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We welcome with th~s issue new readers and old friends
alike. Once again we hope you enjoy and learn from the
articles, letters, tidbits and probiems. It is the problems
that often give the entry by whlch our readers can play a more
active part in Function~ Send us solutions or even problems
of your own or that you would like to see solved. Or you may
care to send us letters or articles.

In any. case, we wish you happy Functioning in 1981.
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THE FRONT COVER 

HEADS AND TAILS WITH PI

The games of chance that everybody knows arise in the ex
ternal world, quite outside the abstract world of mathematics.
For example, games based on the throwing of a pair of dice or
on the tossing of a coin can hardly be said to have a mathema
tical origin but their interpretation in mathematical terms
must by necess.i ty refer to ide'alised models wi th "perfectly
made dice" and "prefectly fair coins". But there is no need
to go outside mathematics to get material for games of chance
for it is there in front of us in the very heart of that most
ordered of all mathematics source material, the real numbers
themselves, an area where we might expect that no element of
chance might possibly occur. If we examine tr4e, decimal expan
sion of "almost" any real number in the interval (0,1), say,
we find that over a long enough sequence in the expansion each
of the digits 0 through 9 occurs with its "proper" frequency
of 1/10. Remarkable? If, for example, you take the first two
thousand digits in the decimal expansion of the fractional
part of 'TT as shown on the cover of this issue of Function, and
determine their distribution you will obtain the results given
in the table below.

digit 0 1 2 7

frequency 0.091 0.106 0.103 0.099

digit 8 9

frequency 0.101 0.106

Examination of these results shows them to be eminently consis
tent with the statement that each of the digits 0 through 9
occurs with frequency 1/10. That is, it appears.that the
digits a~e uniformly distributed. (Of course the digits of TI
are not arbitrary and can be computed.)

Numbers for which every allowable digit in their decimal
expansion occurs with its "proper" frequency were called nor
mal numbers by the French mathematician Emil~ Borel (1871 
1956). Of course, not every number is normal; in particular
rationals like 1/2 and 355/113, which gives a five-figure
approximation to 'TT, are not. It can be shown that the non
normal numbers in the interval (0,1) can be set in one-to-one
correspondence with the positive integers, that is, they can be
set in a countable sequence. On the other hand, it can be" shown
the totality of numbers in (0,1) cannot be set in such a se
quence - that is, they form an uncountable set. It follows from
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this that th.ere mus.t be an uncountable number of normal num
bers in (0,1). It is in terms of this uncountability that we
must interpret th.e word "almost"" wlten we say that almost all
numbers are normal. Let us now examine this concept of a
normal number and determine. what we mean by the. phrase
"digits appearing with their pro~er frequency".

If x is a number between 0 and 1 we may represent it in bi
nary notation. For example the number OQ65625 may be converted
to binary form as

1 x 2-1 + 0 x 2-2 + 1 x 2-3 + 0 x 2-4 + 1" x 2-5 .

The coefficients (1,0,1,0,1) in this or any other such binary
number are written as sk(x), where x is the number represented

and k is the relevant power of 2-1 In the example above
sl(0065625) = 1 1 S2(Oo65625) = 0, etc. For k > 5 in this ex-

ample Sk(Oe65625) is always zero.

It is customary to work with the so-called Rademacher
functions defined by the equation

Pk(X) = 1 - 2s k (x).

-In our example (x = 0 0 65625), we find r 1 (x) = r 3 (x) = rS(x) = -1 1

with all other rk(x) being +1. Since x is determined by its bi

nary expansion, that is to say by the functions Ek(X), it is

also determined by the values of its Rademacher functions.

Suppose now that we choose an x at random between 0 and 1.
The probability that Pk(x) is +1 is !"and the probability that

P
k

(x) is -1 is also!. This holds for all values of k, and is

relatively easy to prove, for example by graphing successive
Pk(x). The choice of each successive rk(x) is exactly like the

toss of a fair coin, with say "heads" corresponding to a value
+1 and "tails" to a value -1.

Now as such a coin, tossed sufficiently often, will tend
to turn up heads or tails with equal frequency, so" the average
of the first n Rademacher functions- will tend to zero for a
randomly chosen x, as there will tend to be the same number of
+1 and -1 values. This means that almost all values of x lead.
to this result 1 or to get back to the sk(x), almost all values

of x have (if we follow the expansion far enough) equal numbers
of O's and 1's in their binary expansions.

A similar result applies with only a little more work if we
use base 10 instead of base 2. This is the result that holds
for examples such as TI.

What I h.ave demonstrated here is that almost all numbers
are normal; it is quite a different matter to prove that a
particular number like 0 0 123456789101112131415 ... is normal
(it is).
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CURVE-STITCHING AND ENVELOPES

M.J.C. Baker, R.A.A.F. Academy

Introduction.

In his article in Function (Vol.4, Part 3) Po Greetham gave
an interesting account of the origins of curve-stitching and
showed some of the attractive figures that may be produced. The
present article goes on to describe how to find the equation of
one stitched curve.

Let us begin by ruling two axes OX, OY at right angles on a
piece of card, and making holes along the axes at the points with
integer co-ordinates (using a suitable scale, say 5mm to the unit).
The first stitch joins any hole on OX (it doesn't matter which) .
to any hole on OY. For the next stitch we move one hole towards
o on the X-axis and one hole away from 0 on the Y-axis. Suppose
for instance that we started with a line from A(7,0) on OX to
B(0,3) on OY, then our next line would go from (6,0) to (0,4),
the next from (5,0) to (0,5), and so on. (Going backwards we
should get the line from (8,0) to (0,2), and so on.) When we
reach the line from (0,0) to (0,10) we may go further by using
holes on the negative X-axis.

