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This issue inaugurates Function's seventh volume and we
welcome new readers. Function is a magazine of school mathe
matics for those with interests in the area. Each issue has
several main articles, as well as problems, news items, short
contributions and a cover story. We urge our readers to sub
mit mat~rial to us and to let us have their comments,
favourable and unfavourable. We are always glad of feedback
from our subscribers.

Our articles this time deal with prime numbers and their
digit patterns, some remarkable extensions of Pythagoras'
Theorem and a knotty problem of law. We include yet another
article on the Rubik cube, this time not so much a "how to
unscramble your cube" recipe as an entry to the mathematics
behind these recipes.
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THE FRONT COVER

M.A.B. Deakin, Monash University

Take a circle wand draw another circle a which is tangent
to it, meeting w at a single point A. Now draw a third circle
(called b ' for reasons that will become clear) tangent to both a
and w. Let this circle touch ~ at 8'. Another circle c is now
drawn. c is tangent to both wand hi and its point of tangency
with w is called c.

w
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We draw two more circles: a', which touches both c and w
and meets w at A', and b which touches both a' and wand
meets w at B.

We now have a chain of circLes a, b', c, a', b, each oj
which is tangent to the circles preceding and following it in
the chain, and all of them tangent to w. We now set about
completing the chain. This is done by putting in a seventh
circle c' 1 wh~ch is to be tangent to all three of a 1 band 00,

- and whose point of 'tangency with 00 will be called C'.

This, it turns out, can be done in exactly two ways (dis
counting, as above, degenerate cases in which three or more
circles are all tangent at the same point). The proof of this
statement is not particularly difficult, but there are many
cases to consider and we do not give it here; you could explore
the matter for yourself.

We now find the following remarkable result. Join AA',
BB', CC'. Two such diagrams are, of course, possible, depending
on the choice of c' (and thus of C'). For exactly one of
these diagrams~ these lines are concurrent - i.e. pass through
a common point.

On the front cover, we show a case where they do. We
leave it to readers to find the other choice for c' and check
that the three lines then do not possess a common point.
Overleaf, we show the other case. Here AA " BB', CC' are not
concurrent, but you may check that the alternative choice of C'
gives concurrency.

This theorem is termed the "Seven Circles Theorem'l and was
first published in a book of that name in 1974 by C.J.A. Evelyn,
G.B. Money-Coutts and J.A. Tyrell. Because only one choice of
C' yields the concurrency, the seven circles theorem has been
described as a result with a 50% chance of being true, but this
was, of course, said tongue in cheek.

There are many other possible configurations, including
some in which the circles degenerate into straight lines. They
are worth exploring, but very accurate drafting is required.

Although geometry, in particular euclidean geometry, has a
history that dates back thousands of years, significant new re
sults such as this continue to be produced. A theorem such as
the seven circles theorem is difficult to prove - which is why
we do not attempt to present a proof here, but nonetheless it
can be described and explored at an elementary level because the
objects to which it refers are familiar to us.

Less difficult, but still significant, results, such as
Pythagoras' Theorem

1
can be understood more fully at the school

level. This has led many commentators to regret the extent to
which euclidean geometry has been removed from school syllabuses.
It is hard to think of another branch of mathematics in which
results of comparable significance can be reached $0 readily and
systematically. It also offers a good context in which to intro
duce the concept of rigorous proof.
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The international mathematical olympiads, while, of course,
they do dr~w questions from other areas of mathematics, often
involve challenging problems in euclidean geometry. David
Chalmers, one of our 1982 olympians (and a bronze medallist),
reporting on the last competition in our South Australian
counterpart, Trigon, makes a point similar to those made above:

lilt has often been said that. Australia ... is deficient in
geometry teaching, and I think this was borne out by the result
of the two geometry questions. ... In European countries, a
large part of the mathematics course is devoted to deductive
geometry, whereas in Australia it is hardly ever mentioned."

a'

c'

a
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DIGIT PATTERNS
OF PRIME· NUMBERS

K. McR. Evans,
Scotch College, Melbourne

A prime number (a prime) is a natural number which has
exactly two distinct factors. A composite number is a natural
number with more than 2 distinct factors. Thus 2, 3, 5, 7 are
examples of primes because each has 1 and itself as distinct
factors; 4, 6, 8, 9 are examples of composite numbers because
each has more than 2 factors; 1 is the only natural number
which is neither prime nor composite since it has one factor.

The distribution of primes in the set of natural numbers
does not appear to follow any pattern, but 'on average' primes
seem to get further apart as they get bigger. The following
question then arises. Is the number of primes finite or in
finite? The answer was known to Euclid around 300 B.C. The
substance of his argument is as follows.

Denote the primes 2,3,5,7, ... by Pl,P2,P3,P4' ... , so that

P
n

is the nth prime. Assume that the number of primes is

finite. Then there exists a largest prime, Pm say. Now con

sider the numbers q1,q2'··· ,qm defined by

qn P1P2P3· .. Pn + 1, n E {1,2,3, ... ,m}

q1 2 + 1 3 which is prime

q2 2 x 3 + 1 7 whieh is prime

q3 2 x 3 x 5 + 1 31 which is prime

q4 2 x 3 x 5 x 7 + 1 = 211 which is prime

q5 2 x 3 x 5 x 7 x 11 + 1 = 2311 which is prime

but q6 2 x 3 x 5 x 7 x 11 x 13 +1 = 30 031. = 59 x 509

which is composite.

Notice, however, that q6 is not divisible by any of the primes

P1,P2' ... ,P6; its smallest prime factor is bigger than P6·

Finally consider

qm is not divisible by P1 or or ... or Pm since, in each
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case, there is a remainder of 1. Hence qm (which is larger
than Pm) is either prime or has all its prime factors larger

than Pm. In either case there exists a prime larger than Pm.

This contradicts the assumption. Hence the assumption is false
and the number of primes is infinite.

Since there is only one even prime, Euclid's theorem may be
stated in the following form.

Theorem 1. The set of odd natural numbers, {x: x = 2n - 1, n EN} ,
contains an infinite subset of primes. [N is the set of
natural numbers: N = {1,2,3, ... }.]

