partial sums sn: ~

~ ~~ sn u 1 + u 2 + u 3 + + un q
~ q s n u 1q + u 2 q + + u n _1q + unq ~
~ ~ . ... .. .. ..._ .._ .._ ...__.11' • ~

~ ~
~ qSn-sn = unq - u 1 = u 1 (qn - 1) ~

~ and ~
q n _ 1 q
~ s = ~-----' u e
~ n q-1 l' ~

~ ~
~ We can use this to show that if -1 < q < 1, the ~

~ geometric series converges to the value ~

q ~
q u 1 /(1 - q) ~

~ ~

~ E.g. 1 + ~ + ~ + ~ + 116 + 2 . ~
~ ~
~ . ~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Intuitively, the harmonic series, although it does contain
terms that get smaller and smaller, always sums them in such a
way as to exceed any bound we try to impose. Note that the in
crease is very very slow: after 250 million terms the sum is
still less than 20 ....

And if we remove some terms from the series, what happens
then?

A First 3 Eas~ Example

If S is the sum of those terms remaining in the harmonic
series when we remove all the terms with even denominators 3 then
th~ series converges. t

S 1 + 1: + .! + ~ 1 1 1
+= 3 5 7 + '9 + 11 + 13

S = (1 + + ~) + (1 + 1 \ ,( 1
+ 1 \ +, .. . ,IT .. . + 99) + ',I~11 ... + 999) ...

In each bracket there
ceding one since in a
next bracket preceded

S < 2 + (25 x ir)
,} < 2 + (25 x 110 )

25( 5S < 2 + IO 1 + 10

are five times as many terms as in the pre
bracket each denominator appears in the
by each of the digits i, 3, 5, 7, and 9 0

+ (125 x rir) + (625 x rirr) +

+ (125 x ~) + (625 x 1ioo) +

(5 )2 )+ \IU + .••

We recognise in the bracket on the right the geometric series

'th . 1 h k 2Wl common ratlo "2' w ose sum wor s out to be .

S < 2+ (~g x 2) = 7 .
In this first· example, the series converges.

A Second 3 More Surprising 3 Example

If we delete from the series all terms whose denominator
contains the digit 9~ then the series converges!

1+1 1 1 1 1 1 + 12 + ... + 8 + 10 + + 18 + 20 + ... + 88 100 + ...

'1 1
+ 108 + IIO + ... = ?

tIt follows from this that those terms with even denominators
themselves form a divergent series, but this may also be proved
quite directly from the divergence of the harmonic series itself.
This is left as an exercise for the reader.
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We put ~ + ! + + 1a 1 2 o 0 ~ S'

1 + 1a
2 .10 000 + 88

1
+ +

'1
a

3 roo 0.0 888

The initial terms of each a· are given by 1/10i - 1
The number

1"

9 i .of terms in a. is less than or equal to The first statement
1"

the secondt .is obvious; we now justify

First note that it holds for a 1 r which contains exactly

9 terms 0 Suppose now that the statement has been proved for
i = n ;we shall show that it remains true for i = n + 1

a n +1 contains all the terms of the series whose denomi

nator d lies between 10n and 10n +1 . This interval can be
subdivided into nine intervais

a. • 10n
~ d < (a, + 1) 0 10n , a. = 1,2, ... ,9.

The last interval contains no terms of the series; the other
eight each contain exactly as many terms as there are in the
interval

0< d < 10n .

But, by our assumption, this number is less than or equal to

+ 9 .

Thus a. +1 con tains fewer than 8 (if + if -1 + 0" + 9) terms,
n n+1

ioeo fewer than 9 terms. This proves the second statement.

Hence

+ an
9 2 gn

+ 0" < 9 + ~O + ... + -----1 + ....
..LV 10n-

We recognise a geometric series with first term 9 and common
ratio 9/100 So our series sums to a value less than
9/(1 - 9/10), or 90.

t The method of proof used here is called mathematioaZ indu~tion,
a technique widely employed to prove statements concerning posi
tive integers. Let SCi) be such a statement. To prove SCi)
true for all i, we prove:

(a) S(l)
(b) Sen)

is true
Sen + 1)

Th en, by (b), S ( I) => S ( 2 )
S(2) => S(3} and so S(3)

and so 8(2) holds.
holds. And so on.

Apply (b) again:
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THE INTELLIGENT ROBOT

Robyn Owens,
University of Western Australia

Despite the popularity of such robots as R2D2 in Star Wars,
or the manically depressed Marvin in The Hitchhiker's Guide to
the Galaxy, the robots of today are still at a rather primitive
level and can only accomplish fairly limited tasks ..

In fact, robots were only mentioned for the first time in
;921 in the play "RoUoR o" or Rossum's Universal Robots by Karel
Capeko The plot concerns a huge factory manned by robots that
have been designed to produce all types of goods, including
other robots. However, the robots are eventually programmed to
have emotions and it is then that they rebel and destroy their
creators.

Today's industrial robot, on the other hand, is a long way
from being equipped with emotions. Its development began during
the Second World War with the teleoperator, a machine designed
to handle radioactive materials at a distance.. The teleoperator
was a substitute for the operator's hand; it consisted of a pair
of tongs and two handles which were connected together by linkage
mechanisms. The tongs were on one side of ~ wall with the radio
active material, and the operator and handles were outside. By
moving the handles the operator could achieve almost any position
and orientation of the tongs, thus manipulating the radioactive
material at will.

Figure 1.