Figure 1
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Figure 1 shows the resulting pattern. The threads outline a
curve. In mathematical language one says- that the family of lines
envelopes a curve. Th.e curve is- called the envelope of the family
of lines; and each line of the family is a tangent to the envelope.
In this case we shall prove th.at the envelope is a parabola. (It
will be seen in Figure 1 that the stitches using points on the
negative axes need to be extended in order to· reach the envelope.)

We are concerned with. a family of lines, and shall need to
have a w~y of describing mathematically not only a line but a
whole family of lines. For th~s we first need to be clear about
the meaning of the word tparam~terr. The next sec~ion is design
ed to make this plain.

Variables~ constants~ and parameter~.

2x + y := 5 is an equation. Appearing in it are the letters
x,y. They are variables. The variables can be given values by
substituting numbers in their place. For instance we might sub
stitute3 for x and 21 for y. In this case the equation becomes
a statement tlTwo times three plus two-and-a-half is equal to
five" which we see is false. Values that sati·sfy the equation 
that is make it into a statement which is true - are called
solutions. Thus x ::: 2 1 Y := 1 is a solution; so is x := 0, Y := 5.

If we mark on a diagram with co-ordinate axes all the
solutions by means of dots, the set of dots forms the graph of
the equatio~. The graph of the above equation is a straight line.
The co-ordinates of any point on the line satisfy the equation.

The 2 that appears in the equation is called the coeffic
ient of x. The coefficient of y is 1. The 5 may also be called
a coefficient.

The graph of y := 3x ·is a straight line through the orlgln.
We may equally we.li say that y :=. 3x repres·ents a straight line
through the origin. So does y := -2x. So does y = mx. In the
last equation m stands for a coefficient of x which has not been
specified. m is called a constant. The coefficient -2 is also
a constant of course (it doesntt change!); but very often we wish
to talk in general terms and not to tie ourselves down to par
ticular numbers, and then we use letters for constants.

Now let us turn to our original curve-stitching example:

¥+ i ::: 1. (It is a useful trick to remember: the line join

ing (a,O) and (0,8) is ~ + *:= 1.) The next line was·~ + ~:= 1.

We can get all our lines (almost) by putting a suitable number

n under the x, and 10 - n under the y, to give ~ +~ = 1.

(The only exceptions are the axes themselves: y ° and x = 0;
also we may not use 0 or 10 as values for n.)

x ~ .Thus we .see that the equation - + o· := 1 represents an - n
whole family of lines. Any of them may be singled out by giving
n the appropriate valtie: n = '7 gives us the first of our lines.
For that line n has a constant value, 7. If we change the value
of n we change to a different line. n is called a parameter,
which is as it were a tvariable constant t

0 Parameters occur in
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qonnection with. fami.lies of lines. For anyone line of th.e
family the parameter 1.s constant; but we may' change the para
meter to single out a different member of the family.

Suppose finally that we did not wiso to specify 10 in par
ticular as the sum of OA and OB but only· that this sum was a
fixed but unspecified number c. We should th.en get the equation

:£ + ----1L- = 1. Here x,y are the variables-, c and 1 are then c - on
constants, and n is a parameter.

Calculation of the envelope

Returning to our original family of lines ~ + --lL--10 = 1,
n - n

let us tackle the problem of finding th.e equation of their enve
lope. Suppose we choose some value for x, 2 for example, and
consider th.e line x = 2. (See Figure 2.) This cuts our first

line ~ + i = 1 wh.ere y = 3(1 - ~), th.at is at the point (2,2~).
Similarly it cuts the general line of the family; +~ = 1,

where y = (10 - n) (1 - ~). Now to find wh.ere. x = 2. cuts th.en-

y

o

Figure 2

x
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envelope we need to find the highest point where' it cuts one
member of th.e fami.ly. So we would lik.e, to know the maximum

value of Y ~ (10 - ~)(1 - ~) as we change n (that is as we letn
x = 2 cut the diffe.rent members of the family). .By calculus,
the maximum may be found to occur when n = 120, i.e. the line
of the family that cuts x = 2 highest up is the one for which
n = 120 (we s'hould have to make two new holes in our piece of
card). The value of y is approximately 3 0 06. So (2,3 0 06) is
a point on the envelope.

More generally if we choose x o as a value for x, and find

the highest point of intersection of x = x o and a line of the
x ofamily, we shall have to find the maximum of y = (lO - n)(l - rz).

This occurs when n = 1(10xO). We have identified the right

line of the family. To get YO' the maximum value for y on
x ox =. x O' we substitute this value of n in y = (10 - n)(l - yz).

x o
This gives YO = (10 - 1(10xO»(1 - 1(10x

o
»

Ix
O(10- 1(10xO»(1 - 715)

10 - 2/(10xO) + xO.

So if P(xo'YO) is on the envelope its co-ordinates satisfy the

above equation.

We may now drop tpe subscripts and say that the equation
of the envelope is y = 10 - 2/(10x) + x.

The envelope is a parabola

The last equation may be converted as follows:

x - y + 10 = 2/( lax),

2 2xy + Y
2 + 20x 20y + 100 40x,x

2 2xy + y 2 20x 20y + 100 O. . .• ( *)x

Since this is a second degree equation it must represent a conic.
By the symmetry of the original family of lines we know that the
line x = y must be an axis of the conic. This suggests a rota
tion of axes through 45 0 (see the box overleaf).
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Rotation of axes through an angZe e

e

~ ?t

Q, ...-.-...-... fr-
.....r ...•.
..r·······

S T

Figure 3

If P has co-ordinates (x,y) in the old set of axes and
(X,Y) in the new set, then

x = os = OT - ST = OT - QR = OR cos 8-PR sin 8=X cos 8 - Y sin 8,

Y = PS = QS + PQ == RT + PQ = OR sin 8+PR cos 8=X sin 8 + Y cos 8.

