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Monash University's Foucault pendulum always attracts
attention. It'is, in fact, unique in its accuracy and its
novel design. This issue explains the theory behind such
pendulums and the difficulty inherent in getting them to
work. Other articles tell the story of the colourful, if
eccentric, genius Oliver Heaviside and reveal some of the
hidden mysteries of the compound interest formula.
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THE FRONT COVEl~

We have had from two sources discussions of the graph

y = xx. A joint study by R. Lush and R. Warmington, then
Year 11 students at Scotch College, and carried out some years
ago at a Mathematics Summer School, reached us, as did a
shorter and considerably more technical account from G.P. Speck
of Wanganui Boys College, New Zealand.

The editors decided to summarise the findings of these
different investigators. The results are presented here, and
graphed on the front cover.

First, consider the sign of x. x may be positive, negative
or zero. We do not discuss now the case x = O. This case
alone took four pages of Volume 5, Part 4.

Suppose then x > 0. For all sueh x, a posi ti ve

value may be assigned to xx. These values are those lying
on the part of the graph in the first quadrant of our cover
diagram. These form a continuous curve on the interval

o < x < 00. As x ~ 0, XX ~ 1 (as stated ~n Function, Vol.5,

Part 4). As x ~ 00, XX ~ 00 and does so very rapidly indeed.
"The minimum value of the function is to be found where x = lIe;
e being the base of the system of natural logarithms, an
irrational number whose value is 2-718281284 ....

Still with x positive, consider four cases:

1. x is rational,x=£ (say) where p,q have no commonq "
factor, -and q is even (and hence p is odd);

2. As above but q is odd and p is even;

3. As in Case 1, but both p,q are odd;

4. x is irrational.

In Case 1, xX has two values, one positive and one nega

tive. For example (i)! = ±1/12. For all x of the type des
cribed, there are two values, equal in magnitude but opposite
in sign.

(2)2/3
Consider, by Gontras~, Case 2. An example is 3 . Here

only one real value (~) is assigned, although in complex

number theory, two other (complex) values are also given to the

expression. For our purposes; however, xX is one-valued if x
is as described for Case 2. The same applies to Case 3. Case
4 can only be described in terms of some limiting process or
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other, arid, as irrational numbers may be approached via sequences
of numbers with eith.er even or odd denominators, it is usual to
assign only the positive value in this ca.se-..

Thus, when x > 0,
the graph consists of
the continuous curve
at right and the mir
ror image of a subset
of its points .. We
have indicated that
only a subset are in
volved by using a
discontinuous line,
but 'clearly there
can be no attempt
at exact represen~

tation for the
points of Case 1
are dense - they
lie arbitrarily
close, each to
infinitely many
others.

y

--+-------------~-----x

When x < 0, we need to consider the same four cases. But

now it is in Case 1 that xX does not exist, as negative' num
bers have no real square roots.

2. Case 2 numbers, like -3' give rise to positive values of

xx; (_~Y2/3 = {(_j)1/3}-2 = 1/(_1j)2 = 1/(1i)2, and this is
positive. Such numbers are graphed in the second quadrant.

Case 3 numbers, like -~, give rlse to negative values of

xx. These are graphed in the third·quadrant.

If~ fin~lly x '< ° and x is irrational (Case 4), xX is not
assigned a value.

The complete graph is thus that of the·cover, where in three
quadrants the graph is discontinuous 'but with points lying arbi
trarily close together along it. Th'e two "maxima" and· the
"minim'um" of the third quadrant would be achieved' at x = ±lle, .
which is irrational. Thus, although points maybe found arbi~

trarily close to the maxim~ (say), no points lie exactly on them.

You may notice that the behaviour of xX is somewhat like
that of the elementary trigonometric functions in the diff~rent

quadrants. This was the topic Mr Speck setout to explore.. It
does need complex analysis, and so.lies outside the scope of.'
Function, but the topic leads io some very beautiful maihematics.
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THE FOUCAULT PENDULUM

AT MONASH t

If you were to stand at the North Pole, you would rotate
slowly with the earth and turn round through a full 360 0 once
each day. Seen from above, you would rotate anti-clockwise,
as the earth's rotation is transmitted (via friction) to such
a person. But if, when you were there, you held a pendulum
and let it swing, there would be no force whereby the earth
could alter the plane of oscillation of the pendulum. It
would therefore swing iri a fixed plane while the earth turned
beneath it.

We do not notice the rotation of the earth, except as an
apparent motion of bodies such as the sun, the fixed stars and
other heavenly bodies. To this list should be added the pen
dulum, since, to an observer regarding the earth as fixed, the
plane of oscillation in this case appears to rotate 360 0 clock
wise every 24 hours (or more precisely, every 23 hours 56 min
utes and 4-091 seconds - the slight discrepancy is a contribu
tion from the earth's revolution about the sun to the length of
the solar day).

A s~milar analysis applies at the South Pole, except that
the direction of apparent rotation is now anticlockwise. At
intermediate latitudes, the time taken for the 360 0 rotation
is (24/sin ~)hours, where ~ is the latitude. (Here and in
the rest of this article, ignore the small correction to the
length of the day.) We may thus calculate that the plane of
oscillation will appear to rotate (15 sin ~)o per ~our.

These ideas were ~irst put forward by the French physi
cist 'and mat-hematician, Leon Foucault (1819-1868) in 1851, who
constructed such a pendulum in an attempt to demonstrate the
effect he had predicted. Much more careful experiments were
performed by the Dutch physicist Heike .Kamerlingh Dnnes in
1879 in the course of work for his Ph.D. degree (he was later

.to win a Nobel prize for his investigations in low temperature
physics - notably his discovery of superconductivity) .

.t This article was compiled by one of the editors (MABD) from
~he writings of the pendulum's designer, Dr C.F. Moppert, and
appears with Dr Moppert's permission. Dr Moppert wishes us to
point out that the process used to produce this article was
also used in the case of the one on the Monash sundial
<Function, Volume 5, Part 5).
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In practi,ce, the simple theoretical pi.cturebecomes much
more complicated. Actual pendulums are typically in error by
more than 15%, a quite substantial amount. The physicist
Sommerfeld, writing in 1944, stated: "Foucault's experiments
in 1851 and those of his countless successors gave only quali
tive results". Dr e.L. Stong, writing in Saientifia Ameriaan
(February, 1964) noted: fiNone of the Foucault pendulums [I]
have examined (including the one on display at the Griffith
Observatory in Los Angeles and the splendid installatiqn that
adorns the entrance.hall of the United Nations General Assembly
building in New York) betters the 15% error". Stong then
describes a pendulum built by B.B. Bingham, which gave an
average error of only 2% on most days and was considerably
more accurate. on some days (and presumably considerably less
accurate on others). .

Among the problems experienced by actual pendulums are.
these~

(1) Running Down - unless some driving force is supplied,
a pendulum comes to rest in a reasonably short time 
the driving force must not influence the rate at
which the plarie-of oscillation rotates, for this
would invalidate the experiment.

(2) Construction Details - the geometry of the top
support can 'adversely affect the motion, as can
kinks and other irregularities in the wire support
ing the pendulum bob.

(3) Ellipsing - a major source of error, to be discussed
further later in this article.

At Monash, two pendulums have been built, both designed
and constructed by W.J. Bonwick and C.F. Moppert with help
from a number of colleagues. Both of these incorporated a
unique drive. At the bottom of the bob is a small permanent
magnet. When the pendulum is at rest, this hangs directly
above the centre of a circular coil of one foot (~ 30 em)
diameter. When the pendulum is set into motion, the magnet
passes over the coil, and, as it does so, induces a small
current. This in turn causes the discharge of a condenser,
and this discharge gives the magnet a small kick exactly in
the .direction of its motion. The power consumption is a few
watts. This same drive is now incorporated in a pendulum
hanging. jn the McCoy building at the University of Melbourne.