The following question may now be asked. Does the set of
numbers of the form 3n - 1, i. e . {x: x = 3n - 1, n EN} = T
(say), contain an infinite subset of p~imes? Before proving an

. answer to this question we need a pr·eliminary theorem.

Clearly each natural number belongs to one of the following
disjoint sets:

S {3,6,9,12,15, ... } {x: x = 3n, n E N}

T {2,5,8,11,14, ... } {x: x 3n 1, n E N}

U {1,4,7,lO,13, ... } {x: x = 3n 2, n E N}.

Now 5 contains only 1 prime, so either T or U or both contain
an infinite subset of primes.

Theorem 2. U is closed under multiplication, i.e. the product
of any two elements of U is an· elemen t of U. (T is not closed
under multiplication since, for example, 2 x 5 ~ T).

Proof. Any two elements of U can be put in the form 3x - 2
and 3y - 2 for some natural numbers x,y. Also

(3x - 2) (3 Y - 2) 9xy - 6x - 6y + 4

3(3xy 2x 2y) + 4

3 (3xy 2x 2y + 2) - 2

3m - 2, where m = 3xy-2x-2y+2 EN,

E U.

The following theorem can now be proved.

Theorem 3. T = {x: x = 3n - l,n E N} contains an infinite
subset of primes.

Proof. Assume that the number of primes in T is finite. and
hence that there is a largest prime, say p, in T.



Let q 2 x 3 x 5 x x p - 1

3(2 x 5 x x p) - 1

3m - 1 where m = 2 x 5 x ••• x pEN

E T.
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Now q is not divisible by 2 or 3 or 5 or ... or p since
addition of 1 would make it so. Hence q, which belongs to T,
is prime or has prime factors all of which are larger than p.
In the latter case at least one 'of the prime factors belongs to
T. If ihis were not the case, all factors would belong to U.
Hence T contains a larger prime than p, a result which contra
dicts the assumption. Hence the number of primes in T is in
finite.

U also contains an infinite subset of primes. This result
and Theorem 3 are special cases of a more general theorem due to
Peter Gustav Lejeune-Dirichlet (1805-59). Dirichlet was one of
a series of extraordinarily able professors of mathematics at
the University of Gottingen in Germany. From this position he
influenced mathematicians in both France and Germany. His
theorem, published in 1837, is much more difficult to prove
(and is not proved here) but is easy to state as follows:

Theorem 4. If a, b are natural numbers and if the highest common
factor of a, b [HCF(a,b)] is 1, then {x: x = an - b, nE NU {OJ}
and' {x: x = an + b, n E N U {O}} both contain an infini te subset
of primes.

Consider again the numbers q1'q2'q3'.... Notice that an

infinite number of these (viz. Q3,q4" .. ) have 1 as last digit.

Can you see why? Does this mean that there is an infinite
number of primes with last digit I? The latter question can be
answered using Dirichlet's theorem without considering whether
or not {Ql,Q2' ... } contains an infinite subset of primes.

Let V = {x: x = lOn + 1, nENU {OJ} = {1,11,21,31, ... }.
Each element of V has 1 as last digit. Since HCF(lO,l) = 1, V
has an infinite subset of primes (Theorem 4). Hence an infinite
number of primes end in 1. It is left to the reader to say how
many primes end in 2,3,4, ... ,9.

If you wish to know how many primes have 69 (say) as last
two digits, let

w = {x: x = lOOn + 69, n E N U {O}} = {69, 169 , 269 ,369, ... }

Since HCF(100,69) = 1, W has an infinite subset of primes so an
infinite number of primes end in 69.

Furthermore if P is a prime other than 2, 5 and if m is any

natural number, then HCF(10
m

,p) = 1. Hence

X = {x: x = 10m . n + p, n E N U {O}}

has an infinite subset of primes. m may be chosen sufficiently
large that all elements of X end with all the digits of p. Thus,
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for example, if p = 65537 and if we choose m to be 5, the
number pi digits in p, then

X = {x: x = 105 .n + 65537, nENU{O}} = {65537,165537,265537, .. }

contains an infinite subset of primes all ending in the digits
65537.

As a final mind-boggling example, let p be the largest

known prime, 244497 - 1, which has 13395 digits. By Dirichlet's
theorem

X = {x: x = 1013395.n + p, n E NU {a}}

contains an infinite subset, Y, of primes all of which end with
the same 13395 digits as p. Of course p is the only element of
Y which is known or, at present, likely to be known!

We conclude this article by noting that it contains two
different kinds of results. Dirichlet's theorem is a theorem
about numbers and is independent of the base in which they are
written, whereas our application of the theorem is dependent
upon the numbers being written in base 10.

HIGHER-DIMENSIONAL ANALOGUES
OF PYTHAGORAS' THEOREM

W.E. Olbrich, Monash University
Pythagoras' Theorem is well-known and widely used inside as

well as outside mathematics. However, this contrasts markedly
with the fact that the analogous result relating to the squares
of areas does not seem to be generally known, even though it has
some practical significance. Even less known is a corresponding
result for volumes.

One can of course think of a number of reasons why this
might be. Firstly, quantities such as the square of an area
which has units of length to the fourth power, or the square of
a volume the units of which are length to the sixth power, are
not easily visualized, unlike the square of a length. Secondly,
and perhaps more importantly, the results to be discussed below
depend for their proof on the validity of Pythagoras' theorem
and hence are not independent. Nevertheless their simplicity
and the intriguing pattern of progression with increasing order
of dimension does, I would argue, justify spending some time on
the consideration of these results. And (may I add sotto voce)
they're fun. . .
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The Three-Dimensional Case

There are several ways of approaching this case; of these
we choose a purely geometric account.