To change axes by a rotation of 45 0 we use the relations
X-y X+Yx =~, y =~ , as sin 45 0 = cos 45 0 = 1/12. Equation

(*) is thus converted into the following equation representing
the conic in the new axes:

(X_y)2 2 2 (x+y)2 20 20
2 -(X -Y')+--2-'--72(X-Y)-72(X+Y)+100 O.

This reduces to"2y2 ~x + 100 0, or y2 = 4.~X 50,

which is a standard equation for a parabola. We have finished
the problem.
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QUADRATIC EQUATIONS

John N.Crossley, Monash Universityt

Quadratic equations such as

x 2 + lOx = 39 (1)

are very familiar to us and so is a method of solving them. The
solutions of

are given by

ax
2 + bx + a o (2)

x = !(-b ± /b 2 - 4aa) la. (3)

How were quadratic equations first solved? and when? and have
things changed since those times?

In many books on the history of mathematics you will find
it said that the Babylonians (who lived in what is now south
east Iraq) solved quadratic equations in about 1700 B.C. This
is only partly true. They certainly solved problems which we
would write as quadratic equations and they also used a calcu
lation corresponding to that in equation (3). However, they
only dealt with numerical coefficients as in equation (1) and
had no means of writing down anything corresponding to
equation (2) which has letters for coefficients. In addition
theY' could not write down equations like (2) because they had
no zero. They also did not have negative numbers. So an equa
tion such as (1) corresponds to a problem they could solve while
an equation like

x 2 + lOx - 39 = 0 (4)

just had no equivalent for the Babylonians ev~n though (1) and
(4) both appear to us as the same equation (or at least equiva
lent equations).

These quadratic equations are generally presented in geo
metric terms, so the answers always have to be actual lengths
(or areas etc.). Because of this there are never any answers
other than positive numbers to any problem considered.

t A version of talks given at a Monash School Mathematics lecture
on 28 March, 1980, ~nd to the Southeast Asian Mathematical
Society, 19 June., 1980. This article also appears in Matimya's
Matematika 4 0..980) (Philippines).
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When we turn to the Greeks who were doing mathematics from
about 600 B.C. we find them less interested in practical prob
lems and more concerned with pure, ideal questions. Their main
contributions were in geometry, the most famous work being
Euclid's EZements which was written about 300 B.C. There the
questions posed usually require a construction using a ruler
~nd compass. As an example consider the following prob~em

taken from another book of Euclid'-s, the Data.We are told that
two lengths add up to a certain amount (let us call this b) and
when used as two of the sides of a rectangle they enclose a
certain area (let us call it e). In modern terms we think of
the two lengths as xl and x 2 where

xl + X z = band x 1x 2 = c.

From our knowledge of quadratic equations we would say that we
were trying to find the roots of a quadratic where the sum of
the roots is b and the product is c. So we wish to solve the
quadratic

X
2 - bx + C = o. (5)

But what Euclid does is to give a construction which involves
only drawing lines and right angles starting from a line of
length b and a rectangle of are.a c. The method does not depend
on which rectangle we choose, only on its area. (And you will
remember how to construct a right angle just using a compass and
ruler.) To get the answers one then just has to measure a
couple of lines in the figure constructed.

Here is another example. We want to construct a length x

such that x 2 is a given length L. So we draw a line AC of
length L + 1 and construct a semi-circle on that line as diameter .

./
./

/
/'

./
/'

".

A -+-- L.~B c
Now erect the perpendicular at B and let it meet the circle in
D. Then BD i~ the required length. (This example is from
Euclid, Book II. The proof that ED is the correct solution is
found by considering the similar triangles ABD and DBC - make
sure the order is right!)

After the Romans had taken over Alexandria (in northern
Egypt) where "Euclid worked, there was little dramatic develop
ment in mathematics and it is not until 830 A.D. that we find a
novel treatment of quadratic equations.

In that year al-Khwarizmi, an Arab mathematician whose name
gives us the word 'algorithm', wrote a book about aZ-jabr and
aZ-muqabala, that is to say, algebra. In it he gave the rule we
have in (2) but he also gave geometric proofs of solutions. In
particular he solved the equation (1). One of his versions is
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roughly as follows.

We are given a square of side x and an ,area ~O uni ts by x
units. Divide th.is extra area into two pieces each. 5 by x and
put them on two adjacent sides of the s-quare. We then have.
the figure bel6w:

E x F

D

A

5 5

C 5

)(

B

G

H

The total area is then x 2 + lOx which we are told (by equation
(1)) is 39. Now add on the top corner to give a square CFKG
of size 5 by 5, that is, 25 units and then the area of the big
square

E F K_-----n- -- ..····ou-------
C
-+--....' G

A B H

AEKH is then x 2 + lOx + 25 or, using the 39 instead of x 2 + lOx,
39 + 25, that is, 64. So AEKH is a square of area 64. Its side
AE is therefore ~, that is, 8. But AE is made up of AD = x
and DE = 5. So x + 5 = 8 and x = 3. Thus the equation is
solved.

He also solved the equation another way. Instead of adding
5 by x rectangles on two sides, he added 21 by x rectangles on
all four sides to get .. thefigure below.

D C
2~

x

2~
A B
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Now we have to fill in the corners. Perhaps you would like to
finish off solving the eqtiation.

Strangely enough it was a very- long time before people
started accepting negative roots of quadratics in the West 1
though as early as the seventh century A.D. Hindu mathe
maticianshad considered them. In fact before negative roots
became accepted complex numbers were used. Th.e question of

what happens when b2 - 4ac is negative had been sidestepped
by Euclid, who had specifically imposed a condition equivalent

to b2 ~ 4ac. It was not until cubic equations were being
solved algebraically that complex numbers came into mathema
tics. Once they had entered mathematics they were soon con
sidered as roots of quadratic equations. W~th them I'think
most people believe that we now have the complete solution
of quadratic equations. But in fact there are endless
questions still to be asked. Some are simple and have al
ready been asked, others may suggest themselves to you. In
deed 1 that is the way mathematical research progresses.
Anyhow 1 here are a couple for the equation ax2 + bx + C o.