The first pendulum was set up in the Electrical Engineer
ing building at Monash, but later it was possible to build
another in an otherwise disused lift-well near the entrance to
·the Mathematics Building. This second pendulum is the one now
on display. It was officially set in motion on June 16, 1978,
by the Chancellor, Sir Richard Eggleston! and has run since
then with few interruptions. A typical run for ,this pendulum
extends over some two months.

The accumulated angles are noted with about one reading
per day. If these are plotted against time, the result should
be a straight line, and so it is to remarkable accuracy; in
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one 58 day run, the deviation was less than 0·01 -of 1%. This
remarkable consistency showed that we had overcome the first
two problems. The third has been rather more'difficult. Let
us now consider it.

It is actually rare for a pendulum to swing precisely in
a plane. The curve traced out is, to a good approximation,
that followed by a. point moving around an ellipse which is
itself rotating. An ellipse is described by two numbers a, b
known respectively as the semi-major axis and the semi-minor
axis. The rotation of this ellips'e by an amount of flet> per

: ' s
swing is, known as tfspheric~l precession tf and has nothing to
do with the rotation of the earth. It arises from quite in
dependent ~ynamical considerations.

It may be shown that, ,if i is the length of the pendulum,
then

3fT a b _ 3fTex.S
~et>s ~ T I - ---4- (1)

where ex. = T and S =~. (a measures the angle through which

the pendulum swings ,- the amplitude; B measures the angle
through which it deviates from the ideal plane of oscillation.)

The effect we want to observe is the 'apparent rotation of
(15 stn A)o per hour. This amounts to,an angular, change ~<PF

per swing, where

~<PF = 2fT w(sinA)/(i/g)' (2)

w being the angular speed of the earth (in radians per
second) and g the acceleratio~ due to gravity.

The reLative size of these two effects is given by

fi~F 8w sin A I(~/ ) (3)
fl<P

s
3aB g

Formula (3) shows that a long pendulum is preferable (ours
occupies a 1ou~~floor lift well) and ~hat the experiment be
comes'difficult in low latitudes (i.e. near the equat~r).

'Kamerlingh Onnes,who used a short pendulum in a vacuum,
analysed his own r~Stiits arid one set of earlier ones to verify
Equation (3) to within 1 0 5%. Later 'workers have checked the
,result to even greater accuracy.

However, these results apply to' the free pendulum. Driven
pendulums are subject to more complicated analyses. As driven
pendulums run for'months at a time, the numbe~ of swings and,
in conseqtience, the accumulated ~pherical precession can become
very great. ~or thi~ reason, attempts aie made to eliminate
ellipsing in' such pendulums,. The arrangement adopted by all
driven pendulums (apart from the Monash pendulu~) is a device
known as the Charron ring - a small fixed ring situated at a
distance of some 20 cm'below the point at which the pendulum is
suspended. '
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The' Ch.arron ring, however, disturbs the motion of the pen
dulum in complicated ways, and although Charron himself devised
a formula by means of which these could be allowed for, its
accuracy is suspect.

Until recently, to eliminate ellipsing in the Monash p.en
dulum'a mechanical brake was used - a sponge. rubber sleeve
around the bob, which touched the rim of a circle cut in a
chipboard plate at the maximum amplitude of the swing~ The
amplitude of the swing was made to be of precisely the right
amount by adjust ing the drive. .

This arrangement allowed us to automate the measurements.
Arranged at 15° intervals around the circular hole in the chip
board were contact wires. When the bob touched these, a small
electrical pulse was recorded on a chart. This chart, moving
at 1 em/hour, thus showed a pen-recorded trace from which the
angular velocity of the pendulum's plane of oscillation could
be calculated.

As mentioned earlier, the plot of accumulated angle against
time should be a straight line. This we have achieved at Monash
to very high accuracy. The slope of this line should give the
expected change of (15 sin A)o per hour. This, at the latitude
of Monash is 9-2° per hour. The observed results, however, were
less than this. We tended to get results of about 8-3 0 per hour.
In other words, the pendulum was retarded.

Dr Moppert believes that this retardation was caused by the
mechanical brake used to prevent ellipsing. By changing the in
put voltage of the drive observations showed that the higher the
drive, the greater the retardation .. This was as expected; how
ever, there seemed to.be no possibility of extrapolating the
measured resul~s to a degree ~ben no touching would occur, al
though a theoretical analysLs of the effect of the padding gave
results that accorded reasonably well with observation.

Early in 1981, Drs Moppert and Bonwick introduced a new
system. With the new setup, an electrical brake instead of a
~echanical one is used. A magnet, moving over a copper surface
experiences a retardation due to eddy currents induced in the
copper. The new brake, a copper ring, is now installed and is
being used in a new series of experiments, changing the voltage
and the geometricai configuration.

Dr Moppert says that projects such as this one and the
Monash sundial (Function, Volume 5, Part 5) appeal to him
because they show that. mathematics is not a sterile subject.
Nonetheless, he adds, as a teacher, he feels it his duty to
point out that science starts and ends with experiments. The
theories are secondary.
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OLIVER HEAVISIDE F.R.S.

THE TACTICAL ELECTRICIAN

C.H.J. Johnson, CSIRO

Oliver Heaviside was one of the most creative applied mathe
maticians of modern times. A man largely self taught , from an
early age he had set his mind in the direction of his later
accomplishments. He was born at Camden Town, London, on 18th
May 1850' and died at Paignton, Devonshire, on 3rd February 1925.
He was an intense individualist with great confidence in him
self and 'in his creative ability. His "applied Mathematics" 
then hardly recognized as a subject - bore the same qualities
of individualism and assertiveness. He made many contributions
to physical and mathematical science. He recast Maxwell's
theory of electromagnetism into a form more suited for applica
tion to physical problems. This enabled him to formulate and
develop modern transmission-line theory'and to solve many
problems in electromagnetic theory: problems that were both
technically important and new.

He is remembered by mathematicians for his contributions in
two areas. First, his work on transmission lines led him to
develop an "operational calculus" which, though not accepted at
the time, did, in due course, influence the development of
mathematics in this century. Second, he contributed greatly to
the development of vector analy~is - at the time most mathe
maticians used the more cumbersome "quaternion algebra" (see
Function, Volume 5, Part 3).

He also made many other contributions: the introduction
of moving charges into electromagnetic theory, the Heaviside
unit step and unit impulse functions (the latter to emerge
again much later in a quantum theory context as the Dirac
a-function) and the Heaviside ionospheric layer, whose existence
he inferred from the properties of transmission ~ines.

His early life was spent "in miserable poverty", and, to
continue in his own words, the effect "permanently deformed my
future life 'l . There is no doubt that it determined his atti
tude to society and to tlestablished authority" , but, proud and
independent, he remained attached to the few close friends he
made. His research made him a legend in his own lifet~me. He
made no money from his work, save the little from the publica
tion of his books, although many of his results might have
been patented, and, had they been so, might have given him a
more than comfortable income. He cared little for the world's
honours and died as he began - in poverty.
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After a somewhat interrupted schodling, Heavisidets.
formal educati.on ceased, and his uncle, Sir Charles Wheatstone,
who had made many contributions to "electric telegraphy", se
cured for him the··job as telegraphic operator with a Newcastle
telegraph company, where he remained from 1868 till 1874.
There were many problems associated with telegraphy, mostly re
lating to circuits with batteries and resistances, and with
switching within networks of these circuits~ - Heaviside dealt
with many of these problems in a highly original manner, in
cluding the problem of duplex telegraphy where telegraphi~g

can occur s~multaneously in opposite directions on the same
wire.

By the age of 24,. he had published seven original.papers
and had made something of a name for himself. In 1874 he gave
up his job as telegraphic operator and returned to London to
live with his parents~ For the rest of his life he remained
unemployed. He continued his research on inductive effects in
telephone systems, the telephone having been introduced in
1877. Heaviside considered in particular the problems of
electrostatic and electromagnetic induction between two over
head parallel wires and to deal with-these problems he taught
himself, and used very effectively, much advanced mathematics.