Consider a right-angled triangle ABC of (possibly) unequal
shorter sides, and attached to these shorter sides two other
right-angled triangles such that the three 90-degree angles are
at the common vertex. Let us impose on the two shorter sides of
the attached triangles, that do not touch the original triangle,
the condition that they be equal. This is illustrated in

A

D ~_--H-_---+-C ~ B

E

Figure 1

Figure 1. Thus if DC equals CE and the attached triangles were
rotated about AC and BC respectively, out of the plane ABC till
sides DC and CE touched, then points D and E would coincide at
a point vertically above plane ABC at C. Thus by having "folded"
the two attached triangles out of the original two dimensions
into the third dimension the straight lines AB, AD and BE now lie
in an oblique flat surface which together with the three right
angled triangles encloses a tetrahedron of which three faces are
mutually perpendicular. This solid is illustrated in Figure 2.
It may be taught of as the "corner" sliced off a box by an
oblique flat cut.
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A

OrE

Figure 2

B

Note that the·area of the oblique face of this solid could
have been constructed while remaining in the original two di
mensions, by pivoting triangle ACD about vertex A and triangle
BCE about the vertex B.' Let the two points, D and E coincide as
shown in Figure 3 at the point E' the triangle ABE', which will
always contain three acute angles, will in fact be the triangle
of the oblique face.

e"

e'

c

Figure 3

B
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Let us now look at the relevant area relationship. Of the
four triangles, only one has an area that is not immediately
obvious from the lengths of its sides. Consider for a moment
the general triangle shown in Figure 4. The perpendicular from

Figure 4

the side of length L1 passing through the opposite vertex in

troduces two further dimensions: hand i. Application of
Pythagoras' theorem twice allows us to eliminate these and so
compute the area from the lengths of the sides.

Let A be the area of the triangle shown in Figure 4. Then

and so

A2
i h2Li

But

h
2 + ,Q,2 L

2
3

and

h 2 + (L 1-i)2 2
L2 ·

Thus

2 ,Q,2 L2 L2(L 1 -,Q,) - 2 3

so that

,Q, = 1 (r2 L2 +Ei)u-=- u3 - 2
1.

But now
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h2 L2 _ .Q,2 L
2 _1_ { L2 L2 2\2

3 3 4L 2 \. 3 2 + L1 }
1

so that

A2 1..L 2L2 1 ( 2
2

L 2 + L 2)413 16 L 3 - 2 1

This last expression may be rearranged to give

A2= l6{Li(L~ + L; - Li) + L~(L; + Li - L~)

This form relates directly to the tetrahedron of Figure 2.
Put AC = a, BC = b, EC = DC 0, and let L 1 = AB, L 2 = BE,

L 3 = AD.

This gives: L2 2 + b 2
1 a

L2 b 2 + e
2

2

L2 2 + a 2
3

e

Consequently the expression for A
2 yields:

A
2 = 116 {(a

2
+ b

2
)2C

2
+ (b

2
+ c

2
)2a

2
+ (c

2
+ a

2
)2b

2
} ,

which simplifies to

222
= (a~) + (b~) + (a~)

the relation between the squares of the areas of the faces of
the right-tetrahedron, that is analogous to the relation be
tween the squares of the lengths of the sides of the right
angled triangle about which Pythago+as speaks.

The Four-Dimensional Case

We have proved the three-dimensional analogue of Pythagoras'
Theorem by reducing a three-dimensional picture to a two
dimensional one. With rather more work, it is possible to re
duce the four-dimensional analogue to a three-dimensional for~

and so prove it to be true.

This result falls into a pattern with the earlier cases.
We have

in two dimensions,
222

( ab) -+ (be) + {ea\
2 \2 \T}
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in three, and

2 \2 2 2
V2 _ lab c \ + ( bed + (c da \ + (da b)

- \r;-) \-6/ \-g-) \-e

in four, where V is now the volume of a tetrahedron (analogous
with the oblique triangle of the three-dimensional case) and
the terms on the'right give the volumes of tetrahedra analogous
to the other triangles in the earlier case.

The denominators involved in the three equations above are
precisely 1!, 2! and 3!. These results apply in a sense to the
simplest cases of closed figures. Thus, a triangle has the
minimum number of straight sides with which it is possible to
enclose a two-dimensional region; a tetrahedrom is the solid
enclosed by the minimum possible number of flat surfaces and
so on.

t
RUBIK'S MAGIC CUBE

The magic cube was invented in 1975 by the Hungarian archi
tect and designer Erna Rubik. It looks like an ordinary cube
built up of 3 x 3 x 3 small sub-cubes, all of equal size. The
surprise is revealed when we take the cube into our hands: each
face can turn wholly around its centre without the cube falling
apart. It seems almost magic to devise a trick like that. Even
with the cube in your hands it's hard to understand how it is
put together. There'is no question of magnetism, electronics
or other gadgetry. It is a purely mechanical construction.

Rubik turned his Magic Cube into a hellishly difficult
brainteaser by giving the surface of each face a different
colour. Giving the cube a few twists (about five is usually
sufficient) results in the colours getting completely mixed up
and it seems virtually impossible to return the thing to its
correct position if we have failed to remember exactly which
sides we turned in which sequence. Each new turn will then
only confuse us further and we then, of course, face the task
of restoring it to the original position.

Astronomical numbers

This turns out to be a terribly difficult puzzle. It is
tricky enough to turn ~ne of the six faces to the right co19ur.
But now we're in real trouble. Just about every turn upsets the
correct side! Don't imagine that, by just turning the cube at

t This article first appeared in the Netherlands journal
Pythagoras and is reprinted here under an exchange agreement.
We thank A.-M. Vandenberg for the translation.
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random, chances are you will hit upon the correct position. The
number of possibilities is far too great for that. There are

more than 4 x 1019 different configurati9ns. This is a 20
digit number. To give an idea of its magnitude: if we put an
equally large number of standard cubes in a row, it would cover
a distance of more than 60 times the distance to Proxima
Centauri, which is our nearest star, apart from the sun. The
same number of cubes would be enough to cover the entire area

of Hollandt with a layer of cubes 200 km thick!

The cube has three types of visible small blocks. When
the cube is turned the centre cubes of the six sides don't
change position, -although each can rotate about its centre.

Then there are 8 blocks, each haVing 3 coloured sides,
and always situated on a corner point of the cube, and 12
blocks with two coloured sides always located on an edge in
between two corner blocks.

Solution methods

The cube's puzzle is the task of restoring a cube,which has
been put into disarray, to its original position, that is, with
each side having a single colour. Actually the idea is to find
a method by which the cube can be turned back to the original
posi tion from any posi tion. Experienced "cubis ts 'I achieve this
within a couple of minutes and champions can even do it from any
position within half a minute.