A master-slave mani
pulator (teleoperator)
for handling radio
active materials.
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In 1947 the teleoperator was electrically powered for the
first time but because the operator could no longer "feelt! what
was going on (there was no force feedback) the task of picking
up and placing objects became very difficult. Force feedback
was introduced just one year later and this made the operatIon
of a teleoperator much simpler. Teleoperators are widely used
these days in situations which are difficult or dangerous for
people to operate, for example, in maintenance work on the out
side, of submarines, doing such delicate tasks as screwing up
small screws.

After the end of the war the numerically controlled (i.e.
computer controlled) machine tool was developed in answer to the
need to make advanced aircraft. This allowed complicated air
craft parts to be described in terms of mathematical'curves
which were stored in the computer and the necessary computations
were made to tell the tool where to cut the metal.

Then in the 1960's the machine which was to become Unimatets t

first industrial robot was demonstrated. This device could be
taught to perform any simple job by driving it by hand through
the sequence of task positions, which were then recorded in a
digital memory. The robot could replay the task exactly any
number of' times, for example, indefinitely spray painting car
doors; but it was completely unable to adapt should the car door
be moved to another position or exchanged for a side panel. Such
a robot is known as a first generation robot; these machines have
some form of memory and are programmable (through a microprocessor)
but have no sensors through which they can learn about their en
vironment.

A seaond generation robot is a first generation robot which
has been given touch, sight or some other signal sensing. Touch
sensors were first added to a robot in 1961 whilst by 1967 a com
puter could be equipped with a television camera and then iden
tify a limited number of objects and decide where they were in
space.

Third generation robots will be advanced robots that are
.mobile and have a high level of sensing and artificial intelli
gence. Although they appear frequently in science fiction films,
their actual production is still some way off.

Most existing robots in use in industry today have the
following features:

The meahaniaaZ struature. This consists of a central pede
stal and the mechanical linkages and joints which allow movements
in various directions. At the end of the "arm" is a "wrist"
which may have a gripper or a tool attached. The number of in
dependent motions that can be carried out by the assembly is
known as the number of degrees of freedom of the system. The
design of the arm is clearly very important since it determines
which points in space can be reached by the wrist. See Figure 2 0

tunimate is a large u.s. Corporation specialising in robotics.
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Figure 2

The movements of two robots with different mechanical structures.

Pick-and-place robot with four independent movements.

[Courtesy of the Australian Government Publishing Serviceo]
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The controZ system. The movements of the mechanical struc
ture can be controlled in a number of ways, from simple' switches
or me9hanical stops to position sensors that are linked to the
computer. Robots with mechanical stops and switches have only a
limited number of positions and hence move from one point to
-another wi th no control over intermediate posi tions. Such
robots are called point-to-point or pick & pZace robots. Robots
with larger memories and the ability to control intermediate
positions are called continuous path robots.

The power system. The power used to drive the mechanical
structure of today's robots is either pneumatic, hydraulic or
electrical.

A robot is thus a piece of equipment which uses ideas from
mechanical engineering, electrical and electronic engineering
and computer science. To simplify and solve many of the problems
that occur in each of these areas we need a large number of mathe
matical tools,. ranging from calculus and algebra to numerical
analysis and statistics. The mathematical areas that one en
counters in robotics arise from the need to have:

(i) Mathematical descriptions of one or many objects, of
the robot, and of the relative positions and orientations between
them. These mathematical descriptions are stored in the computer
memory and the computer makes calculations which tell the power
system how to operate the mechanical structure so as to manipulate
the objects.

(ii) Mathematical descriptions of the forces and trajec
tories necessary to ensure that the robot accomplishes its task.

(iii) An analysis of sensor information; that is, analysing
electrical signals, television pictures, sound waves, etc.

(iv) An anlysis of errors in the robo~s knowledge of the
world so that it can adapt its behaviour and learn about its
.environment.

(v) Computer programs that allow the robot to calculate
its~~osition and forces quickly enough so that it can work at a
reasonable speed.

To illustrate some of these mathematical concepts let us
consider one robot in particular, the experimental sheep shearing
robot which has been developed at the University of Western Aus
tralia. A simplified diagram of the robot is given in Figure 3.

To shear a sheep, the robot needs to have a description of
the sheep's surface, called a "software sheep". This description
is mathematical and must be in a form that the computer' can handle
easily and quickly. To make the task easier, the sheep's sur-
face is divided up into a number of patches, namely the back, side,
belly, neck and legs, and each of these patches is described sepa
rately. Once we have a good description of each patch, we can then
match all the patches up together to obtain the whole sheep.

So let's begin by concentrating on the side patch. One of
the simplest things to do is to consider this patch being made
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upper link

workspace coordinate frame

nose clamp

~
"" I~aw

drive for follower

pistonrotation~,{ff
1;1

, '; I""':::-..<.~""; /
.:~~

follower actuator~ ~......,

roll

'-.... ..

\
............... '

.............. I '

~-..\\/

manipulator \ \\....
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Simplified sketch of sheep-shearing rig at University of Western Australia

Source: Department of Mechanical Engineering, University of Western Australia

Figure 3.
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up of a number of parallel plane curves in equally spaced section
planes in 3-dimensional space. The curves are then just objects
in 2-dimensions (within each plane) and can be given a simple
description.

1 "\
( J - \.

f . 5' J \
l' ~f,l .____. J ')

~"'~ 1

( a) The sheep (b) Side and rear leg patches

y

x

(c) A side section curve

Figure 4.