What conditions must a, b 1 c satisfy if x is to be a
whole number?

When are both roots (i) positive 1 (ii) negative?

FinallY1 to widen the picture 1 can you draw a three-dimen

sional picture to solve the cubic? (Try x 3 = a - 3uvx and con
sider the cube with side u where u x + v.)

MESSAGES FR.OM THE CALCULATOR

Complete each calculation then turn your calculator upside
down to read the answer.

1. Q: What did the society lady call the hobo?

A: 1938 x 25 x 4 24 =

2. Q: What did the doctor tell Robert I,S mother?

A: (5552 + 520803) x 93 + 70804 ;;::

3. Q: What did the casino boss think as he watch.ed William
winning at the game tables in Las Vegas?

A: 7 x 5 x 100 + 7 0 7718 ;;::

4. Q: Wh.en the ghost frightened the little gir1 1 what did
she say?

A: 0 0 07 x 0 0 111 x 5 + O~"00123

5. Q: How is maths this year?

A: 24 x 3 x 5 x 83 x 277 ;;::
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FAST ADDITION

FOR COMPUTER ARITHMETIC

Ron Sacks-Davis, Monash University

When representing integers, positional notation us-ing
radix (i.e. base) ten is defined by the rule

m 2 1am... a2a 1a O means am10 + D •• +a 210 +a 110 +a O'

where the conventional decimal system is obtained when the co
efficient~ a O,a1 , ... ,a are integers lying between 0,9 inclusive.

m 2 1
For example, 230 means 2 x 10 + 3 x 10 + O.

Other number systems have also been studied. We consider
one'called a signed-digit number system where the coefficients
may take negative values as well as positive. In this system,
the coefficients are restricted to be integers in the range -6
to 6 rather than 0 to 9. Note that 13 digit values are now' ,
'allowed in contrast to the 10 of the conventional number-
system. The six negative digits are indicated by placing a bar
over the digit.

Example 1: 342 means 3 x 102 - 4 x 10
1

+ 2 or 262.

Example 2: 101 means -1 x 102 + 0 x 101 + 1 or -99.

Note that there may be more than one signed-digit repre
sentation for a particular number (in Example 1, both. 342 and
262 satisfy the requirements of the system). For this reason,
signed-digit number systems are sometimes referred to as
redundant number systems.

Let us look at some of the properti.es of signed digit
numbers. If A is a signed digit number with value

amlO
m

+ .• 0 + a 2102
+ a 110 1 + aO (am i 0), then since

lam_ I I10
m

-
1

+... +la21102+la11101+laol < l amll0m,

a number of important consequences follow.
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(1) The si.gn of A is the same as that of am"

(2) A = 0 if and only if a O ~ a 1 = a 2 ~ ~ a
m o.

(3) If A is represented in signed-digit notation as
am ..... a2a~aO, then -A can be represented as

~m ••• a2alaO (where, if necessary, we us-e th.e convention

a ::; a).

However, the property of signed-digit number representa
tion that makes it so attractive to des:i.gners of computer
arithmetic units is the following.

(4) When adding two signed-digit numbers, we may add the
digits in corresponding positions in totally parallel
fashion.

Thus, the carry propagation associated w~th the addition of
numbers in the conventional representation is eliminated if
a signed-digit representation is used.

The addition process is as follows. Given two signed-
digit integers X,Y, wh.ere

iOn 2 1X x + + x 210 + x 1 10 + X on

Y = iOn 2 1
Yn + .. 0 0 + Y2 10 + YI10 + YO'

addition is performed in two stages. First, from each of the
terms xi + Yi' i = O,l, ... ,n, a transfer (or carry) digit

t i +1 and an interim sum digit wi are formed, satisfying

xi + Yi ::; lOt i +1 + wi"

The values of ti+i and wi are given by this table.

Xi + Yi As at right 0 1 2 3 4 5 6 7 8 9 10 11 12
with all

t i +1 signs 0 0 0 0 0 0 1 1 1 1 1 1 1
reversed.

w. 0 1 2 3 4 5 -4 -3 -2 -1 0 1 2
~

In the second stage, the digits, si' of the sum are formed:

s. w. + t. 0

1.- ~ ~

It may be observed from the addition table that Iwil < 5 and

Itil < l~ so that si may be formed without any further carry
propagatlon.

The formation of each of the pairs of digits t i +1 and wi
in the first stage of the addition process and the formation of
each of the sum digits in the second may be performed in per
fectly parallel fashion (i.e. simultaneously). Thus addition
in signed-digit arithmetic is achieved in constant time
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(independent ot the number of digi.ts in x, J). Contrast this
with. addttion using the conventional representation of num
bers. There, due to carry propagation, addition time is
roughly proporti.onal to n, where. n is the number of digits in
X,Y.

As an example of addition, tak.e X ;::: 24351 (or 23749 ) and
Y = 11616 (or 104~6) . The calculation then proceeds as follows

x .. 2 4 "3 5 I
1.-

y. .1. .1. 6 .1 6-z,

7)) .. 3 5 1 4 5-z,

t. 0 Y 1 0 0-z,

s . 3 4 2 4" 5
1.-

The sum is represented in conventional notation as 34165.

Below is a block diagram of a totally parallel adder.

t 1:+2
X i +1

LU i +1
±Y1:+1

Si+l
t i +1x.