That is of course the result of a lot of puzzling, thinking
and practising. For a beginner it is quite an achievement to re
store one side to a single colour in a few hours. Then one
realizes it is not enough to have the colours on such a side all
the same but also to have the sides of the respective blocks
correctly coloured. Once that has been laboriously achieved and,
for example, th~ entire bottom Layer is in order, there are only
four wrong edge blocks remaining in the middle row. The central
blocks of the sides are automatically correct as they, of course,
never change position. So one can put this in order with some
insight and perseverance. But this is usually the point where
most get stuck.

The bottom and middle layers are now in order but the top
row is still in disarray. At least usually. Of course one can'
be lucky enough to have a few blocks or even all blocks, by
coincidence, already in the right place in the top layer. This
is not impossible but the chance is rather remote; even with two
'rows correct there are still no less than 62 208 different con
figurations possible. However, the true cubist must not let
chance help him. He has to have a method to correct each
situation.

t The area of Holland is about half that of Tasmania. (Eds .)
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The systematic approach

Trying to find a way out of this maze is no longer a ques
tion of simple manipulation. The matter must be handled syste
matically. The idea is to devise sequences of turns which
effect small changes in the top side without affecting the re
mainder of the cube. It is therefore usually necessary to re
cord these sequences of turns and their effects. Few people
indeed have such good memories that they can do so without pen
and paper.

Another effective trick is to dismantle the cube and then
put it back together correctly. In this way we can experiment
to our heart's content with small sequences and thus try to
crack the big puzzle by solving smaller problems first. Some
people may find this objectionable. ·It is of course a greater
achievement to find a method of solving the cube puzzle without
ever dismantling it. But after weeks or even months of fruit
less turning one may look at matters ~n a different light. In
principle there is no difference whatsoever between trying out
sequences on a "clean" cube (so that the outcome of such a
sequence is immediately clear), and recording on paper the
differenee between "initial state" arid "final state" with a
sequence on a "dirtyl! cube. Dismantling the cube merely saves
a lot of time and paper.

Dismantling

Of course one needs a certain amount of nerve to use this
brutal way out. However, rough and careless turning of the
cube causes it more damage than dismantling and restoring it
(with due care) time after time. One dismantles the cube as
follows: turn the top layer by one-eighth (i.e. at an angle of
45°). Take a small block situated between two corner blocks in
the top layer. This can be carefully levered up a bit. You can
lift it up further with a screwdriver, key or some such implement,
until it pops out of its own accord. Be careful not to damage
the plastic. When one block has come out, it is easy to dis
mantle the entire cube. It is useful occasionally to twist a
side to release the blocks more readily.

When the cube has been entirely dismantled, we. see the
middle part with the three axes to which the revolving centres
of the sides are fixed. Then there are two types of loose
blocks: the eight corner ones and the twelve edge ones. They
have interlocking indentations and protruberances which grip
each other during turns. Each corner block can be set in three
positions on each corner, each edge block in two positions on
each edge. But for each block there is one and only one correct
position. The red-white-blue corner block, for example, be-

.longs to the corner where the red, white and blue sides of the
cube meet, and the colour of a side is indicated by its central
block. Thus there is only one way to put together the cube so
that each side is made up of one colour. That is the initial
position, the position it had when we got the cube. We will
henceforth call this position START.
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Reassembling

In putting the cube together again it makes sense to do it
in such a way that the START position is restored. We shall ex~

plain later why. With due care, reassembling the cube is rela
tively easy but we must be careful with the last block. Make
sure this is an edge block from the top layer. Return this
layer to the 45° position. The block can then be tilted and
slotted into its place and forcibly pushed inward. It will
then click into its position.

Of course we can reassemble the cube in an immense number
of other positions. It is interesting to calculate exactly in
how many ways this can be done. Let us first look at the cor
ner blocks. We can insert the first corner block into 8 places
and in 3 positions in each of these places. Seven places re
main for the next corner block, each again with 3 positions.
For the next corner block there are still six places available,
each again with 3 positions. And so on. So altogether there
are (8 x 3) x (7 x 3) x (6 x 3) x ... x (1 x 3) = 264 539 520
different ways in which the corner blocks can be inserted into
the cube.

The twelve edge blocks can be inserted in two ways in each
place. So there are (12 x 2) x (11 x 2) x ••. x (2 x 2) x (1 x 2)
= 1 961 990 553 600 ways to put the edge blocks into the cube.
Summarising, there are thus

264 539 520 x 1 961 990 553 600 = 519 024 039 293 878 272 000

different ways of putting the cube together.

But you cannot reach all these positions by turning around
from START, and you can't go back to START by turning from all
of these positions. It-can be shown there are twelve "paths",
each with as many turning positions. Each path has

112 x 519 024 039 293 878 272 000 = 43 252 003 274 489 856 000

turning positions and this is, more particularly, also the number
of positions to which the cube can be turned from START. We have
seen above how unimaginably large this number is.

When is a solution method complete?

Suppose someone has found a method of always turning the
cube back to START. How does he know if his method is complete?
In other words, how does he know he may never face a situation he
can't handle? And if we want to be mean and give him a cube de
liberately put in disarray with a wrong path (so that he can
never get to START by turning), how does he discover this? Even
if he has heard of the twelve different paths, how does he know
whether he really is on a wrong path or simply has an insufficient
solution method? One should only call oneself a consummate cubist
if one knows the answers to all these questions.

It ·is beyond the scope of this article to deal wi th this
question in greater detail, but we will raise the veil of mystery
a little. Figure 1 shows a characteristic position for each of
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the 12 paths: START' or a position close to it. If one meets
one of the eleven other positions, when turning the cub~, one
must clearly be on a wrong path. Of the twelve figures, the
first shows the START position. 1n the second one corner
block has been turned 1/3 to the left, in No.3 1/3 to the
right, in No.4 one rib block has been reversed and in No.7 two
rib blocks have been interchanged. All other figures are com
binations of the above.

Figure 1.

None of the above eleven variations of the START position
-can be achiev'ed by turning from the START posi tion. Nor can
they lead from one to the other. Only the screwdriver can solve
the situa~ion here!