In all these investigations, as in his later work, he saw
right into the heart of the matter and was able to apply his
mathematics in a highly tactical manner.

In 1873, James Clerk Maxwell, then professor of experi-.
mental physics in the University of Cambridge, published his
gveat treatise on Electricity and Magnetism in which he set
into'mathematical form the experimental results of Faraday.
These may be condensed into the statement that the electric
field at any point in space can be described by two vectors
(the electric force and the magnetic force) together with the
field displacements they produce.

Heaviside read Maxwell's treatise and saw that it contained
many of the ideas he needed to solve his own problems. Over the
years 1885 through 1887 he reworked much of Maxwell's presenta
tion and eventually pUblished a series of papers under the
general ti tIe "E.lectromagnetic Induction and its Propagation".
In these papers Heaviside gave Maxwell's theory a new form.
In particular, he removed from the discussion a number of old
and irrelevant ideas which Maxwell had retained. He used
vectors in place of the clumsier quaternions, and so struct~red

the equations that they could be applied directly to new phySi
cal problems. His equations are in the form used today - per
haps they should be called the "Maxwell-Heaviside equations".

The theories of electricity before Maxwell had regarded
electric charge as a kind of fluid, in fact two fluids - one
for positive charge and- another for negative charge. Maxwell
introduced a completely new approach, suggested by the theory
of elasticity, where electric displacement (which is present
whenever there is an electric force) is the fundamental quantity,
in exactly the same way that elastic displacement is the basic
quantity in elasticity theory. At fir~t he gave only a formal
mathematical meaning to electric charge. However, much .later,
when electrons were discovered, he changed his position sbme-
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what and eventually admitted cha~ges into the theory". It was
Heaviside who first in.corporated electrons into the theory.

Heav~side's research into electric signalling and the
theory"of telegraphs, telephones and cables is one of his
most lasting contributions. First of all, he derived the
equation known today as the Equation of Telegraphy (sometimes
named, in his honour, Heaviside's Equation of Telegraphy).
This involved analysis of a transmission line with the four
Characteristics: resistance, inductance, capacitance and
leakage. Previous accounts, neglecting inductance and leakage,
had led to paradoxical and impractical results. For example,
there were many "electricians" (as electrical engineers were
then called) who seemed to imagine that the current, when it
started its passage through the cable, knew just how far it
had to go and adjusted its speed of propagation accordingly!

This was the state of the theory of transmission of signals
along cables as it was given in Maxwellls treatise in 1873.
However, the theory was adequate for the Atlantic cable, for
example, since the rate of signalling was qUite low. The first
real advance in the theory came in 1876 when Heaviside, working
with his developments from Maxwell's treatise, took into account
effects due to inductance and leakage, as well as those of re
sistance and capacitance, and obtained his general lltelegrapher's
equation ll .

This led to the immediate resolution of one paradox, for the
speed at which a wave propagates along the line turned out to de
pend very critically on the inductance, which had hitherto been
neglected.

Such analyses led Heaviside to propose that inductance
should be incpeased in long cables, particularly to avoid the
distortion that arose with the frequencies employed by the'
human voice. Leakage also reduces distortion (as he showed);
although, as we would expect, it weakens the signal. Thus,
for Heaviside, improvement in cables could be brought about
by in~reasing both t~e inductance and the leakage.

Although Heaviside's analysis was correct, it was not
appreciated by the British Post Office and their Chief Elec
trician, W.H. (later Sir William) Preece, who regarded induc
tive effects as 'lharmful to telephony" and to be avoided at all
costs. Heaviside wrote a number of papers criticising the
blunders of the Post Office but the various journals refused
to publish them, due to the influence of the Post Office
engineers. It is clear that Preece had no understanding of
the problem. The only thing remembered of this limited man is
his ignorance. Heaviside's ideas were first put into practice
in the U.S.A. in the 1890's by Pupin who, by inserting induc
tive coils along the line, made telephony possible across the
American continent.

Heaviside continued to find it difficult to publish on
transmission lines so he turned to other areas. In 1888 he
published an investigation of the field of a moving charge,
giving for the fi~st time the well known result for the force
on a charge moving in a magnetic field. This probably may be
regarded as the first appearance of the "electron" in electro-
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magneti.c th.eory.

By 1890 Heavisidets sixteen years of work had brought
little recognition from those in official positions but now
the situation changed. Interest in Maxwell's theory was in
creasing and the broad truth of the theory of propagation on
wires which Heaviside had worked out, on the basis of Maxwellts
theory, was confirmed experimentally by Hertz, Lodge and others.
Heaviside gradually came into his own. In 1891 he was elected
to.the Royal Society of London, although he hardly took the
matter seriously. His papers on electromagnetic theory were
collected and brough~ out in book form, but the sale was not·
very great. "They printed 750 copies", he wrote, "and had 359
copies left iive years later. If (N'ow'adays, his books are widely
available in reprinted versions but this i~ a much belated
development.)

However little his own books might be read he never ceased
to read those of others. He read the great mathematical texts
of the day. However, he had very little to do with that centre
of mathematics, Cambridge University. "Good mathematicians,
when they die, go to Cambridge", observed Heaviside. However,
he was rather isolated and his work was hardly known there.
Soon after 1890 when Heaviside was at last recognized he soon
fell foul of the Cambridge pure mathematicians over his unortho
dox mathematical methods, particularly his "operational calculus".

For many 'years, He~viside had followed Boole and others in

writing the "operator U D to mean -Jx and then treating D as a

quantity of familiar algebra. In many cases, this yields
correct r~sults very efficiently - in other cases it does not.
Heaviside's approach to these matters was far from rigorous 
he regarded mathematics as an "experimental science" and worked
accordingly.

His work on equations related to the Equation of Telegraphy

led him to consider expressions such as Di , which at fir~t sight
seems to make no sense.. Actually, he was not the first to do
this, but he seems to have been unaware of previous work. He
developed the theory from scratch to a point where he was able
to use it in solving important and difficult problems, particu
larly in relation to heat conduction.

Although the solutions he derived in this way were, in
point of fact, correct, his methods were not accepted by his
mathematical contemporaries, particularly as the mood of the
day was one in which formal rigour was beginning to be stressed.
Heaviside again found difficulty in publishing - this time be
cause of the influence of the Cambridge mathematicians. "Mathe
matics is an experimental science", wrote Heaviside in the heat
of this debate, "and definitions come not first Qut later on."

Heaviside's mathematics still generate controversy.
Whittaker, in 1950, saw his operational calculus as "[one of]
the three most important mathematical advances of the last
quarter of the nineteenth century", but this is perhaps rather
generous praise. Certainly, however, it was influential, and a
modern version of it (known technically as the Laplace Trans-
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form) is a basic compon.ent of all courses in engineering mathe
matics.

Besides his difficulties with the "scienticulists" and
"mathematicians of the Cambridge or conservatory kind", as he
described them, Heaviside had little money and less prospect
of improving his circumstances. Eventually in 1896 the Govern-

"ment gave him a Civil List Pension of £·120 per annum - hardly a
fortune. He lived in seclusion in Devonshire from around 1896
till he died in 1925. He never attended scientific meetings
and had constant money problems. In later years he considered
the propagation of free elect"romagnetic waves round the earth
where his earlier work on the guidance of electromagnetic waves
by conducting wires suggested a physical solution to the problem.
He said "There may possibly be a sufficiently conducting" layer
in the upper air. If so, the waves will, so to speak, catch on
to it more or less. Then the guidance will be the sea on one
side and the upper layer on the other." The permanently
ionised layer in the upper air was later called the Heaviside
layer. Its existence is one of the factors that make short
wave radio possible.