'/;

lL' •
'/;

±Yi

S.
'/;

t .
'/;

zu i .... 1

A section of a totally parallel adder.
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Subtraction in s.igned-digit ari.thmetic i.s· performed by
compl~menting (ch.anging th.e sign of) each. digit in the num
ber to be subtracted and then adding. To subtract 104~6
from 23749, we proceed as follows. .

x.· 2 4 "3 5 1
t-

y. I I 6 I "6
t-

tV • 1 3 3 4 3
~

t. 0 0 0 I 0
t-

d. 1 3 3 3 3
t-

The digits d. are those of the diffe.rence which, written con-

ventionally
t- in signe.d-digit notation, is 13333.or

Variants of th.e above technique are used to incre.ase the
performance of many computer arithmetic units, Usually binary
arithmetic is used but the ideas are similar. Note that the
larger range of' 'allowable digit values in a signed-digi t numper
system compared to a conventional number system implies that in
general the signed-digit number"systems are not as economic of
storage as conventional number systems. As a consequence,
signed digit addition is commonly used for the addition of
intermediate quantities such as the partial products generated
during multiplication, the initial arguments and the final
product are represented by a conventional number system.

As an exercise, ~ry to develop an algorithm for adding
decimal signed-digi t numbers in three stages (rather than .two)
if the a's are restricted to lie in the range -5 .. ;5 rather
than -6 ... 6.

"The universe is infinite but bounded, and therefore a
beam of light, in whatever direction it may travel, will after
billions of centuries return - if powerful enough - to the
point of its departure; and it is no different with a rumor,
that flies about from star to star and makes the rounds of
every planet. One day Trurl heard distant reports of two mighty
constructor-benefactors, so wise and so accomplished that they
had no equal; with this news he ran to Klapaucius, who ex
plained to him that these were not mysterious rivals, but only
themselves, for their fame had circumnavigated space."

The Cyberiad, Stanislaw Lem, 1974.

"Half Past Five is Twenty to One."

Brian Martin, 3UZ race preview,
Twenty Five to Two, 7.10.80.

"Come in more like a Quarter to Six."

Disgruntled punter, Five to Two.
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I AL'WAYS

LIE WHEN I WRITE ARTICLES t

Vicki Schofield, University of Newcastle

Around the end of the last century, a number of paradoxes
were "discovered", which seemed to threaten th.e foundations of
logic and mathematics. Paradoxes occur when the "conceptual
apparatus of science is more or less radically revised tl

,

[1, p.493l. The study of these paradoxes has led to a greater
insight into mathematics and reasoning, and often intuitive
ideas have been rejected in favour of concepts which at first
seem unbelievable.

Zeno of Elea - the follower of Greek philosophy - propounded
four famous paradoxes on motion, two of which are:

I. The Dichotomy - There is no motion; because that which is
moved must first arrive at the middle before it arrives at the
end. It must traverse the half of the half before it reaches
the middle and so on ad infinitum. (i.e. How is it possible to
reach an infinite number of positions in a finite time?)

II. The Achilles - The sl~wer when running will never be over
take~ by the quicker, for that which is pursuing must first
reach the point from which that which is fleeing started, so
that the slower must necessarily be some distance ahead. (i.eo
If the quicker must occupy an infinite number of positions in
order to overtake the slower, how will he be able to do this in
a finite time?)

To explain this paradox of infinity, Cantor, in 1882, pro
posed a new concept for "counting". If the elements of 2 sets
can be put into one-to-one correspondence then the 2 sets have
equal cardinality. A set is then said to be infinite if it can
be put into 1-1 correspondence with one of its parts. If this
is the criterion of equality, then it can be seen that a finite
length can contain an infinite number of positions.

t
This article first appeared in School Mathematics Journal No.14
(July, 1980) published by the Newcastle Mathematical Association.
It is reproduced with'their permission. '



18

However, Cantor's work produced i.ts. own paradox, wh.ich
arises when the set m of all sets is considered. Its cardi
nal number NC(m) (the number of elements) is' the largest
which can exist. However the set H(m) of all subsets of m,
according to a theorem in set theory, has its cardinal number
NC(B(m)) larger than the cardinal number NC(m) of m.

This paradox derives its origin from the possibility of
constructing the set m of all sets. It can be seen [1, p.496]
that the set m cannot be constructed using the various systems
of axioms of set theory available.

The Liar Parado~ has been known since the sixth century
B.C. when Epimenides the Cretan said "Cretans always lie".
Suppose he is lying. Then what he says cannot be true, and
as he says that he is lying he is thus speaking the truth.

Suppose he speaks the truth. Then what h.e says must be
true, and he is thus lying. Therefore contradictions arise
whatever alternative is chosen. It is shown [1, p.~10] that in
a formal system with an adequate definition of truth and false
hood, the statement concerning the liar doesn't exist. Thus,
for sentences contained in ordinary language, such a definition
cagnot be given.

The Grelling Paradox: If and only if an adjective can be
applied to itself, it is called "autological"; "heterological"
if and only if it can't. The words "English" and "polysyllabic"
are autological while "French", "monosyllabic", "red" are hetero
logical. If "heterological" is to be considered heterological,
it can be applie-d to itself and it is thus autological, and vice
versa.

In 1926, F.P. Ramsey observed that paradoxes of logic cou.ld
be divided into two classes. Group A consists of contradictions
which, "were there no provision made against them, would occur in
a logical or mathematical system itself. They involve only
logical or mathematical terms such as class and number, and
show that something must be wrong with our logic or mathematics.
But the contradictions of Group B are not purely logical and
cannot be stated in logical terms alone, for they contain some
reference to thought, language, or symbolism, which are not
formal but are empirical terms" [1, p.503].

Group B are referred to an "semantical paradoxes" and in
clude the Liar paradox, as well as those of Grelling, and Berry.
If we formalise logic and mathematics, the semantical paradoxes
don't enter into this system and no revision of the fdrmal sys
tem can be of any use in getting rid of them.