Useful sequences

The cube puzzle has been the rage in many schools and no
doubt many readers have solved the riddle. Daily and weekly
newspapers have also published methods of solving it. But it
is more fun, of course, to devise a method yourself. Many don't
get further than a "nearly complete" method: they are short of
just a couple of tricks in restoring the cube to correct colour.

If you have got stuck likewise, you can get further with
one or more of the turning series shown in Figure 2. Sequences
I to IV only affect the top Zayer; they don't touch the bottom
and middle rows of the cube. And their effect in the top part
is strictly limited.
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II I I I

Figure 2

IV

Sequence I: three corner blocks in the top side are pushed
around anticlockwise, two of them tilting.

Recipe: BLFL-~B-1LF-IL-1.

Sequence II: all blocks keep their positions but two corner
blocks are tilted.

Recipe: Sequence I, then L- 1B-1R-1B.LB-1RB.

Sequence III: three edge blocks are pushed around clockwise
without tilting.

Recipe: F2ULR-l.F~L-lRUF2.

Sequence IV: all blocks keep their positions but two edge
blocks are tilted.

Recipe: Sequence III, then L-IRB-ILR-1.U2.L-lRB-lLR-1.

With these sequences, you could even design a complete solu
tion method for the puzzle, but we would spoil your fun if we pUb
lished it here. It would also be a rather cumbersome method. So
we are giving you these sequences with their limited effect only
to help you overcome some obsiacles if you get stuck. You will
then have to refine your method yourself with combinations and
simplifications.

THE PITY OF IT ALL

we find ourselves in the company of astute and intelli
gent businessmen, men of culture whose conv~rsation may range from
the paintings of Kokoschka to the intricacies of international
finance, but whose minds have been closed to the stimulating
challenge of mathematics. Yet here is a subject which stretches
from the metaphysical extremes of pure philosophy to the hard
facts of costing on the shop floor."

Albert Battersby,
Mathematics in Management~ 1966.
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THE RODEO

G.A. Watterson, Monash University
The owner of the rodeo charges $4 admission fee to see the

show. In fact 499 people pay to go through the turnstiles.
However, when the show commences, the owner counts the number of
people watching - 1000! So 501 people have climbed the fence and
got in for nothing.

The owner identifies. as many spectators as he can, and takes
each of them to court in an attempt to recover his losses. Now
read on.

Owner: Your Honour, I plead that John Smith entered the rodeo
without paying..

Judge (to J. Smith): What have you to say to that?

J. Smith:

Owner:

Judge:

Owner:

I did pay!

The probability that John Smith did not pay is
501/1000, so that on the balance of probabilities I
should win my case.

Yes, I find that J. Smith, more likely than not,
~id not pay. I order him to pay the owner the $4
entrance fee. Next case!

Your Honour, I plead that Bill Brown entered the
rodeo without paying.

Judge (to Bill Brown): What have you to say to that?

Etc., etc., etc.

[Shakespeare didn't write plays like that!]

So, if the owner took all 1000 spectators to court, they
might each be found guilty on the balance of probabilities and
the owner would collect

1000 x $4 + 499 x $4 = $5996 total,

including the originally-paid entrance fees.

"The absurd injustice of this suffices to show that there
is something wrong somewhere. But where?" Thus asks L.J. Cohen
in his book "The Probable and the Provable", Oxford University
Press. However, Sir Richard Eggleston (in an arti.cle in the
CriminaZ Law Review, 1980) pointed out that as the court cases
proceed, the number of spectators who have paid increases, and
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the number who remain to be dealt with decreases. The probabil-'
ity of a person not having paid drops below t and subsequent
cases would have to be dismissed.

What would be fair to both owner and spectators? Suppose
that it were possible (as it might be in damages cases) for the
judge to order each of the 1000 spectators to pay an amount of $x
to the owner, with $x possibly being less than the full $4
entrance fee. Then, the outcome would be that the owner would
have $(499 x 4 + 1000x) , the 499 honest spectators would have
paid $(4 + x) each, and the 501 dishonest spectators would have
paid $x each.

The owner should have received $4000, so with the-above
scheme he loses .

$4000 - (499 x 4 + 1000x) = $(2004 - 10bOx).

Of course this "loss" would actually be an additional profit if it
were negative, which occurs if x > 2 0 004. The loss to the honest
spectators, over what they should have paid, is $x each. Perhaps
it would be fair to minimize the worst loss to anybody - owner or
spectator alike. This is clearly achieved when all the losses are
equal, so that the judge should choose x to be the solution of

x = 2004 - 1000x,

that is,

x 2004/1001 ~ 2·00.

loss

2000

Owner's 10s.5

1000

a

Honest spectator's
loss

2
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Under this scheme, the dishonest customers end up paying only
half the amount they should have paid. They are being subsi
dised by the honest customers, who have to pay 1! times the
original fee.

Strictly speaking, rounding x off to 2 does not give the
best answer. When x 2, the worst loss is to the owner, who
loses $4 then. If we took x = 2·01 (the next nearest cent),
the worst loss is to the honest customers ($2·01) while the
owner makes a profit of $6.

What do you think should happen in this problem?

NEW H.S.C. GUIDELINES

The Victorian Higher School Certificate is to alter its
method of allocating marks. Previously an elaborate scaling
procedure was adopted. This certainly had its defects~ but it
did attempt to recognise intrinsic differences between the
levels of difficulty of the various sUbjects, and to make
allowance for these.

Draft proposals for the new scheme suggest that, in all but
a few subjects with very small « 60) enrolments, marks be
awarded on a simple percentage basis. The top 7% of students in
any subject would receive the grade of A and be given marks in
the range 80 - 100. The next 18% would be awarded the grade of B
and marks in the range 70 - 79, etc. (A similar scheme is pro
posed for N.S.W.)

In practice, because of roundoff errors, there is some
variation from this simple picture. In theory, 80% of students
would pass each subject - i.e. be aw~rded a mark of 50 or more.
The actual percentage is typically between 79·5 and 80·5, with
even wider variation in the case of subjects like (e.g.) Czech
with very small enrolments.