FROM HEAVISIDE'S WRITINGS

Oliver Heaviside, whose story is told in the preceding arti
cle, was given to a colourful and direct form of writing that
provides interesting reading and introduces invective into mathe
matics in a peculiar, intensely personal way_ He spoke, for
example, of th~ "go" of an argument.

At other times he let the reader into his private difficul
ties.

"How is it possible to be a natural philosopher when a
Salvation Army band is performing outside; joyously, it may be,
but not most melodiously?"

This is from §4 of his three-volume work EZectromagn.etic"
Theory (EMT). .

For his unusual approach to m~thematics 'itself, we have the
testimony of these quotes:

" .. we shall have, prelimina~ily, to work by instinct, not
by rigorous rules. We have to find out first how things go in
the mathematics as well as in the physics. When we have learnt
the go of it we may be able to see our way to an understanding
of the meaning of the processes ... " [EMT §239).

"Shall I refuse my dinner because I do not fully understand
the process of digestion? No, not if I am satisfied with the
resul t _" [EMT § 225] .

These opinions are not todayt s accepted wisdom, but they
did lead .Heaviside to some interesting explorations.
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DIFFERENCE OF INTEREST RATES

OR

HOW TO MAKE YOUR FORTUNE
BY INVESTMENT

G.B. Preston, Monash University

If a businessman will offer you 15% compound interest, per
annum, on money that you lend him and your bank will lend you
money at 10% compound interest per annum, what is the difference
between these interest rates? On the face of it, obviously 5%.
However, does this mean, that by borrowing money from the bank
and lending it to the businessman you can effectively earn 5%
on what you borrow (neglecting any questions of taxation)?

In fact, your effective rate of earning depends on how many
years the money is lent for.

Suppose an amount of $1 is borrowed from the bank and lent
to the businessman. Interest payable to the bank at the end of

one year is $t~o and interest you receive from the businessman

is $;~o; so your gain at the end of one year is $~, and

hence you gain 5% on what you borrow. All very simple.

Suppose, however, that the same amount is now borrowed and
lent for an agreed period of two years, at the same annual rates
of interest with settlements to be made only at the end of two
years. At the end of two years the amount owed to the bank is

$(1 + i5)2, since interest for the second year is due on the

total amount $(1 + i5). namely the original ~mount borrowed plus

interest due. SimilarlY,the businessman owes you, at the end

of two years, $(1 + 11~O)2. The difference between these "is

$(0 0 1125). If this is equivalent to a rate of return of r%
compound interest per annum, then

$(1 + 1~O)2 = $(1-1125).

To solve this for r, take logarithms:

2 IOg(l + 1~O)-= log 1-1125,

whence, by tables, or by hand calculator,
r ~ 5 0 475.
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Thus i.f the arrangement,. as described, wi.th the bank and
the busi.nes.sman, lasts for two years, you gain more than the
5% interest rate difference between the rate at which you lend
and the rate at whi.ch you borrow. In fact you earn 5 0 475%.

This rate increases with the number of years for which
the arrangement or contract is made. Calculations for differ
ing numbers of years are in the following table.

No. of
years

of contract.

1

2

3

4

5

10

15

20

50

Rate of
interest
at which
borrowed

10

10

10

10

10

10

10

10

10

Rate of
interest
at which

lent

15

15

15

15

15

15

15

1.5

15

Rate of
interest

.. earned

5

5·475

5 0 966

6 0 468

6·974

9 0 383

11 0 266

12 0 550

14 0 739

It appears that the effective interest rate you get from
your transaction is tending to 15% as the length of the con
tract increases; in other words, provided the contract is for
a long period, the eventual cost of borrowing the money you
invest becomes negligible.

This may be proved. If n is the number of years for the
contract, and r is the effective rate of interest (note that,
as exhibited in the above table, the value of r depends on
the number of years n), then the original $1 will have increased

to $(1 + 1~O )n at the end of nyears. But the businessman

pays you back $(1 + f~o)n and you owe the bank $(1 + f~o)n,
so that your profit at the end of n years is

$((1 + 11050f - (1 + foOof)
So the $1 borrowed has become

$(Y + (1 + f~o)n - (1 + f~o)n)

at the end of n years.
have the equation

Since this equals $(1 + r)n we
\. 100'

It may be shown that as n gets larger and larger, the value of
r satisfying this equation increases steadily and approaches 15.
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There is nothing special about the i.n.terest rates 10 and
15; all that is required is that the investment interest rate
is greater· than the rate at which the money is borrowed. We
now give a demonstration of this for the general case.

So, suppose that the two interest rates involved are a
and B, with a > B, so that 8 is the rate of compound interest
paid on the money borrowed and a is the rate of compound inter
est returned on your investment. Then, as for th~ special case
just disc~ssed in which a = 15 and S = 10, the effective rate r
of compound interest, obtained from an n-year contract of the
type described, is given by the equation

(1)

We now show, using the fact that a > 8, that the solution r to
th~~ equation tends to a as the number of years n gets larger
and larger.

To see this we simply need to use the fact that, if 0 < 0 < 1

then 8n
-+ a as n -+ 00 (i.e. on tends ~o 0 as n gets larger

and larger).

aLet us simplify the notation by setting a = 1 + 100 '
8 rb = 1 + 10Q and x = 1 + 100 The condition a > 8 is equiva-

lent to a > b, and the equation (1) can be written

nx . (2)

x =

Ths solution to this equatio~ is

nil + an _ bn .

Here a and b are constants, and so x depends on n, the number
of years. What we want to investigate is how x depends on n,
in particular we want to find out what happens to the value of
x as n increases.

Divide by n and" ,

( 3)

and a < "£ < 1.
a

n -+ 00 Thus the

a < ! < 1
a

and a > b, we have

We begin by rearranging equation (2).
equation (2) becomes

Since a > 1

So (~)n + 0 as n+ 00 and (~)n + 0 as

left-hand side of (3) tends to the value 1 as n -+ 00; hence
the right-hand side also tends to 1, in other words

(~)n + 1 as n + 00

Now observe that, since b > 1, bn
> 1, and so, using

equation (2),

( 4)
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n nx ;::; a

Thus (~a·)n < 1 h I 0, w ence a s

~ < 1.
a

But for any positive number S« 1),

2
S > ~ > ••• > Sn >

Hence

(~)n < ~ < 1 (5)
\.a a '

holds for each n and the corresponding solution x of (2).

We have seen in (4) that as n -+ 00. Hence,

since by (5), for each solution x,
and 1 we conclude that

x is squeezed between
a

Recalling that

~ -+ 1 as n -+ 00

a
r

x = 1 + 100 and a

(6)

a.
1 + 100 ' this means that

r -+ a. as n-+

In. other words, as claimed, we have shown that the effective rate
of return on the transaction approaches the rate of interest you
get on your investment, as the length of the contract gets longer
and longer.

Hence, to make your fortune, you need no capital to invest.
All you need to do is to borrow from a bank at the bank's rate
of interest arid t~en invest what you borrow at a higher rate.~of
interest. The businessman you invest with will -be glad that he
need nbt repay capital, or interest, until a number of years
have elapsed. You will of course find it more difficult to
persuade a bank. manager to allow you to· repay your loan from the
bank, together with all interest due, only after the lapse of a
number of years. However, should you find a willing bank
manager, then after the appropriate number of years, the net
return to you will be effectively at the rate of interest the
businessman pays you: relatively, the interest you have to pay
the bank .has become negligible.

Compound interest effects are common in the physical world.
We now consider a quite different situation involving varying
compound interest rates. Let us look at the relative birth and
death rates of different species living in a particular region.