The Berry Paradox is this: Suppose we are given a set A
containing every word occurring in this essay; the number of
words contained in this set will be finite. We consider the
set P (also finite) of sentences which contain at most 50 words,
all of which come from set A. Let Q be the set of sentences in
P which define a. natural number (Q is finite). Consider the set
R of the natural numbers which are defined by a sentence in Q.
The set R will be finite, consequently there are natural numbers
which are not in R; the first (according to the usual arrangement
of natural numbers) is to be called the Berry number.
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Consider the sentence: "The Rerry number i.6 the first num
ber wh~ch cannot be defined by means of a sentence containing at
most· fifty words> all of them' take.n from set A."

This sentence i.s a correct defini tion of the Berry number;
contains less than fifty words (all of which are taken from·set
A) and is therefore contained in P. As it constitutes the
definition of a natural number, it is also in Q. The Berry
number is therefore in R. However, by its definition - the
Berry number cannot be in R. This leads to a formal contra
diction.

The Paradox of Denotation shows the confusion which can
occur with usage of symbols.

The statements log 343 > 2

and 343 = 73 ,

imply log 7 3 > 2.

This in~erence conforms to accepted standards of logic,
while the following does not.

343 contains three figures

343 = 73

7
3 contains three figures.

A further example of a paradox of denotation is thi's:

"Do you know your father?tf

"Yes."

"But if you were shown a masked man and were asked if
you knew that man, wouldn~t you say that you didn't
know h.im?'f

"Yes."

"Now that man happens to be your father. SO,as you don't
know him, you don't know your father."

If a set may be a class of classes, the elements of a set
may themselves be sets. Bertrand Russell (in 1903) brought to
notice the class of all those classes that are not members of
themselves, and asked whether the set of sets so described was
a member of itself. If the answer is no - then it is a class
that doesn't contain itself, and thus a contradiction. If the
answer is yes, the class is a member of the "all" and is there
fore a set that doesn't contain itself, which is again a con
tradiction.

Another version Russell produced was: In a certain vill
age the village barber shaves all those men and only those men
who don't sh.ave themselves. Who shaves the barber? If he is
one of·those men who do not shave themselves, he must be shaved
by the barber (himself), and thus he does shave himself. If he
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is s.omeone who shaves himself, then he cannot be sh.aved by the
barber, which. contradicts the fact just stated.

Much more is.gained by examining the apparent inconsis
tencies in mathematics, than by merely disregarding them. By
the critical evaluation ·of current knowledge and understanding,
further progress can be made into mathematics.

References

1. E. Beth, The foundations of mathematics, .North..Holland
,J?ubl.ishing 'Company, Amsterdam.

2. Edna E. Kramer, The nature and growth of modern ma thema.ti·.cs ,
Hawthorn Books Inc ..New' York:

The WorZd AZmanac and Book of Facts~ 1980contains on p.154
some information on the speeds of animals. Some 36 critters
are listed and opposite them their speeds. Thecfieetahtravels,
we are told, at 70 m.p.h. (i.e. about 110 k.p.h.) and is the
fastest. The garden snail manages only 0-Q3 m.p.h. (i.e. about
0-05 k.p.h.). It must have been quite invigorating collecting
all this data. The book comments:

"Most of these measurements are for maximum speeds over·
approximate quarter-mile distances. Exceptions are the lion
and the elephant, whose speeds were clocked in the act of
charging; the wh~ppet, which was timed over a 200-yard course;
the cheetah over a 100-yard distance; man for a i5-yard segment
of a 100-yard run (of 13 0 6 seconds); andth.e black mamba, six
lined race runne~ spider, giant tortoi~e, three-toed sloth,
and garden snail, which were measured over various small dis
tances."

The animals listed include the chicken (9 m.p.h., or 14
k.p.h.). We wonder who timed a chicken over a quarter-mile and
in what circumstances.

* * * *
in regard to young people at an age when memory is

tenacious, imagination vivid and invention quick. At this age
they may profitably occupy themselves with languages and plane
geometry, without thereby subduing that acerbity of minds still
bound to the body which may be called the barbarism of the
intellect. But if they pass on while yet in this immature
stage to the highly subtle studies of metaphysical criticism
or algebra, they become overfine for life in their way of
thinking, and are rendered incapable of any great work.. II

New Science, Giambattista Vico, 1744.
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THE SURPRISE PARTY
Aidan Sudbury, Monash University

In a previous issue of Funotion (Volume 3 Part 3) we
included an excerpt from a play which was built around various
logical paradoxes. It was a version of the notorious
Prediction Paradox which (perhaps) has had a good deal more
serious thought expended on it in philosophical journals than
it has merited. I will restate it in a form more suitable for
logical exploration than that given in the play. The persons
involved are a hotel manager and a guest, Professor Fist.

The manager tells Fist that he will be given a party at
8 p.m. one day next week, and it will be a surprise in the
sense that on the day before the party, he will not know the
date of its occurrence. Fist reasons as follows:

1. If the party were to be held on the last day of the
week (Saturday), then the night before he would be'
in a position to predict its occurrence on the
following day.

2. However he will not, apparently, ever be in such a
position.

Hence:

3. The party cannot be held on Saturday.

4. However, since Saturday is excluded, Friday is not
possible either. For, having excluded Saturday he
'would be in a position on Thursday evening to
predict a Friday party, contrary to the manager's
promise.

Hence:

5. The party will occur before Friday ... etc.

He thus eliminates all available days, but, suppose, in spite
of this, the manager were to give him the party on Wednesday,
then, as promised, Fist could not know this' on Tuesday. How
could the manager achieve the apparently impossible?