This gives some grounds for concern. Some students will
clearly be penalised. Chinese (not a small enrolment subject)
will be forced to fail 20% instead of the current 4%. Other
students will benefit. Accounting and Computer Science currently
have failure rates of about 35%; so more of these students will
pass. The effects on the three mathematical subjects are very
small, although the new scheme will, to some extent, penalise
~andidates in Applied Mathematics.

Beyond this, there is more reason for concern. We direct
attention to a letter published in The Age (1.2.83). The
authors, Tim Brown and Aidan Sudbury, suggest" that these figures
will cause a flight to weaker subjects like Accountancy and
Com~uter Science, from harder courses such as languages, music
and (to a lesser extent) Applied Mathematics. They question
whether this erosion of genuine skill is in the national interest.

The impact of the proposed scheme on tertiary ~election is,
as yet, little investigated. Much depends on how tertiary in
stitutions respond.
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RE~EW

WOMEN IN MATHEMATICS AND SCIENCE

A Kit Fqr Use In Classrooms; Written by Jenny Pausacker

Available from VISE

Reviewed by Susan Brown

This kit consists of a series of biographies of women mathe
maticians and scientists, ranging from the Greek mathematician
Hypatia (c. 370-415) to an Australian scientist, Suzanne Cory
(b. 1942). It is divided into two sections - Women in Science
and Women in Mathematics, each covering the lives and achieve
ments of nine women. The biographies are grouped in threes, and
each group is in a separate booklet for easy lesson planning.
There is also a general history booklet for each of these sections,
and a guide for both students and teachers. The students' guide
consists of an excellent range of questions, some suitable for
class discussion and others for use as a springboard for further
research.

The following mathematicians are included in the kit.
Hypatia (c. 370-415) was eventually killed because of her studies.
Emilie du Chatelet (1706-1749) had to dress as a man before she
was allowed in to the cafe frequented by mathematicians and
scienti$ts. Maria Agnesi (1718-1799) "would sleep-walk to her
study and back to bed. In the morning she would find the answer
to her problem waiting on her desk". The parents of Sophie
Germain (1776-1831) forbade her to study and so she had to work
at night. When she was later studying, unofficially, at the
Ecole Poly technique she had to adopt a male pen-name in order to
get her work noticed. Ada, Countess of Lovelace (1815-1852) was
the daughter of Lord Byron. She 1lunderstood the limits of com
puters better than many people in the twentieth century". Sonya
Kovalevskaya (1850-1891) left Russia to study in Germany, but
still she was not allowed to formally enrol at the university.
Grace Chisholm Young (1868-1944), after great success at Cambridge,
moved to Germany where she was the first woman to officially gain
a doctorate. When Emmy Noether (1882-1935) went to university in
Germany she was one of only two women among a thousand students.
She was considered eto be among the top mathematicians of her time
and yet "she only had a job worthy of her talents for the last
year and a half of her life". Hanna Neumann (1914-1971)t taught
at the Australian National University from 1963 until her death
in 1971. She is remembered not only for her contributions to
mathematics, but also for her concern for students and her in
terest in and support for the teaching of mathematics in secondary
schools. The scientists included are:

t see Function, Vol.3, Part 1 for a detailed biography of Hanna
Neumann.



23

Laura Bassi (1711-1778), Caroline Herschel (1750-1848), Mary
Somerville (1780-1872), Marie 'Curie (1867-1934), Alice Hamilton
(1869-1970), Irene Joliot-Curie (1897-1946), Maria Goeppert
Mayer (1906-1972), Rosalind Franklin (1920-1958), Suzanne Cory
(b.1942) .

Each biography briefly describes not Dnly the achievemertts
of these women, but also many of the challenges, frustrations
and prejudices they had to fac~ in the course of their careers.
The material aims to encourage female students to study ~athe

matics and science by acknowledging women's contributions in
these areas and by the use of such "posi ti ve role models 11.

I found the biographies interesting but felt that the point
that women can be successful mathematicians and scientists was
rather overstated. A more important criticism is that the
author's construction of sentences is at times clumsy and more
frequently incorrect.

Nevertheless, the idea of the kit is a good one. As the
author points out in her Teacher's Guide, information about such
women is not as readily available as information about their male
counterparts, and so this material is a valuable reference for
both staff and students.

WOMEN ENGINEERS

We direct readers' attention' to an article in New Scientist
(30.9.82) on an American trend for women to enter the engineering
profession.

Prior to 1975, there was a gradual increa.se in the number of
female engineers, but in that year there was a very sudden in
crease. Whereas, earlier, some 4% of each graduating class were
women, by 1980 the figure had jumped to 10% and was rising very
rapidly.

The increase has been brought about in part by legislation,
partly by the lure of the very high salaries that engineers
receive in the U.S., partly by. the fact that many engineering
schools there seek in a very active way to attract women into
their courses and partly by the new awareness that women them
selves have achieved.

A woman with a bachelor's degree in engineering can expect
a starting salary 14% above that of her counterpart with a quali
fication in computer science, 20% above her opposite number in
mathematics, 34% above that of a woman entering the accounting
profession, and 70% above one whose degree is in the area of
social science.

A similar picture emerges for men, and this has boosted the
total numbers of students entering engineering schools, 'but the
increase has been most spectacular among women. It would seem
that th~ old stereotype of female incompetence in this area is
being qUickly abandoned. As one brochure put it: ."The best
man for the job may be a woman II • .
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LETTERS TO THE EDITOR

We ran an item "The Next Term in the Sequence" in our last
issue, where we gave the finite sequence

1 , 2 , 4 , 8 , 16, . .. ,

and asked for the next term. "Most of us ", we wrote, Jlwould un
hesitatingly say '32 ' . Here we show that a perfectly logical
answer is 31. II We then gave a geometric construction for the
sequence

1,2,4,16,31,57, ...

given by 2~(n4 - 6n
3

+ 23n
2 - 18n + 24). This generated two

responses printed here.

A GENERALISED RESULT

I refer to your article IrThe Next Term of the Sequence"
(Volume 6, Part 5) in which you posed the question "What is·the
next term of the sequence 1,2,4,8,16, .. ?", and suggested that
whereas the "obvious" answer is '32, a perfectly logical" alter
native is 31.