Suppose, for simplicity, there are two different species
of animals competing for food in a certain game reserve. They
do not attack each other, but depend on the same vegetation for
food. Suppose that the vegetation suffices to keep alive and
healthy only a fixed total number P of the members of both
species each year. Suppose further that the net percentage rate



17

of increase per year of species 81 is a and that of the

other species 8 2 is S, with a > S. Here, by net increase

we are measuring the dif~erence between total births and total
deaths, from natural causes, in a year. In order to ensure
that the animals in the game reserve keep healthy, each year'
game wardens cull the populations of the two species, killing
members of either species at random until the total population
is reduced to P.

Suppose that, at the beg~nning of a particular year, there
are A members of species 8 1 and B members of species 8 2 , so
that

A + B P.

At the end of the year, the number of members of species 8 1
will have increased in size to A(l + 1~O)' while the number of

species S 2 will have in'creased to B (1 + 190)' The total number

of animals of the two species is then Pl' say, where

A(l +l~O) +B(l +190) = P1'
Culling then takes place, so that each species is reduced in
size in the 'proportion ~/P1. At the end of culling, the first

species has A1 members, where

and the second species has B1 members, where

6B1 (P/P 1 )B (1 + 100)'

and where, consequently,

A1 + B1 = P.

In general, if the population before culling, at the end
of the n-th year, is Pn , and An and Bn are the populations'of

the first and second species, respectively, aft~r culling, then
similar considerations show that

A
p n

A(l + l~ofn P1P2" .Pn

and

B
p n

B(l+lgofn P1P2 ·· 'Pn
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Hence

ex
a = 1 + 100

(b/a)n(B!A),

f3b=l+ roo ·setting

and so b < 1.
a Hence

and

Cb!a)n -+ a as

Since

n -+ 00

a > B, a > b

Thus the effect of the culling procedure described ~ill be,
in the longrun, to exterminate entirely one of the species
from the game reserve.

00 00 00 00 00 00 00 00 00 00 00

THE SIEVE OF ERATOSTHENES

Wri te down the sequence of odd numbers, begi,nning wi th 3:

3 5 7 9 11 15 17 19 21 23 25 etc.

Begin with the number 3, skip the next two numbers and cross out
the next; skip the next two and cross out the next, and so on:

3 5 7, ~ 11 13 1~ 17 19 ~f 23 25 etc.

Now move on to the 5, skip the next four numbers and cross
out the next; skip the next four and cross out the next, and so
on:

3 5 7 ~ 11 13 1~ 17 19 7f 23 ~~ etc.

Continue with the 7, crossing out every 7th number.

The 9, being already crossed out, is not used, but we move
on to the 11, now,crossing out every 11th number and so on.
This process leaves uncrossed only the odd prime numbers 3, 5,
7, 11, ... . It is due to Eratosthenes, a mathematician of the
second century B.C. The name "sieve" derives from the fact that
on successive, runs, we cross out, or let out of the sequence,
multiples of the primes and retain at the end of the'process
only the prime numbers, much as a sieve separates (say) gravel
from sand.

This is the process used by Colin Wright in his search for
primes (p. 20) .

MENTAL WIZARDRY

To find the square of any two-digit number ending in 5
'(say 65), take the first digit (6) and mUltiply it by one more
than itself (7) and adjoin 25 to the product (42) to get the
required square (4225).

Can you explain why this trick works?
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LETTERS TO THE EDITOR

THE AMAZING CONVERGENTS

Consider the set of fractions

1 3 7 ~7 41 99 239
I' 2' 5' 12' 29' 70' 169'

in which each numerator (or denominator) is twice the preceding
numerator (or denominator) increased by the numerator (or denomi
nator) before that. E.g. 41 = 2 x 17 + 7 and 70 = 2 x 29 + 12.

These fractions converge to 12 and are derived from a
continued fraction. (See Function, Vol.4, Part 4; Vol.5., Parts
2, 4.) They are termed the convergents of the continued fraction
representing 12.

The digits making the successive convergents arise in
another truly remarkable way. Consider the numbers 1, 3, 6,
10, 15, 21, 28, 36, 45, 55, 66, .... These are the triangular
numbers and each is of the form in(n + 1) for integral n~

Consider also the numbers 2, 6,12, 20, 30, 42, 56, 72, 90, 110,
132, 156, .. :, which have the formula m(m + 1) and which I call
the oblong numbers.

Can a triangular number also be an oblong number? To
answer this, we seek integers m, n such that

in(n + 1) = m(m + 1).

This equation may be written

(2n + 1)2 = 2(2m + 1)2 - 1,

an equation of the form

2x

whose solutions (x,y) are (1,1), (7,5), (41,29), (239,169), ...

These solutions are, respectively, the numerator and
denominator of the first, third, fifth, etc. fractions in the
sequence of convergents.

We may now deduce the values of n, m and thus find the
sequence of numbers that is both triangular and oblong. The
first five are 6, 210, 7140~ 242556, 8239770. Each of these
factorises as the numerator and the denominator of two
successive convergents:
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6
210

7140
242556

8239770

1.1.2.3
2.3.5.7
5.7.12.17
12.17.29.41
29.41.70.99.

We may similarly ask if a triangular number may also be
square, i.e. we wish to solve the' equation

in (n + 1) = m
2

.

or

This equation reduces to

(2n + 1)2

2x

2(2m)2 + 1

2y2 + 1.

The solutions (x,y) are here .(3,2), (17,12),. (97,70), ... , and
these pairs arise from the second, fourth, sixth, etc. conver
gents of the sequence. The numbers that are both square and

triangular. are 1 = (1.1)2, 36 = (2 .. 3)2, 40816 = (5.7)2, etc.,
where the factorisations again relate to the convergents.

Garnet J. Greenbury,
123 Waverley Road,
Taringa, Queensland, 4068.

TWIN PRIMES

I have been using the sieve of Eratosthenes (see p.-18, Eds).
in a computer search for large twin primes. One recent run
found fifteen primes beginning with 117 959, and ending with
118 127. In this list were two pairs of twin primes: (117 977,
117 979) and (117 989, 117 991). These are particularly
interesting in view of the fact that the four primes involved
are consecutive. No primes lie between 117 979 and 117 989.

Colin Wright,
Science student,
Monash University.

MULTIPLADDS

1 enclose a copy of my book MULTIPLADDS, a collection of
puzzles designed to provide a number of exercises in number
facts and basic logic. In each puzzle, the three numbers in
each side of the large square multiply together to give a
common answer. Various ,patterns in the addition facts for each
side are also specified.

Ken Montgomery,
P.G.Box 178,
Nunawading, Victoria, 3131.
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[Mr Montgomery's book is available from him at the g~ven
address. We regret that we do not have a priee" but Mr Mont
gomery U10uld presumably suppZy this information. As a sample~

U1e reprint one of the more interesting MULTIPLADDS beZow.]

w

N

s

MUL TIPLADDS

E

Put the numbers: 1, 2, 2,· 3, 4, 6, 6
and 12 into the spaces so that:

(a) the. three numbers in each side of
the large square multiply together
to give the same answer.

(b) the east side adds to one more than
the horth side, the west s·ide adds
to three more than·the east side
and the south side adds to five more
'than the east side.

+ + + + + + +

Copyright 1977

THE VERY BEST MATCH PUZZLE

Readers of Volume 5 of F'unetion will be familiar with our
discussions of the Match Tricks on the back of recent series of
Bryant and May matchboxes. These are supplied to us, with
solutions, courtesy of the Wilkinson Match Company.

We print at right the most
interesting of these from the.
mathematical point of view
(and incidentially the most
difficult also). Analogous
puzzles can be produced for
squares of different sizes
and some relevant results
are discussed on p.29,
where the solution is given.

MATCH TRICK No. 23

What is the smallest
number of matches~
cao remove SO that no
square of any size is N!ft?
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PROBLEM SECTION

We begin by solving some of the problems from previous
issues.