We describe the sheep's 2-dimensional (u,t)- surface in 3
dimensional space by saying that a point r on the surface is
given by

where 0 ~ t ~ 1 and 0 ~ U ~ 1 .
section curve.

The u. are u valves for each
~
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The variables u and t are allowed to range between 0 and 1
and are called parameters. Notice that each section curve is
given by describing the x-variable and the y......variable as a
function of t (rather than just making the y-variable a function
of x). In such a case we say that the curve is described
parametrically with parameter t. The adjacent curves are joined
up together by joining points of equal t-value as in Figure 4(b).
The advantage of a parametric description is that it allows the
curve to turn back or loop over itself. (Why is this so?) This
could not occur if y was written simply as a function of x.

The functions describing x and yare called cubic polynomials
and the constants a, b, c, d, e, f, g and h are the coefficients
of these polynomials. These coefficients will be different for
each of the section curves and by changing these coefficients we
can change the shape of the surfaceo The constant k is just a
scaling constant which tells us how far apart the section curves
are and we can. move from one section curve to the next by changing
the value of u.

Although thi~ gives us a general mathematical description
of a sheep's side patch that we can program into a computer,
there still remains the problem that individual sheep have
different shapes, some being bigger than others, some fatter,
some older, or they may be of different sexes. To cope with this
problem we need to be able to predict the shape of an individual
sheep's surface underneath the wool before we shear it. ·And
this is where we use some statistical theory.

The idea is to notice that there should be some relationship
between various physical measurements that we can make on a sheep
(for example, weight, length, width across its shoulders, leg
length, etc.) and the coefficients that we use to describe the
surface. Since a big fat sheep will have different coefficients
from a small skinny sheep, our aim is to predict the coefficients
by using the physical measurements. This can be done using a
technique known as linear regre8sion; this allows us to write
each coefficient ~s a linear furiction of the physical measure
ments. (A linear function is just one in which the physical
measurements are multiplied by constants and then added together.)
So we have

coefficient = (constant 1) x weight + (constant 2) x length + •••

In this way we can obtain an approximate predicted surface of the
sheep before we shear.

To cope with the errors that arise from predicting the sheep's
surface (since no prediction can be exact and the sheep moves!)
the robot is equipped with electrical sensors that can feel where
the sheep's skin is when it comes close to it. So the software
sheet (or surface map) is used to guide the shearing cutter up
close to the sheep's skin and then the sensors will make sure
that the sheep is not cut by "feeling" where the skin is and
always remaining a few millimeters away from it.

In this way the robot's behaviour is modified by the infor
mation it receives through its sensors.
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The- robot can also "learn" how to shear sheep more accurate
ly by accumulating the surface data it finds on shearing one sheep,
and using this data to get a better prediction of the next sheep
it will shear. The more and more sheep it shears, the better
the predictions it will be able to make and the better will be
the quality of the shearing.

This robot has now sheared over 200 sheep, but it is still a
very complicated machine and many problems remain unsolved. By
combining the tools of mathematics with the skills of engineering
the problems will eventually be overcome and what was initially
an experimental machine will have grown into an intelligent, help
ful and reliable robot.

By now the world has seen the development and growth of many
"intelligent" robots. "Intelligence" usually means that the robot
has the ability to recognize various situations and is able to
take decisions depending on what it finds. In conclusion, two of
these "intelligent" robots are:

The Automatic Chocolate Decorating Robot. This robot con
sists essentially of an arm with a chocolate nozzle at one
end. The arm is attached to a television camera that
watches various shapes of chocolate go past on a conveyor
belt. The robot has to recognize what shape the chocolate
is and then decide where to squirt on the pattern of choco
late topping that corresponds to that particular shape.
When deciding on the shape, it is not enough to say "square",
"round" or "rectangular"; the robot also has to calculate
where the chocolate is and in which direction it is pointing.

The Ohio State University Hexapod. This is a robot with six
feet and is designed to walk like an insect e In fact, cock
roaches were studied especially for deciding how the hexapod
robot could turn around corners. The research is being
sponsored by and done for the UoSo Army and is eventually
seen as producing a 2-ton vehicle which will replace,pack
mules and helicopters. Such a robot could also be used ex
tensively on a construction site, serving as an apprentice
to a craftsman in constructing brick walls, lifting and
setting window and door frames, painting, pouring concrete
and many other such tasks.

By the 1990's we expect to have household robots that can
carry out such jobs as vacuum cleaning, dusting, setting tables,
scrubbing bathrooms and almost any other domestic task. Such
robots will need to be equipped with very sophisticated sensors
and be able to take quite complictted decisions. This will
certainly be the age of the third generation robot.

Ref. "Robots" - A report to the Prime Minister by ASTEC,pre
pared by the Technological Change Committee (1982).
[Available from the Australian Government Printing Office.]
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TESTS FOR DIVISIBILITY ON LARGE
NUMBERS

Bruce Henry,
Victoria College, Rusden Campus

The number B = 123 456 789 101 112 131 415 161718 192 021
222 328 has 39 digits and is regarded by most people as a BIG
number. But you can tell instantly that it is divisible by 2 and
not by 50 (We will use the term "divisible by" to mean "exactly
divisible by".)

We wri te 2 I Band 5 f B •

It is easy to tell that 4 I B, since B = lOOK + 28, where
K is a 37-digit number and 4 1100 and 4 I 28, so 4 lB.
Similarly 8 I B, since B = 1000L + 328 and 8 I 1000 and
8 I 328 .