As a mathematician, I fear that the answer 32 is not
"obvious", and the "perfectly logical" alternative of 31 is in
·fact only one of an infini te number of I'al ternative ll answers.
In fact, for the given sequence, the nth term is

1(n-2)(n-3)(n-4)(n-5) + 2(n-1)(n-3)(n-4)(n-5)
(1-2)(1-3)(1-4)(1-5) (2-1)(2-3)(2-4)(2-5)

+ 4~~=i~~~=~~~~=:~~~=~~ + 8~~=i~~~=~~~~=~~~~=~~
+ 16(n-1)(n-2)(n-3)(n-4) + (n-1)(n-2)(n-3)(n-4)(n-5)f(n)

(5-1)(5-2)(5-3)(5-4)

where fen) is any function of n whatsoever.

Simple listing of any finite n~mber of terms without speci
fication of the law of formation is not sufficient to define a
sequence, a fact frequently overlooked in elementary treatments
of the topic, and by psychologists when they ask "number sequence"
questions in their so-called IQ tests.

Incidentally, I once asked the following question on a TOP
mathematics examination paper at this College:

"Two students A and B were asked to wri te down an nth term
for the sequence

1,16,81,256, ...
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and4n ,and also to give the fifth term. Student A wrote u
n

gave u 5 = 625. -Student B, however, did not recognize this simple

law of formation, and wrote u = 10n 3 - 35n 2 + 50n - 24, and gave
n

u 5 = 601. Which student, if either, was correct, and why?"

I apologize for taking you to task over this matter, but the
practic~ of "proving" theorems by verification in a finite number
of instances is an all too commonly encountered phenomenon in
mathematics classes, and one which should be stamped out.

J.A. Deakin, Shepparton College of T.A.F.E.

[We do~ by the way~ entirely agree with Mr Deakin's last
sentenoe. This was part of the point of the item. Eds.]

GREENBURY'S PARALLELOGRAM OF REGIONS

With reference to the next term of 1,2,4,8,16, ... , Funotion
Vol.6 Part 5, the terms of the series listing the number of
regions in a c~rcle are readily supplied by Greenbury's Parallelo
gram of Regions as follows.

Write a horizontal series of five ones.

Write a diagonal series of an infinite number of ones.

11111
1

1
1

1

Add the hor~zontal numbers as you do with Pascal's Triangle.

Garnet J. Greenbury,
Taringa, Queensland.

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1

2 2 2 2

4 4 4 3

8 8 7 4

16 15 11 5

31 26 16 6

57 42 22 7

99 64 29 8

163 93 37 9

256 130 46 10

386 176 56 11

562

The numbers of regions are underlined.
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WORDSUMS PUZZLE

I enclose a copy of a WORDSUMS puzzle I devised two years
ago. This form of puzzle was invented by a problemist known as
Proton for The Listener.

In each of the sums below, each different letter represents
a different digit. The same letter indicates the same digit
throughout the sum, but not throughout the puzzle. The digits
are entered in the diagram (e.g. lA means 1 across, 5D means 5
down, etc.).

1 2 3 4 5

6 7 8 9 10

11

12 13

14 15 10 117 18

-
19 120 21

I
22

23 12~

25 26
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PROBLEM SECTION

Each issue, Function presents a set of problems for solution,
together with solutions of earlier problems. We like to have your
so~utions to these problems. For many student readers, this is
the best way to become involved with Function. As·usual we begin
with comments and solutions.

MORE ON PROBLEM 6.1.1.
This problem was to represent the integers 1 to 100 in terms

of the digits of 1982, in their correct order and using various
specified mathematical operations.

E.g. 23

51

19 + 8/2

1 + (/9)! x 8 + 2.

We couldn't do, in the terms given: 52,53,93,94. Our counter
part from Newcastle, School Mathematics Journal, also carried the
problem. They give the obvious

53 = -1 + 9 x (8 - 2)

(how did we miss that?), and the beautiful

93 = 1 + _[( ( /9) ! ) !. -:- 8] + 2.

They also give versions for 94, 52, essentially equivalent to our
"cheating" solution, although they didn't cheat because they
allowed the symbol ;-, which we didn't.

Now, we suppose, someone will ask about 1983.

MORE ON PROBLEM 6.2.5.
Two points P,Q lie inside a triangle ABC. We need the

shortest path from P to Q subject to the condition that the path
must hit each side of the triangle.

J. Ennis (Year 10, M.e.E.G.S.) partially solved the problem
by noting that the shortest path would be that of a beam of
light reflected off the sides as it travelled from P to Q. The
two figures ov(-""\rlea f' show the process.
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A

c

B

c

-..... _,-
-,

---- .... pll

A------l~---B

The path is constructed as in the second diagram, by forming
reflections of P (or Q) and then joining the third image P'" to
Q and "folding up" the path by back reflection. The difficulty
is that there is more than one way to do this. Depending on
which order we adopt in reflecting P, w~ get six possible points
p"l, giving rise to six possible light paths. (Indeed, at first
sight, we might expect twelve, as Q could also be reflected. How
ever, these merely duplicate those already found.)

The problem of determining which of th~se six paths is the
actual minimum can be determined by measurement, but it would be
nice to have some way of determining the result in advance. So
far, we have not been able to come up with any suggestions that
work. Possibly some reader may be able to help us out .

. LATE SOLUTIONS TO PROBLEMS 6.4.1~ 6.4.2.
J. Ennis solved both these problems, but his letter reached

us after we had gone to press.

His solution to Problem 6.4.2 differs from that published
last issue. To prove that Pn " the product of n consecutive
integers, is divisible by n!, he writes:

"If we take n consecutive integers, it follows that one of
them mus~ be divisible by n. On this line of reasoning, one of
them must be divisible by (n - 1), one by (n - 2), etc. Since
n! = n(n - l)(n - 2) ... x 2 x 1 and Pn is the product of n con-

secutive integers, each of the. factors of n! divides P and thus
n! !Pn." n

SOLUTION TO PROBLEM 6.4.3.
This problem concerned a circle rolling inside an ellipse.

If the ellipse is a long thin one, the circle can "jam" and so
not roll into the ends. We asked for the proof that this
occurred if
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where 0 is the radius of the circle, and a, b are respectively
the semi-major and semi-minor axes of the ellipse.