SOLUTION TO PROBLEM 5.4.1
This problem read:

Let p be a prime greater than 3 and consider p consecutive
integers. Square them and add them up. Prove that the result
is divisible by p~

The special case p = 5 constituted Problem 5.1.4. The
result is not true for p = 3, and it is clearly false for p = 2.

For any other prime p, p = 6k ± 1 for some natural number
k, since all other possibilities allow for division by eitner
2 or 3 (or both).

We now use the trick that Wen-Ai Soong used in her solution
of Problem 5.1.4. She called her five consecutive numbers a - 2,
a - 1, a, a + 1, a + 2. This must be generalised, but this is
easily done. Our p consecutive numbers are

a - !(p - 1), a - !(p - 3), ... , a - 1, a, a + 1, ... ,

a + !(p - 3), a + !(p - 1).

These p numbers are to be squared and added. We have

[a - !(p - 1)]2 + [a - !(p - 3)]2 +, .. + (a _ 1)2 + a 2

+ (a + 1)2 + ... + [a + !(p _ 3)]2 + [a + !(p _ 1)]2

(a 2
+ a

2
+ + a

2
+ a 2 +

2 + + a 2 + a 2 ) +.. . a ...
2{1 2 + 22 (!( p

. 2
1»2}+ ... + - 3» + (-~(p -

2 + 2{1 2 + 22 + (!(p
2 _ 1»2}pa + ... - 3» + (!(p

since there are p terms in all.
aluded in the sum cancel out in

Notice that the terms not in
pairs: -2a with 2a, etc.

Now the sum of squares of the first ·n integers is given
by the formula

+ ... + n2 = n(n + 1)(2n + 1)/6.

(For a derivation of this result, see Function, Vol.l, Part 3.)

Thus

12 2 A( 2+ 2 + ... + (~ p - 1» !(p - 1)!(p + 1}p/6

p(p2 _ 1)/24.
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But now recall that p = .6k ± 1.

(p2 _ 1)(24 = (3k 2 ± k)(2.

2So p - 1 36k2 ± 12k, and

If k is even this is clearly equal to an integer (say m).

If k is odd, a slightly more involved calculation 'shows that
it is still integral. Again, call .it m.

2 Thus the sum of our p consecutive· square·s reduces to pa + pm,
and this is clearly· divisible by p.

MORE ON PROBLEM 5.4.2
This concerned the scheduling of women drawin.g water from a

village pump and to this extent was solved in our last issue.
However, we asked a further question - how to schedule the
women if two pumps are available? We leave this open for the
present - indeed, we might equally ask: how to schedulem women
if n«m) pumps are available.

SOLUTION TO PROBLEM 5.4.3
A billiard table is n units long and m units wide and a

billiard ball has a di~meter of one unit. The ball is f~red

from a corner at 45 0 to the sides. It is pocketed when it
next visits a corner. If we imagine the table to be coloured
like a chequerboard with squares of one' unit on a side, how
many squares does the ball visit in all?

by Vincent and Wen-Ai Soong ofThis problem was solved
Casuarina, N.T. They- first
noted that theeentre of the
billiard ball moves through
the centre-points of the
squares, and these lie on an
(n - 1) x (m - 1) rectangle.
Thus the ballls·path (Figure
1) may be replaced in our
analysis by the path of the
centre (Figure 2).

m

n

[1]

Vincent and Wen-Ai now
write: "Repeat the lattlce
unit until the ball strikes
a pocket. Note that this
makes no difference to
the number of squares
visited. It just
makes things more
clear."

m-1 ........- ....- .....- .. [2]

m -1m - 1m-1

---.. n ..,.. 1 - --===-- n - 1-----

m -1 [3]

Figure 3 shows
their reasoning. Note
its relation to
Figure 2. The
argument may be
viewed in
another way.
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Imagine a mirror placed at the right-hand edge of Figure 2. When
the ball is reflected off the right cushion, it appears in the
mirror to be going straight on.

We now take up Vincent and Wen-Ai's argument again. "We
want", they write, "the ball to rea~h one corner of the
(n - 1) x (m - 1) lattice. But the ball always strikes the
upper or lower sides of eV'ery (n - l)x (m - 1) lattice
(assuming, as drawn, m < n). Hence we require the lowest
common multiple of (m - 1) and (n - 1)." After being struck,
the ball visits this many squares, and adding in the initial
square, we get:

total number of squares visited = 1 + L.C.M.(n - 1,m - 1).

[4]

m

- --,
I
I
I
I

--1
I
I
I

I
-1_

I
I,
IL _

2

n

The argument may be
s~ightly simplified by use
of Figure 4. Here all re
flections are ~emoved and
the path of the ball be
comes a straight line.
The formula derived by
Vincent and Wen-Ai then
appears in a very
elementary way.

Note that if h is
the highest common fac
tor of n - 1, m - 1,
then L.C.M.(n - l,m - 1)
= (n - l)(m - l)/h.

SOLUTION TO PROBLEM 5.5.1
ABeD is a quadrilateral. Circles are drawn on each of AB,

BC, CD, DA as diameter. Let P be any point in the interior of,
the quadrilateral. Show that P lies on or-within at least one
of the four circles.

Quadrilaterals are of three types: convex, re-entrant
and twisted (Figures a, b, c below).

a b
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We consider the convex case and leave the others as exer
cises to the reader (they are easier). Let P be a point in
side the quadrilateral ABCD. (See the diagram below.)

c

o

In order for P to be outside the circle on AB, we must have
~APB < 90°. In order for p to be outside the other three circles
we would need ~BPC < 90°, ~CPD < 90°,4DPA < 90°. But at'least
one of these is impossible as

~APB + ~BPC + 4CPD + 4DPA

MORE ON PROB~EM 5.5.3
. This was the traffic problem discussed in the last issue.

If a car skids along a road, its stopping distance is deter
mined by the magnitude of the retarding force. This, in the
case of a skid on an incline, is partly due to friction and
partly to gravity. Let the car travel up a slope of incli
nation 8 and let the coefficient of friction be~. g is
the acceleration due to gravity.

The retardation in this case may be calculated to be
g~ cos e + sin 8). When 8 is 0, i.e. the road is flat, thi~

reduces to g~. The defendant's case succeeds if the decele
ration on the slope is less than that on the flat, i.e. if

~ cos 8 + sin 8 < ~

or ~(1 - cos 8) > sin 8.

This inequality reduces to ~ > cot ~ after some trigonometric

manipulations. Now cot! decreases from infinity to the

value 1 when 8 = 90°, the largest possible value. For prac-
8ticable slopes, cot 2 exceeds 3. Most coefficients of

friction lie below 1, values of about 0-4 being common, and al
though there are cases where ~ > 1 (Aluminium on Aluminium
is an example: ~ = 1-4), they do not occur on the roads. We
learn from the Victorian branch of the Motorcycle Riders
Association that the maximum value achieved in these circum
stances is 0-.85.

Thus the defendant should have lost.

This problem is based on one published in Ameriaan Mathe
maticaZ MonthZy in 1963. The version published there was
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criticised for (in essence) its unrealistic value of ~. We
had hoped to find a more' believable case of the effect, but,
alas, it is not possible.

We do not yet give the solution of the delightful

PROBLEM 5.5.2
To settle a point of honour, threemen,.A·, Band C engage

to fight a three-cornered pistol duel. A, a poor shot, has
only a 30% chance of hitting his target; C is' somewhat better,
his chance of a hit being 50%; B never misses. A however has
first· shot. S, if he survives, fires riext; then C; then A
again, etc. However, if a man is shot, he takes no further
part in the contest ' either as a marksman or a target. What
should A's strategy be?

We hope readers will give this some very earnest thought
and send the best of it to us.

Here now are some new problems.

P'ROBLEM 6.2.1 (From the 1982 Australian Mathematical Olympiad.)

'A tosses n + 1 fair coins and B tosses n fair coins. What
is the probability that A throws more heads than B1

PROBLEM 6.2.2 (From the same source.)