What follows is the explanation given by Professor Crispin
Wright and myself in the Australian JoupnaZ of Philosophy of
May 1977. I should point out that there is rarely universal
agreement as to the solution of paradoxes and this is no ex
ception. In fact the norm is universal disagreement, and the'
explanation of why this should be so would probably be the
most important philosophical solution of all.
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Consider a "one-dayT! version of the paradox. Suppose
someone said to you 'I am going to gfve you a party to~morrow,

but you won't know the date of it beforehand', surely, the
only appropriate reaction would be beWilderment, for there is
nothing that can be sensibly deduced from the statement, and
because of this, he can do exactly as he said. You~can't

know the date of the party if you can't believe the only
statement that might have given you the information.

Let us now look at how we eliminated the Saturday as a
possibility in the "one-week" version of the paradox. We
imagined ourselves at the end of Friday wondering whether we
could or could not deduce what would happen the next day.
Our situation by then, however, would be exactly the same as
those who had been given the one-day version of the par~dox,

and we have seen that in that case it is possible for the
person promising the party to do exactly as he said. Thus we
cannot actually eliminate the Saturday as a possibility, and
this is how the manager kept his promise to Fist.

In the play he did indeed give Fist the party at the last
possible moment. 'I left it so late you had no reason to
believe I'd give you the party, and then I could do what I
said' .

[We invite reader's comments on this paradox and solution.
Dr Sudbury's play Language Takes a Holiday is being produced
for radio by the ABC. We are not informed exaJtly when it
will be broadcast~ but readers may like to look out for it.
Eds. ]

00 00 00 00 00 00 00 00

3. 4 + 6
= 5.-2-

4 0 new guess 5.

2. 24 -;- 5 = 4 .. 8.

3. "5 + 4 0 8 4 0 9.2

4. new guess 4 0 9.

1 0 Have a guess.

2 0 Divide the number by the
guess.

3. Average the answer and the
guess.

4. This number becomes a new
"guess".

5. Go back to stage 2, and
repeat the stepso

Stop when your answer is close
enough.

TO FIND SQUARE ROOTS WITHOUT A I KEY

eogo 124
1. guess 4.
20 24.;- 4 = 60

Continue until the
desired accuracy is ob
tained.
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In Function, Vol.2 Part 4, we published a letter from
Dr Scott of the department of Botany, Monash University.
Dr Scott wrote that a cutting, descended from the apple tree
which helped Newton formulate his theory of gravity, is now
established in the grounds of Monash University. Mr G. Smith
has written the following somewhat sceptical letter. The
Editors still hope that the Monash tree is, indeed, descended
from Newton's.

LETTER TO THE EDITORS
from G.C. Smith, Monash University

NEWTON'S APPLE TREE - AND ITS SUPPOSED DESCENDANTS

Not far from where I sit writing this note there is an
apple tree which is said to be a descendant of the tree from
which the fall of an apple inspired Newton to conceive the
theory of gravitatinn.

Isaac Newton told William Stukeley the story about the
apple in 1726. The vital apple fell in the autumn of 1665 or
1666. We therefore can be sure that the garden of Newton's
family estate at Woolsthorpe contained at least one apple tree
in the 1660's. For ease of reference let us call the tree that
bore the inspiring apple No

In 1732 the Woolsthorpe estate was bought by Edmund Turnor;
it is still owned by the Turnor family. Edmund Turnor claimed
that an apple tree then living was N; the tree that he found on
buying the property I shall refer as T (for Turnor). The
question that immediately arises is how certain could Turnor be
that T was the same as N? Over .sixty years had elipsed since
the fall of the apple, and it is therefore not unlikely that N
would have died in this period; even if N had survived, there
might have been other apple trees at Woolsthorpe, and then the
question arises as to the identification of which particular
tree was the one that bore the apple that fell. Apple trees
may survive for more than 60 years but relatively few people do 
so who could have told Turnor 'that was the very tree .. o '? As
far as I know, there is no evidence of the apple story being
told before 1723; so apart from Newton, there is no reason why
anyone should have any knowledge that apples or apple trees were
of interest to make it likely that the story should be passed
on. Perhaps Turnor's identification of T with N was just a
guess.

In 1820 (or in 1814 according to one source) T finally
fell in a gale .. It had had.to be propped up for many years.
If we agree that Twas N this is hardly surprising, as the
tree would be in excess of 120 years old! I am told that
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apple trees can live to th~s age - but owners generally dO not
aim at prolonging the life of fruit trees to such an advanced
age. As Turnor was an aJllateur local hi.storian I th.ink there
can be no doubt that the tree that fell in 1820 wasT;
Edmund Turnor's family valued the association of the Wools
thorpe property with Newton.

So much for the original tree (or trees); now for the
descendants.

At some time - no-one seems to know just when - scions
from T were grafted on to a stock at Lord Brownlow's estate at
Belton which is a few km from Wbolsthorpe. I should explain
here that scions are pieces of twig bearing the fruit buds and
hence transmitting the genetic material of the original tree;

·a stock is the tree which receives the graft. Let us call this
tree and its descendants B. There were trees descending from
the original graft at Belton at least until 1939, for in either
1939 or 1940 scions from a tree at Belton were grafted onto a
tree at the Fruit Research Station at East MaIling. And scions
from the East MaIling tree have been taken to graft upon stocks
at a number of places in the United Kingdom, U.S.A. and
Australia. A picture of one may be found in Colin A. Ronan's
Sir Isaac Newton (International Profiles, 1969). The trees
bear a variety of apple known as Flower of Kent; the apples are
said ~o be pear-shaped.

But are these trees really descended from the original
tree N? The evidence that they are descended from some apple
tree at Woolsthorpe seems to me to be fairly strong. However
I am not convinced that we can be even reasonably sure that
they come from the tree that had the honour of inspiring
Newton. As I have pointed out above the period that elapsed
between 1666 and the 1720's (when the apple story came into
the open) is a long one and probably too long for anyone to
have been able to transmit the evidence. .