The most common reason for wishing to test for divisibility
by a number is to find out if a number is a prime or not; thus
we wish to find tests for divisibility by primes, and tests
which a computer can handle are useful. You probably know a
test for divisibility by 3. A number is divisible by 3 if the
sum of its digits is divisible by 3. You certainly know a test
for divisibility by 5 and you may know one for 11. But other
primes have difficult tests, all different, and therefore hard
to program on a computer. Furthermore, few computers will store
a 36-digit number as a number (most will store it only as a string
of characters). We must look for tests which are similar for any·
prime and which can be used on the computer in that they only use
the last few digits of the number. Here is a test for 7, 11 or 13.

1. Call the number to be tested NO'

2. Note the number q formed by the last 3 digits of NO.

3. Strike out the last 3 digits of NO and subtract q from the

number left. Call this new number N1 .

4. Repeat steps 1, 2, 3 with N1 instead of NO ' obtaining N 2 '
and so on, until N is reached, with 6 or fewer digits.a

5. Complete the test on N by diVision. NO divides by 7,a
11 or 13 if and only if N divides by 7, 11 or 13.a
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Example: NO 1234567893

q 893 .

N
1

1234567 893

1233674 .

N
2 1233 - 674

== 559 .

7{N 2 , 111 N2' 13 N2 ·

So 7{'NO' 11{ NO' 13 NO '

i.e. 13 is a factor of 1 234 567 893 but 7 and 11 are not ~actors.

The test relies on three facts:

1. 1001 = 7 x 11 x 13 .

2. piN if and only if p (N - kp) where k is integral and
p is prime.

3. If P is a prime, p +2, P + 5, then p I 1000N if and only
if piN.

1000In the above e~ample

The test subtracts sui table mul t,iples of 1001 from NO so

that the result ends in OOO~ Then N1 is this number divided

NO - 893 x 1001
by 1000.

p I NO if and only if p I N1 where p = 7 or 11 or 13.

Now this test is a good one in that it only operates on the
right hand digits of the number and that it shortens the number
by 3 digits at each application (iteration). Unfortunately it
cannot be generalized to tests for divisibility by other primes.
Nonetheless, the principle is a sound one. To test N for divi
sibility by prime p, we will try to subtract a multiple of p
from N so that the resul t e·nds in zero.

Let us try to find a test for divisibility by 17~ Fifty-one
is a multiple of 17. If we subtract suitable multiples of 51
we can easily get a zero in the last place of the number being
tested.

E.g. let NO = 1606463297.

Since the last digit is 7, we must subtract a multiple of
17 which ends in 7. 51 x 7 will do

1606463297 - 357 = 1606462940.

1606462940 {- 10

160646294.

This time, subtract 4 x 51 204.

N1 - 204 = 160646090.
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Let N2 = 16064609.

To speed up our test, c~ll the last digit q; then
Nn - q x 51

Nn +1 _-.-c.--yo-~--

N2. - .9 x .51
----~l~O~ = 1606415.

(160616 - 6 x 51)/10 = 16031.

(16031 - 51)/10- = 1598.

(~598 - 408)/10 = 119.

17 1119, 17 I NO •

(1606415

So N
3

N
4

N
5

N
6

N7

Since

5 x 51)/10 = 160616.

We can speed up the test a little more by using only the 5
from the 51:

liTo test if NO· divides exactly by 17, note the last

digit q of NO' Strike out q and subtract 5q from the

number left. Call this new number N1 . Repeat with N1 ' and

so o~ obtaining N2 , etc. till Na is reached with 3 or fewer

digits; 17 I NO if and only if 17 I N
a

For example NO = 1234567893

q 3

N1 123456774

N2 12345657

'N 3 1234530

N4 123453

N5 12330

N6 1233

N7 108 0

Since 17 .0( 108 , 1 7 1NO '

This test has the desired properties; it reduces the number
under test and only changes a few digits at the right hand end.
It is slower to give a result than the (7,11,13) test in that it
takes more steps - it only removes one digit at each step where
the (7,11,13) test removes 3 digits at each step. We can devise
a test to eliminate 2 digits at once if we can find a multiple
of 17 which ends in 01. 901 is such a number (901 = 53 x 17).
Or use 6001 (= 353 x 17) to remove 3 digits at once.
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N1

18606463297

18606463 - (6 x 297) = 18604681

21

Since

N
2

18604 - 6 x 681 = 14518 .

17 I N2 , 17 I NO •

This example uses a multiple m, by which the last d digits
of the number under test must be mu~tiplied.

Thus we can establish numbers which are related to the
primes which will be used in the above way to test for divisi
bility bY,the primes. So far we have:

Prime (p) m d=No" of digits in q
p

7 1 3
11 1 3
13 1 3
17 5 1
17 9 2
17 6 3

Clearly, the larger the number of digits in q the better,
we so discard smaller numbers if we can find a larger one.

It is easy to find m if d is 1.
P

If P ends in 1, m ~ e.g. p 31, m 3.
p 10 P

If P ends in 3, m ~ e.g. p 23, m 16.
p o ' P

If P ends in 7, m ~ e.g. p 37, m 11.
p 10 P

If P ends in 9, m 9Pro- 1 e.g. p 19, m 17.
p' P

To find formulae like these for d = 2, we will need to find
40 formulae as p may end in 01, 03, 07, 09,11, 13, 17, 19, ... ,
91, 93, 97, 99. We will need 400 formulae for- d = 3 (!) We
cannot store all these in a microcomputer, so we must find a
way to produce them within a program, or settle for d = 1.