. ABC is a triangle and the internal bisector of the angle
A 'meets the circumcircle of ABC at P (as well as at A). Q
and R are similarly defined in relation to Band C respectively.
Prove that AP + BQ + CR > AB + BC + CA.

PROBLEM 6.2.3 (From the same source.')

Let P1 = 2 and if n ~ 2 define Pn to be the largest prime

divisor of P1P2" ,Pn -1 + 1. Prove that Pn f 5 for any value
of n.

PROBLEM 6.2.4
The ladders diagrammed at

right are of lengths L1 , £2

(L 1 > £2) respective~y. They
cross at a point whose distance
,above the baseline is H. What
is the distance between their
feet?

In the version submitted
to us, the following figures
were given: £1 = 3m, L 2 = 2m)
H = 0 11 8 .

The problem is a famous one and· we wish you luck.
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PROBLEM 6.2.5
Three cabinets each. contain two drawers. In each drawer

a gold or a silver coin has been placed and the following in
formation is supplied: One cabinet con~ains two gold cdins,
another two silver, and the third one of each.

A drawer is open~d at random and is found to contain a
gOld coin. The other drawer in the same cabinet is then
opened.

What is the probability that it too contains ~ gold·coin?

PROBL.EM 6.2.6
Let ABC be any triangle and P, Q two distinct points insid~

it. ·Find the shortest path from P to Q subject to the con-
dition that the path must hit each side of the triangle. .

UPDATING TWO STORIES

A recent article of great interest and eminent readability
is Jeremy Bernstein's profile of the computer scientist and
A.I. (artificial intelligence) expert Marvin Minsky in The New
Yorker (Dec. 14, 1981). .

Among many other things, it gives more information on two
matters discussed in Funation. One conc~rns the alleged
proof by a computer of a theorem in elementary geometry: the
so-called Pons Asinorum, or Asses' Bridge (Function, Vol.3,
Part 3). According to the story, H. Gelernter and N. Rochester
programmed a computer t.o find proofs for Euclidean theorems and
were surprised to find a proof that, although knownt6 others,
was not known to them at that time.

Bernstein quotes Minsky as claiming that he (Minsky)
devised the basis for the program and, 'using hand simulation

·rather than a machine, discovered the proof which Gelernter
later obtained by writing Minsky's roUtines out as a computer
program and running it.

The article also has some interesting comments on the
history of computer chess (described in Funation, Vol.5,
Parts 1 ahd2). There are also articles on this topic in the
journal Chess in Australia (August and September, 1981) by
David Levy and Kevin O'Connell, _ho intr6duce their .new pro
gramming concept "Philidor" (named after an early chess
theorist). .

"Philidor" is supposed to be programmed in a new way
that incorporates strategic, as opposed to merely tactical,
ideas. The games included do lend some credence to this view.
Regrettably, the articles are rather in the nature of adver
tisements and the programming concepts are kept secret for
commercial reasons.
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MATHEMATICAL PRODIGIES

In a recent Letter from America (broadcast in Victoria on
March 28, 29 by 3AR) , Alistair Cooke tells the story of the
youngest woman ever to win a Rhodes Scholarship: the 1S-year
old Nina Teresa' Morishige, a first generation Japanese
American.

Nina has just graduated from the Johns Hopkins University
in Baltimore and not only is her graduation some four years
early, but she graduates not merely a~ a. Bachelor of Science,
but also as a Master of Science, with an average mark of 100%.

Her IQ, measured when she was four years old, was 171, but
more to the point are her sUbsequent achievements. Scholasti
cally, these have been in mathematics and related areas. Her
specialties at this stage of her development are Real Analysis
(one of the branches of advanced calculus), Differential Topo
logy (the application of calculus to topology, or qualitative
geometry) and Electromagnetic Theory.

While studying at Johns Hopkins, she studied Physics,
Latin and Computer Science at another university. (Of Computer
Science, she is quoted as saying that it is "boring and further
more lacks the philosophical appeal and the rigour of advanced
mathematics" - a judgement, she may, of cours~, modify.)

Furthermore, she plays the piano, flute and violil'f, -the
first of these so well that she won, at age 15, a national
competition and appeared as a soloist with the Oklahoma Sym
phonyOrchestra~ Her sporting career has included winning
(three times in a row) the U.S. Junior Golf Championship. She
also plays chess and was vice-captain of Johns Hopkins' fencing
team. Fear of injury to her hands led her to abandon softball.

Rhodes Scholarships are taken up at the University of
Oxford which also has just admitted its youngest student ever,
the 10-year'old Ruth Lawrence. Ruth's field, like Nina's, is
mathematics, and indeed her progress in that field is actually
ahead of Nina's. There are, however, fewer details on Ruth's

.achievements available to us.

Most accounts of Ruth's admission to Oxford stress, pessi
mistically, the likelihood that she will come to nothing! They
cite as precedent the story of Oxford's last mathematical prodi
gy, JOQ,n Nunn, who gained a Ph.D. before he was 21 and is "now
unemployed and reduced to competing in chess tournaments".

What such articles appear to overlook is that (a) Nunn is
a grandmaster at chess, (b) his unemployment is surely an in
dictment of British society rather than of Nunn himself.

There have been several remarkable prodigies in the
history of mathematics. We told (Function, Vol.1, No.1) the
story of one, Louis P6sa. Norbert Wiener (of Cybernetics fame)
was another, but the most famous of all is C.F. Gauss who
deduced the formula

1 + 2 + ... + n = !n (n + 1)
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when he was only seven years old.

Other feats fall short of the prodigy class, but are none
theless remarkable. In Function, Vol.5, Part 2 we -gave the 13
year old Jeanette Hilton's argument that

13 + 23 + : .. + n 3 = (1 + 2 + ... + n)2.

Of-course, not all the world's great mathematicians began
as prodigies. There are great "late developers'" among them
too.

00 00 00 00 00 00 00 00 00 00 00 00 00 00

SOLUTION TO MATCH TRICK No.23
In the diagram given, 40 matches .are arranged so as to

make up 16 squares of side 1, 9 squares of side 2, 4 squares
of side 3 and 1 square of side 4, a total of 30 squares.

Simpler versions of the problem would use

(a) 4 matches to make 1 square
(b) 12 matches to make 5 squares
(c) 24 matches to make 14 squares,

and then, of course, there are more complicated versions such
as

(d) 60 matches to make 55 squares.

(Can you derive formulae for the general case?)

It is not difficult to show that in Case (a) we need to
remove one match to break up the (only) square, in Case (b)
we need to remove 3 matches to break up all (5) squares and
in Case (c), a little harder, 6 matches to break up all (14)
squares. This would suggest that in the case given here, 10
matche~ need to be moved.

However, this solution is in
correct. We print-at right a
solution, put out by the Wilkinson
Match Co. (Bryant and May) to show
that the result may be achieved by
removing only 9 matches.

Even this, though, is not the
end of the problem. How do we
know there is not an 8-match
solution? We could get a computer

to check all (~o) possibilities

for us, but here is a simpler
proof due to Derek Hol~on, one of
Function's editors.

SOLUTION
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Imagine each small square (of side. 1 ) coloured black or
white to make up a 4 x 4 checkerboard. Next, note that the
largest (4 x 4) square must be broken, so that at least one
of the outer boundary matches ~ust be removed. W~ may suppose,
without loss of generality, that it comes from a white square.

Now consider the set of 8 small black squares. No two of
these ~ave any match in oommon. It follows that to break all
these we must remove'S matches. ThUS, at a very minimum, we
need to move 1 + 8 = 9 matches. That this minimum is
achievable is proved by the diagram.

There seems to be no formula known for ,the general case.
An interesting investigation would be th~'design of efficient
computer techniques for giving the minimum in any particular
case.