This problem was solved by J. Ennis, then in Year 10,
M.e.E.G.S. He writes:

"Obviously c must be less than b, otherwise the circle will
not fit inside the ellipse. To determine the lower limit for
which the circle jams, we consider the largest circle for which
P the point of contact coincides with (a,D) , i.e. the largest
circle which will fit into one end of the ellipse.

For an infinitesimal distance, the perimeter of the circle
then coincides with the ellipse. The x-coordinate of this is
a - ~, where ~ represents a vanishingly small quantity. The
equation of the circle is

and that of the ellipse is

(~)2 + (t)2 = 1 .

2
o (1)

(2)

Replace x by a - ~ in ~oth equations, giv~ng

y 2 = ~ (2c _ ~)

2 2{Y = b ~

i.e.

Thus

[\(20 - ~)

or

20 - ~

But now take the limit as ~ ~ 0, and find

o =

This is the radius of the largest ellipse that will not jam in
the circle~ and thus, if the circle is to jam in the,ellipse

b
2

o ~ a' the resul t required."
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SOLUTION TO PROBLEM 6.5.1.
This problem concerned a gambling game.

N men each toss a cent. If N - 1 cents agree and the
Nth does not, the Nth takes all the money. If this does not
happen the money jackpots. What, on' average, does the even
tual winner gain?

The following solution was submitted by David Shaw and the
Year 11 students at Geelong West Technical School.

Pr(win on first toss) = 2n
2n

Winner's expectation on first toss = 2n .n
2n

Pr(win on second toss) = (1 - ~~) . :~

Winner's expectation on second toss

Winner's expectation on third toss

(Prob x stake)

Winner's overall expectation 2n-.n
2 n

+ 2n\ 2n
2n ) . 2n . 3n + ...

1 - 2n

1 2n 2n 2

2n +---

(~~)2 2n

2n

2n
+ 1 -

2n

2n 2n 2n 2

{2n)2 2n

\2n

1 2n 2

(2n\2 2n

2n )

(22n\2n 2
2n

2n - 1
\4n 2 )7 2

2n\
2n )
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They simulated the game on a computer with the following
program.

00002 INPUT "NUMBER OF PLAYERS";P
00005 INPUT "NUMBER OF GAMES" ;N
00007 W=O
00010 RANDOMIZE
00015 FOR J=l TO N
00020 K=P
00025 C=O
00030 FOR 1=1 to P
00040 R=INT(RND*2)
00050 C:dC+R
00060 NEXT I
00070 IF C=l OR C=P-1 THEN 80 ELSE 90
00080 W=W+K\GOTO 100
00090 K=K+P\GOTO 25
00100 NEXT J
00110 PRINT l'AVERAGE WIN IS";W/J
00999 END

We are happy to report that this confirmed the theoretical
answer.

SOLUTION TO PROBLEM 6.5.2.
We asked for the smallest posi ti ve root of x = tan x .

(It is here correct to consider x'as being measured in radians.)
Mr Shaw and his class also solved this problem.

The smallest positive solution must be in third quadrant.
Simple iteration does not converge. Put

f(x)

fl (x)

tan x - x

1

So, by Newton-Raphson iteration,
f(x

n
)

x n +1 = x n f'(x
n

)

tan x - xn nx n

Taking X o = 4 0 5 gives a solution x = 4·49340945 ...

This elegant solution carefully avoids, in its first sen
tence, one of the traps into which the unwary may fall. If

1To < X ~ 2 (i.e. in the first quadrant), tan x > x. However,

some programs Dr calculators, due to rounding error, produce a
spurious solution near x = O. On an HP35, for example, we get
a IIso l u tion" x ~ 0·000615.
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Here now are some new problems.

PROBLEM 7.1.1.
The famous British mathematician Augustus De Morgan lived

last century. He is once alleged to have said, "I was x years

old in the year x 2 " When was he born?

PROBLEM 7.1.2.
A triangle has sides of length 13, 14, and 15. What is the

length of the altitude drawn to the 14-unit side?

PROBLEM 7.1.3.
A barrel contains n white marbles and m black. Marbles are

drawn out one at a time. Prove that the probability that the
black marbles are all withdrawn before the white is equal to the
probability of obtaining a white marble on the first draw.

PROBLEM 7.1.4.
At a certain Australian casino, there is a game in which

three dice are tossed. Before the tossing, you can bet on one
of the numbers 1, 2, 3, 4, 5, or 6. If the three dice all show
your number, you receive $11, if two show your number you receive
$3 and if one dice shows your number you receive $2. Of course,
you lose your dollar if no dice shows your number.

(i) What is the amount of money you expect to lose per
game?

(ii) What is the probability that you would have x losing
games in a row before your number came up? (x 0,1,2, .... )

SOLUTION TO WORDSUMS PUZZLE (p.26)

1 2 3 4 5
2 7 9 1 3 2 8 7 1

7 6
9 7 1 0

8
8 3

9
3 1°6 5

9 11 7 5 4 3 6 2 5 3

12 1 2 4 0 13 4 2 1 3 5

14
3

15 7 2 16 5 9 171 4
18

5 6

19
5 9 3 3 2°6 6 2 6

21
2

5
22

7 8 4 3 2 6 7 4

1 23 1 6 8 24
3 2 8 9 5I

25 ~ 7 3 6 0
1
267 3 8 5
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SLOW LEARNER!

"IwassllQcked. to learn' that .the only. anc~ent lallguages he
4,?'Y-J,.4.'r;e~d:'We:r:~Latin, G:reekaIltfHebrew,. and that he knows almost
I1R"t-bt,J'l~of<,D1ath~rnaticsbeyondtheelementa:ry levels of the cal
culus,'oIvariations. It

FZower'S for Algernon, Daniel Keyes, 1960.

~eprinted, under an exchange agreement, from th,e Belgian
JourIlaIMath-Jeunes, Vol.4, No .17 .


	Cover
	Contents
	The front cover, M.A.B. Deakin
	Digit patterns of prime numbers, K. McR. Evans
	Higher-dimensional analogues of Pythagoras' theorem, W.E. Olbrich
	Rubik's magic cube
	The rodeo, G.A. Watterson
	Review: Women in mathematics and science
	Women engineers
	Letters to the editors
	Problem section