It would be good if we could find a formula or an algorithm
to compute mp for large d. This is not easy. It is interesting
that m is e~sy to find for d = 1 but difficult for d > 1"
The fo~mulae for d = 1 are derived from our knowledge of tables
e.g. to get m for d = 1, when P ends in 3, we know that
7 x 3 = 21 en§s in 1, and the rest is easy. But we do not know
tables for odd numbers up to 99, so the appropriate 'formula is
hard to find. Perhaps this article will stimulate someone to
devise suitable formulae.
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SCIENTIFIC LAWS I

G.B. Preston, Monash University

In Function, Volume 6, Part 5, p Q7, in the item headed
"The next term in the sequence" an argument was given to show
that "a perfectly logical answer" to the question, "What is
the next term in the sequence 1, 2, 4, 8, I6?" is that the next
term is 31 Q

In Volume 7, Part 1, pp.24-25, two letters from readers
commented on this item. The first from JQA Q Deakin, pointed
out that any number, or indeed any sequence of numbers, could
follow the first five numbers 1, 2, 4, 8, 16, as logical con
tinuations of this sequenceQ Deakin demonstrated this by
giving a formula for un' the nth term of a sequence, such

that u 1 = 1, u 2 = 2, u 3 = 4, .u4 = 8, u 5 = 16, and such that

un' for n > 5 , could take any sequence of values we chose,

including non-integral values.

The question of "what is the next term of a sequence" is
in fact perhaps the most fundamental in science, economics,
sociology, or indeed any area of study in which it is possible
to use numbers to measure what one is investigating.

654321

Figure 1

One way of thinking about the question is to regard it as
asking how to find a curve through a given set of points in a
plane~ For example, suppose we have a sequence u

1
,u

2
'Qo.,u

S
.

This sequence of 5 terms, determines the 5 points with co
ordinates (1,ul),(2,u2),(3,u3),(4,u4),(5,u5) 0 In the special

case when u 1 = 1, u
2

= 2, u
3

= 4, u
4

= 8, u
5

= 16, Figure 1

graphs the corresponding set of points, (1, 1) , (2 ,2) , (3 ,4) , (4 ,8) ,
(5,16). Note that in this graph different scales are used on
the horizontal and vertical axes.
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Finding an answer to the question "what is the next term in the
sequence U~;U2,q •• ,u5" may perhaps be regarded as equivalent

to finding a curve through these points and then continuing the
curve to the right, so as to find a point with co-ordinates
(6,u

6
). The dotted curve drawn gives, approximately, u

6
= 22 .

Is there any good reason for supposing that the sequence
should be 1,2,4,8,16,22, ... ?

I said earlier that perhaps this question was the most
fundamental in the whole of science. Why? How can this
apparently trivial playing with a few numbers be basic in science?

The reason is that science is based upon measurements. In
any scientific investigation we start with a set of measurements.
We hope that the measurements we make will enable us to under
stand what is happening. W~ have a finite sequence of measure
ments u 1 , u 2 ' · · . , un' say, and from these we hope to be able to

find some explanation of what we have measured, i.e. what we
have observed. The explanation will be a good one if we can
predict what the next measurement will be.

When we speak here of "the next measurement" we are not
necessarily speaking in terms of time. Each measurement that
is made is made in certain circumstances that are recorded as
part of the scientific observation. What we want to be able to
do is to predict what we shall observe when the circumstances
under which the observation is made are specified arbitrarily.
If we can do this correctly in all circumstances, then we have
certainly understood the phenomena we are observing: we have a
complete understanding of the situation.

Such a complete understanding is rare. When it occurs we
have what is called a "law of nature". What is accepted as a
law of nature by one generation may be overturned by later ex
periments or observations. Perhaps the most well-known of
such changes of view is from the acceptance of Newton's ex
planation of motion of the planets to a preference for that of
Einstein. In fact Newton's explanation is a special case of
Einstein's, applying when the speeds involved are not too large.
The evolution from Newton's theories to those of Einstein is
required to accommodate a longer (i.e. including more) sequence
of observations than was known to Newton.

What makes us prefer one explanation of a sequence of ob
servations to another?

This is the first of a sequence of articles that will dis
cuss various approaches to such interpretations. There are
several strictly mathematical approaches, Qne of which is
evidenced in the letter of J.A. Deakin in Function, Volume 7,
Part i. There are scientific approaches and statistical
approaches. There are what might be described as psychological
approaches. There are historical approaches, which to some
degree comment on what are the acceptable psychological
approaches.

A famous approach to what is acceptable as a scientific
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explanation is embodied in the principle of Occam's razor. An
English translation of this principle is: tEntities should not
be multiplied except when it is necessary. When applied to
interpreting scientific observations the principle requires
that all unnecessary assumptions be eliminated or, in more
general terms, that simpler explanations be preferred to more
complicated ones. Newton refers to the importance of the prin
ciple in the 3rd edition of his Principia Mathematica.

Let us consider an application of the principle to a ~imple

situation. Suppose we consider the sequence 0, 16, 64, 144 and
ask "What is the next term in this sequence?". Let us also
suppose that these numbers represent measurements taken of some
phenomenon at times t = 0,1,2,3, respectively. If these num
bers really represent a natural phenomenon and we apply Occam's
razor, then we ought to be looking for the simplest possible
formula fet), such that fCO) = 0, f(l) = 16, f(2) = 64,
f( 3) = 144 .

It is unfortunately not possible to make precise the notion
of what is meant by "the simplest possible formula". For example
here are two candidates for the choice of fet).

ea) f(t) = 16t2 .