THE JOY OF MATHEMATICS

We reprint below an excerpt from a talk entitled llThe
greatest happiness of the greatest number" by Professor E.M.
Patterson, Dean of Science at the University of Aberdeen. The
text was prepared by Professor Patterson for delivery at the
annual conference of the Mathematical Association (U.K.) in
April 1981. It was read to the Association by Dr Roger
Wheeler, Professor Patterson being unable to attend. Four days
earlier, his wife Joan, also a mathematician, had died of the
cancer that beset her last years of life.

The full text of the address appears in the BuZZetin of
the Institute of Mathematios and its AppZications (October,
1981) and our excerpt is reprinted by arrangement with the
Institute.

"I do not know at what stage of my life I began to ex
perience genuine pleasure. in mathematics. ·At school, most en
joyment was indirect;· it came from the satisfaction of achieve
ment, from a piece of work completed and sometimes, if I were
lucky, actually praised, or f~om solving ~ prob~em. Success
was all the more enjoyable if it signalled a reversal of for
tune, with earlier feelings of inadequacy or failure overcome.

Certainly when I was an undergraduate in Leeds I was dis
covering real enjoyment within mathematics.' A striking example
was that of mathematical analysis. My first encounter with
this was discouraging. I met it in all its glory at the be
ginning of my second year and I did not understand it one bit.
I thought that the lecturer was making "a great deal ·of fuss
about very little. However I do not surrender. easily and I
had by that time learnt never to trust my own ~asty judgements.
I tried hard to find out what it was all about and in due course
patience and perseverance were rewarded: the pennies began to
drop. By the time I was in my final year, analysis was for me
a most attractive subject. It was orderly, 'logical, consistent
and had about it an air of aptness. Wit6in it there were sur
prises; intriguing,examples showed that things should never be
taken for granted; for instance a function could be everywhere
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continuous and nowhere differentiable. The system of real num
bers was full of fascin.ation. The rational numbers could be
put into one-one correspondence with the positive integers, but
the real numbers could not. The continuum'hypothesis was some
thing to turn over in the mind and marvel at. Down to a very
basic' level the discovery that 'IT was not, after all, equal to

;2 was a great moment. That other important transcendental

number e is at the centre of some splendid elementary mathema
tics, which I still find thoroughly enjoyable when le~turing to
first-year students. A friend of mine who was an engineering

student used to revel in the fact that e ni is -1; so complica
ted a number is, after all, so simple.

Sometimes what appeals most is the sheer simplicity of an
argument. The first of my two illustrations of this is well
known, but that does not detract from the enjoyment. If
twenty-seven teams enter a knock-out competition, how many.fix
tures are there? (It is assumed that each is continued until a
definite result is obtained.) Answer: twenty-six. More
generally, if there are n teams then there are n - 1 fixtures,
because the competition has one winner 'and everyone else loses
exactly once.

The second illustration of attractive simplicity is the
theorem that for any continuous function defined on a circle
there is at least one pair of diametrically opposite points at
which the values of·the function are the same. To see this,
start at any point on the circle, take the difference between
the value of the function there and at the diametrically oppo~

site point; then move the two points around the circle.contin~
uously, keeping them diametrically opposite, until they have
changed places. The difference in the values of the function
varies continuously, but we" end up with the negative of the
starting value and so somewhere the difference must be zero. A
consequence of this result is that if the temperature varies
continuously over the earth's surface then on any great circle
we can find at least one pair of antipodal.points at which the
temperatures are the same. In fact, a generalisation of the
above circle theorem, known as the Borsuk-Ulam theorem, shows
that on the earth's surface we can find at least one pair of

"antipodal points at which the temperatures are the same and
the pressures are the same."

FROM A CORRESPONDENT

Kim Dean, of the Urban Campagna, U.S.A., last wrote to us
two y~ars ago of Dr Dai Fwls ap Rhyll's winning of the Prix Ie
Bon for his reflections on gravity. According to Dean, Dr Fwls
has turned his attention to the foundations of mathematics 
with some unexpected and even alarming conclusions.

"The famous Godel theorem put paid to Hilbert's dream of
establishing the self-consistency of mathematics", writes Dean.
"Post Godel", he contipues, "-it was impossible to' hold the view
that the mathematics we have grown to know could ever prove its
own consistency. But this is not to say. that it could not be
found to be inoonaietent."
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Dr Fwls' results are expected to be as important to the
foundation of mathematics as his earlier work was to the struc
ture of theoretical physics. He has shown no less than the
fundamental inconsistency of the whole of arithmetic!

The upshot of his investigations is still being studied.
Already sources close to President Reagan have suggested that
all mathematics departments in schools, colleges and universi
ties throughout the U.S.A. will be forced to close their doors
and some professors fear the lawsuits that will inevitably
follow under the U.S. legal code.

Dr Fwls, in his capacity as expert witness for the U.S.
Internal Revenue Service, is almost certain to be paid a large
proportion of the billions of dollars likely to be claimed in
retrospect from professors and teachers of mathematics through
out the nation.

u.S. mathematicians, faced with the loss of lifetimes'
accumulations of salary and consultation fees, have attempted to
offset the Reagan-Fwls challenge. Still, they are pessimistic,
despite a nationwide fundraising campaign by the American Mathe
matical Association (AMA).

Professor X. Wisehead, speaking for the Association, said,
"I mustn't give away the best of our position, but frankly, we
haye little comeback. We'll be instructing our lawyers to
argue that if mathematics is inconsistent, then so, a fortiori,
is law. Our further argument will be that if arithmetic is in
consistent, then, if the IRS reckon we owe them money, we can
equally well claim they have overtaxed us for a quite indeter
minate number of years."

Kim Dean writes that Mrs Thatcher's Britain is anxiously
awaiting the outcome of the pending U.S. case. He suspects
that Australia will follow suit if Mr Fraser is in power in the
n years (n being large) required for this country to catch up
with the overseas developments.

As with Dr Fwls' earlier work, his argument is easily
presented. He defines

s = 1 - 1 + 1 - 1 + 1 - 1 + ... ,

and then sets out to calculate s .

He argues first:

s = (1 - 1) +'(1 - 1) + (1 - 1) + ...
0+0+0+ ...
O.

But then he has:

s = 1 - (1 - 1) (1 - 1)
1 - 0 - 0 - 0
1.



from·...whfch,

28 1 or 8 = i.

Thus 0 =pl i and arithmetic is inconsistent. Neverhas the -' x - = + rule ... been put· to more mts¢hiev:ous use.

MONASH·SCHOOLS'MATHEMATICS ·LECTURES.1 1982
J4onasl1 ... 1Ini.ver$it¥...:.Mathema.tics ••.•DeJla.:ntm~nt· ..•invites..·..·.·~ec.ondary~~l1oo1.stud.ents studying rnathe1llfl,tics,pa..rticlllarly those inyea:r-s 11 and 12 (H .. S~C.)to a series of lectures onmathemattca-I. .... topics. -

The lectures are . free, and <?penalf;)oto· teia.qhers .• and
pc,tr~nt~accompany"i-Ilg:stlldents.. Ea.ch .·.lectu·rewill .. 1.ast .foraPi?P9ximateIyone·.hp?r.and ..·will not.·a~sumeat.tendance··.·;;tt. otherlectures in the series.

Location: Monash UniversitY,RotupdaLectureTheatreRl .. TheRotunda ....• shares.·.•• a comrnon·•.. entry- .••. f()yer.with ••... the ••·Alexandar . TheatJ:"e. ..FQr ... further dire~ti.0ns, pleas~enquireat the Gatehouse in the main entrance of Monash inWeTlington Road, Clayton. Parkipg is possible inany car •..• park at Monash ..

Time: Friday evenings as below; 7.00 p.m. to 8.00 p.m.(approx.).

Program: The remaining. talks are:'

June 4

Enrolment:

Cumming.

Just

Further Information: Dr C.B.G.M~Intosh: (03}5.412607
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