TIn fact this is the formula that results from using, for a
sequence of 4 terms only, the appropriate part of the formula
exhibited by J.A.Deakin in his letter in Function Volume 1,
Part 1, already referred to.]

(b) f(t) = _~t4 + t 3 + 8
6
5 t 2 + t.

The reader should check that for (b), as for (a), f(O) 0,
f(l) = 16, f(2) = 64, and f(3) = 144.

Now which formula is the simplest? Whick makes the least
number of unnecessary assumptions? There is no formal logical
answer to this question. Though perhaps, like me, you would opt
for possibility (a). In (a) f(t) is a monomial (ioe. a poly
nomial with a single term) whereas in (b) fet) is a polynomial
with four terms; in (a) the coefficient of the sale term, in

t 2 , is an integer whereas in (b) the coefficients involve frac
tions that are not integers 0 Altogether simpler!

The principle of Occam's razor would seem to favour (a) be
cause, for example, the formula (b) suggests that the observed

measurements depend on the fourth power t 4 and also the third

p.ower t.3 .of the. t.i.me· ·at. which the. me.asur.eme.n.t .is .taken; whi.le

t The name Occam's razor for this principle was first used in 1852
by the Scottish philosopher Sir William Hamilton (1788-1856) in
his book Discussionso The Latin original of which the above is
a translation is: Entia non sunt multipZiaanda, praeter necessi
tatem, a phrase apparently first used by John Ponce of Cork
(Ireland) in 1639. W~lliam of Ockham,a 14th century English
logician, after whom the principle is named, made very similar
statements, and was perhaps the first to argue convincingly for
its importance"
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on the other hand formula (a) would say that we need not assume
that the third and fourth powers of t are 'needed to explain what
has been observed.

Of course, as earlier observed, there is a way of testirig
the usefulness of the formula we have chosen, to see whether it
has the desirable feature of applying to other observations in
addition to those already considered. Suppose that at time
t = 4, the next (term of the series ) observation was 252. Then

formula (a), f( t) = 16t2 , which gives f( 4) = 256 would not
apply (unless an experimental error had been made in the obser
vation: but this is another story) while formula (b) gives
exactly f(4) = 252. So, unless we strongly suspect an experi
mental error in the measurement at t = 4, we adopt formula (b):
the alternative formula (a) has failed.

As another example consider the motion of the planets in
relation to the sun. If we take the sun as stationary and take
the planets to be revolving about the sun, then we get a rela
tively simple mathematical description of the observed motion
of the planets. If, on the contrary, we suppose that the earth
is stationary, and take the sun and the other planets to be re
volving round the earth, then an adequate mathematical descrip
tion of the motions observed, is extremely complicated. The
principle of Occam's razor would seem to demand that we take the
sun as stationary and so avoid unnecessarily complicated concepts
and calculations. Here however we are not dealing with two
theories, one of which is wrong, while the other is right. We
have two equivalent theories, or formulations of a single theory,
one of which is much simpler to use than the other. Occam's
razor is a most useful principle to invoke to justify our choice.

In the next issue of Function I shall discuss some mathe
matical approaches to the answer to the question "what is the
next term in this sequence?". Alternative approaches will be
discussed in later issues of Function.

In general we mean by any concept nothing more than a set
of operations; the concept is synonymous with the corresponding
set of operations. If the concept is physical, as of length,
the operations are actually physical operations, namely, those
by which length is measured; or if toe concept is mental, as of
mathematical continuity, the operations are mental,namely those
by which we determine whether a given aggregate of magnitudes is
continuous.

P.W. Bridgman, The Logic of Modepn Physics, 1934

Data obtained by the processes of measurement, numbers
constructed by definite algorithms, are the basis of knowledge.
Pi, as the idealization of a limiting process, is forever be
yond our reach, but as the 707-place approximation obtained by
Shanks, it is within our range of knowledge.

H.T. Davis, The Theory of Linear Operators, 1936
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LETTERS TO THE EDITOR
IMPROVING A RESULT

A short note on p.28 of your last issue showed that
100! + 2, ... ,100! + 100 were all composite. Thus the numQer
100! + 1 is followed by 99 composite numbers. In fact this is
not the smallest number with this property. 97! + 1 is also
followed by 99 composite numbers.

97! + 2, 971 + 3, ... , 97! + 97

are all composite as before. Furthermore

971 + 98 and 97! + 100

are clearly divisible by 2, while 97! + 99 is divisible by 3.
It may be that there are even smaller numbers with the same
property.

Bruce Henry,
Victoria College, Rusden Campus.

LIOUVILLE'S NUMBERS

T~e French mathematician Joseph Liouville (1809-92) set him
self the task of finding sets of integers a

1
,a 2 ,0 •• ,an hav~ng

the property

333 2
(a 1 + a2 + 000 + an) = (a1 + a 2 + + an) for some

fixed integer n.

The remarkable result he obtained is best first illustrated
with a few examples 0

(i) Consider the integer 6. It has four divisors: 1, 2,
3, 60 Let n be 4 and let ai' i = 1,2,3,4, be the number of fac-

tors of each of the divisors of 60

Hence we have the following situation:

Divisor of 6 1 2 3 6

Factors of divisor 1 1,2 1,3 1,2,3,,6

a. 1 2 2 4
~

Now we observe that

1 3 + 23 + 23 + 4 3 = 81 = 9 2
== (1 + 2 + 2- + 4) 2 0

(ii) Consider the integer 20 and its divisors: 1,2,4,5,
10,20. For n = 6 we can construct the following table:
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Divisor of 20 1 2 4 5 10 20

Factors of divisor 1 1,2 1,2,4 1,5 1,2,5,10 1,2,4,5.,10,20

a. 1 2 3 2 4 6
~

Again we observe the result.

1 3 + 2 3 + 33 + 2 3 + 4 3 + 6 3 324

(1 + 2 + 3 + 2 + 4 + 6)2

(iii) We see that the integer 2n -
1 has n divisors

1,2,22, .. ,,2n - 1 The respective numbers of factors for each of
these numbers are 1,2,3,., .,n.

Hence using the same method as above we have the result:

n 2 (n + 1)2 ~ 2
-~-4---- = \ 1 + 2 + , .. + n) •

This result is in fact a special case of a more general theorem
due to Liouville, which we may state as follows:

If a natural number K has n divisors then let the integers a.,
i = 1'3.' ,n, be the number of divisors of each of the diviso~s
of K. Then

Garnet J. Greenbury.
Brisbane.

(This result intrigued us and we asked Dr R.T. Worley, a
number theorist, to oomment~ He" remarked that "Liouville's
result is just a neat way of generalising

1 3 + 23 + ... + n 3 = (1 + 2 + •.. + n)2 tt, (*)

He prooeeded to give a proof which is perhaps a little technical
for Function, but whose gist can be given) First suppose we
take the divisors of «perfect power. Then as in Greenbury's
example (iii) we merely reaoh the known formula (*). If we take
the divisors of a product of perfect powers, we multiply the
separate results. Thus Greenbury's example (ii) is expressible
as

(as 20 has 6 divisors other than itself, and 6 = 3·x 2). Eds.]
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PROBLEM SECTION
We have had a gratifying response to our problems and give

here the solutions of those set in Volume 7, Part 2.

SOLUTION TO PROBLEM 7.2.1.
ABCDEF is a convex hexagon, all of whose angles are equal.

The problem was to show that

AB - DE = EF - BC = CD - FA~

This problem was solved by J. Ennis, Year 11, M.e.E.G.S.
He writes as follows.

Since all the interior angles are equal, they must be 120 0

each. Extend the sides as shown in Figure 1.

G .--__--.EA,......,.__r--"'lIB~--""9H

G

l

A

B

H

K

E
J

D

Figure 1 Figure 2

Each of the triangles GAP, H8C, IDE is equilateral as its
interior angles are all 60°0 Thus GA = GF = AF, BH =HC = BC,
EI = ID = EDo Furthermore~ since

4FGA = ~CHB = 4DIE 60°,

the triangle GHI is eqUilateral and so

GA + AB + BH = GF + FE + EI

So by the equalities proved earlier

HC + CD + DI.



29

FA + AB + Be ~ fA + FE + ED = BC + CD + EDo

Now subtract Be + FA + ED from each expression to obtain the
required result.

This problem first appeared in the British counterpart of
Funotion~ Mathematical Spectrum. They published a slightly
different proof based on Figure 2. All the triangles adjoined
to the original hexagon are equilateral and furthermore opposite
sides of this are parallel. Then

AB + Be = AB + BH KE + ED FE + ED

Thus AB - DE = EF - BG .

The rest of the problem follows similarly.

SOLUTION TO PROBLEM 7.2.2.
This problem asked for a proof that if

(a + b + 0)3 = as + b 3 + 0
3

then

Clayton S. Smith of 184 Wilkilla Road, Mt Evelyn solved
the problem by noting that

(a + b + 0)3 3 _ b 3 3 3(a + b) (b + c)(c + a) .- a - 0

Thus, either a = -b, b = -0 or 0 -a. By symmetry, choose

= -b: Then clearly (a + b + 0)5 5 + b5 + 0 5a a

John Barton of 1008 Drummond Street, North Carlton submitted
the same argument. John Percival, Year 12, Elderslie HoS.,
Narellan, also solved the problem but by a different method. He

wrote a cubic equation x 3 + px 2 + qx + r = 0 of which a, b, 0

are to be the roots. This yielded a relation r = pq. But a,

b, 0 are also roots of x 5 + px4 + qx 3, + rx2 O. The relation

r = pq then allows us to deduce that a 5 + b 5 + 0
5 = p5

(a + b + 0)5 0

John Barton considered the question of whether the result
generalises. Is

(a+b+o+d)4 = a 4 +b 4 +c4 +d4 +4(a+b+o)(b+o+a)(c+d+a)(d+a+b) ?

The answer is no, because the left-hand side, if expanded,

would have 4 4 terms, while the right would have only 4 + 4.34

and (dividing by 4)

4
3

=f 1 + 34
0

It happens that 32
= 1 + 2

3
and this is what allows the cubic

case to proceed.
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SOLUTION TO PROBLEM 7.2.3.
This problem read:

A new planet has been discovered. Its shape is that of a
right circular cone whose flat circular face is land. This
continent has a diameter of 5000 km. The curved surface is en
tirely covered by water and the oceanic area is three times that
of the continent. The inhabitants of the planet are all keen
sailors and are planning an "around-the'cone" yacht race. What
is the shortest route, starting and ending at the same point on
the coastline, that circumnavigates the cone?

J. Ennis, Year 11, M.C.E.G.S. solved this problem. The
curved surface of the con~ may be imagined to be cut by a
straight line joining the vertex to the point at which the
circumnavigation commences and ends. This surface may then be
imagined as flattened out into a sector of a circle, as shown.

It is readily daduced that
7500 k~ and that ~AOB = 120~

Now the shortest route is
seen to be the straight line AB.
The length of this is (by the
cosine rule) 7500/3 km or
approximately 12990 km.

SOLUTION TO PROBLEM 7.2.4.

A B

This problem, submitted by J. Ennis, asked for a proof that

e + 2n 4 > 4 •

Simple use of a calculator was outlawed - tables likewise.

The shortest of the proofs submitted came from the proposer
himself and used integration. It proceeds

J
l (ex - 2)dx

2n2
(e - 2) - (2 - 22n 2)

e + 2n 4 - 4 0

But, as

tive,for

e > 2, 2n 2 < 1. It follows that the integral is posi

x > 2n 2 implies that eX > 2. Thus e + 2n 4 > 4 0

Clayton S; Smith sent us a computationally based solution,
using infinite series.
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e ::::;1+1+ 1 +-l+
21 3!

> 1 1 + ! 1 1 -1 ~"63
+ 2 + 6' + 24 + 120 60

in 4 2 tn 2 2{1 1. 1 .... }- '2 + 3" -

> 2{1 1. + .!- '2 3
.!+1 1 1 1 1 1}
4 5 - 6 + 7 - 8 + 9 - 10

1627
2 x 2520

3254 3'240
2520 > 2520

21+ 7 0

Thus 4~ 2
e + in 4 > 3 + 60 + '7 > 4. 0

.!. 1 + X
2 5l.,n r-::x

Clayton notes that, 'with a calculator, or even without one,
but with extra work, we could show that e + 5l.,n 4 > 4.1. .

John Barton, 1008 Drummond Street, North Carlton also sub
mitted a series approach. It may be proved from the series for
in(l + x) lused above with x 1] that

3 5
x + x + ~ +3 5

Put x =

-2
1 on 2 = !3 + ~ + 1 +

1V O.L 5x 243 · 00 •

This gives a series for in 2 that converges rather more rapidly
than Clayton Smith's. Otherwise the details are much the same.

SOLUTION TO PROBLEM 7.2.5.
This problem is one of a number of related problems in

which the absence or presence of information at various stages
of a dialogue itself forms part of the data for a problem. A
related (indeed harder) problem appeared as 1 0 2.6.

"I hear some youngsters playing in the garden", says Jones,
a graduate student- in mathematics, "Are they all yours?"
"Heavens, no", exclaimed Professor Smith, the eminent number
theorist. "My children are playing with friends from three other
families in the neighbourhood, although our family happens to be
the largest. The Browns have a smaller number of children, the
Greens have a still smaller number, and the Blacks the smallest
of allo"

"How many children are there altogether?" asked Jones.

"Let me put it this _way", said Smith. "There are fewer than
18 children, and the product of the numbers in the four-families
happens to be my house number which you saw when you arrived."

Jones took a notebook and pencil from his pocket and started
scribbling.. A moment later he looked up and said, t"I need more
information. Is there more than one child in the Black family?"

As soon as Smith replied, Jones smiled and correctly stated
the number of children in each family.
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Know"ing the house nlirober and whether the Blacks had more
than one child, Jones found the problem trivial. It is a re
markable fact, however, that the number of children in each
family can be determined solely. on the basis of the information
given above! How many children are in each family?

To solve this, first note all possibilities for the numbers
of children. Let S be the number of Smiths, B the number of
Browns, G the number of Greens and A the number" of Blacks. Then
A < G < B < S and A + G + B + S < 18. 38 possibilities satis
fy these conditions. For each of these, the product ApBS is
formed.

In some cases, this has a unique factorisation satisfying
the conditions specified. E.g. l.x 3 x 4 x 9 = 108 and no .
other set on the list yields this product. In other cases, an
ambiguity remains. E.g. 1 x 3 x 4 x 9 = 60, 1 x 2 x 3 x 10 = 60
and 1 x 2 x 5 x 6 = 60. Presumably Jones remembered the Smi th 's
house number, so, had the factorisation been unique j he would have
known the answer at this stage. He did not, but needed further
information.

Those possibilities of the original 38 that involve A > 1
all give unique products except

A = 2, G 3, B = 4, S = 5 (*)

whose product is 120. The combinations' 1,3,5,8 and 1,4,5,6
also multiply to give 120. Thus if the Blacks had had only one
child, Jones would have required yet more information. Since
he did not, (*) is the solution.

The above expands on a brief outline of the solution sub
mitted by J.Ennis.

COMMENT ON PROBLEM 7.1.2.
Problem 7.1.2 concerned a triangle of sides ~3,14,15. The

question asked for the distance from the side of length 14 to
the opposite vertex. Rather too late for inclusion in our last
issue, a solution arrived from John Barton that differed from
those we published earlier. This uses Hero'$ (or Heron's) formu
la for the area of a triangle: Area v's(s-a)(s-b)(s-e) , where
the sides have lengths a, b, c, and s = !(a + b + c). In this
example, the area is found to be 84 ! x 14 x 12, so that the
requisi te distance is 12 .

The response to our problems has been most gratifying lately,
and we hope it will continue unabated on the new crop that
follows.

PROBLEM 7.4.1.
A palindromic number is one which reads the same backwards

or forwards. It can happen that when a number and its reverse
are added, the sum is a palindrome. IE.g. 1030 + 030~ = 1331 .)
In other cases, it isn't. 812 + 218 = 1030, which is not
palindromic 0 But in this case a further operation of reversal
and addition produces, as we saw above, and palindromic result.
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