MATHEMATICS great, Sir Isaac Newton may have suffered
mercury and lead poisoning as a result of h~s interest in al
chemy, according to a British study.

Recent tests on his hair showed high levels of mercury
and lead.

The metal poisoning is thought to have occurred from 1678
to 1692 when Sir Isaac performed hundreds of experiments in al
chemy - trying to make gold from base metals.

He frequently slept in his laboratory while experiments
were in progress, breathing in toxic fumes.

Th e Sun, 5. 5 . 80·.
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PROBLEM SECTION

Each issue of Function contains a number of problems of
varying levels of difficulty. You. are invited to submit pro
blems, solutions to problems, comments or partial solutions.

Here we begin by printing some comments and solutions.

COMMENT ON PROBLEM 4.2.4.
This problem was, in paraphrase, the following:

Baggage trains used at airports, railway stations, etc.
have a small tractor which pulls a train of 4-wheeled trailers,
each connected to the one in front. The back axle of each
trailer is fixed, and the front axle pivots, being steered by
the towing bar connecting the trailer to the one in front. The
wheelbase has length b, the towing bar length a, and the rear
connection length co How should the dimensions a,b,c be
proportioned so as to make the train follow as nearly as possi
ble the path taken by the tractor?

In the previous issue of Function (Vol.4, Part 5), we gave the

solution a
2 + b 2

= c
2

, which is the correct result to allow
tracking round and round a circleo

Research carried out at Flinders Street -railway station,
however, fails to confirm the result. We have there approxim
ately a = b = 120 em, c = 45 em. Moreover, a little thought
shows a reason for the discrepancy. If we take account of the
width w, we find (approximately) W = 150 cmo Two trucks can
pivot in a tight ci~cle in which the first is at right angles
to the second. The condition for this is a = wj2 + c, ioe.

a > c, which cannot happen if a 2 + b 2 = c 2
0 As reasonable

width is a prerequisite for a usable trolley, the published
soluiion is unfeasibleo We also note that the axles collide

if (at very least) b < ~7 so that b is also subject to limitationo

Our solution is thus impractical, although not, strictly
speaking, incorrect. The Flinders Street trolleys will not
track in a circle, nor is there much point in their doing sOo
They will turn corners of 900 0r more 0 On a 90° turn they track
reasonably exactly. On a 180° turn they don't, as you can
observeo Nor is there any reason in this circumstance whey they
should.

The actual design problem is very difficulto Professor
Tom Morley of Illinois, an engineer turned mathemati~ian, re
marked that the problem was one of those mathematic~lly ill
posed questions engineers have to solve routinely.
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SOLUTION TO PROBLEM 4.3,3.
The problem was to pai.nt the ring-·s'haped (or annular)

region in th.e target sh.own.

(i) Supposing that it is sufficient
information to know the length,
2x, of the chord in the diagram,
what is thB area to be painted?
(No complicated calculations!)

(ii) Prove that 2x is sufficient
information to find the shaded
area.

(i) If the other dimensions are irrelevant, then if we shrink
the inner circle down to zero radius, we just have to find the

area of a full circle with x as radius, i.e. TIX
2 ,

(ii) That the circles' radii are irrelevant
follows by letting the two circles
have radii r,R (r < R). Then the
required area is

2
ITX •

SOLUTION TO PROBLEM 4.4,1.
There are seven persons and seven committees. Each

committee is to have three persons. Can you share the commit
tees out to the people so that each person is on the same num
ber of committees? Does this problem have any connection with
the Seven-Point Geometry article in this issue?

The Seven~Point Geometry in Function, Vol.4, Part 4 cer-
tmnly helps. Looking at the figures on p.20 of that article,
we see that the seven lines each contain 3 points and each
point is on three lines. Thus if our people are called points
and our committees are called lines, we can read off the follow
ing committees: {1,2,3}, {1,4,5},{1,6,7},{2,4,6},{2,5,7},
{3,4,7}, {3,5,6}.

SOLUTION TO PROBLEM 4,4,2.
Determine the continued fractions for 12, 13, III, !23,

and find which numbers equal the continued fractions

(1,3,"'1;3), (1,1,2,2,1,1,2,2)0

The article on Continbed Fractions in Function, VOl04, Part 4
tells you how to solve this questiono 1he answers are:

<1,2,2,2, ... ), 13 < 1,1,2,1,2,1, ... )

lIT < 3,3,6,3,6,3, <> <> • ), 123 = < 4,1,3,1,8,1, 3,1,8 )

(1,3,0> = Hi +A) '" 1·2638,



-9' + I22I
~ (1,1,2,2,1,1,2,2> = 14

SOLUTION TO PROBLEM 404.3.

1 e 7047.
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In a Chinese game, six dice are tossed. Among various
possible outcomes, "two pairs" (e.g. th.e dice' might fall
2,1,5,2,5,3) are rated more h.ighly than "one pair"
(e.g. 2,1,5,6,5,3). What are the probabilities for getting
"two pairs", "one pair"? Do you think the relative ratings
are sensible.?

The probability of two pairs is
(~){n6! 25

66 X2 !X2!
72 .

The probability of one pair is
U)(~)6! 25

66 x 2! 108

Thus two pairs are more common than one pair! [For instance,

in the first answer there are (~) ways of choosing the two num-

bers to be pairs, (~) ways of choosing the two remaining numbers

to be singletons, 6!/(2! x 2!) ways of rearranging the 6 numbers

so obtained. There are 66 total possible outcomes, counting
order as important. Similarly for the second answer.]

We now give some more problems for you to work on. First
we restate an old one.

PROBLEM 3.3.5 RESTATED.

Consider the set {2 n , where 0 ~ n ~ N} - ioe. the first
N + 1 powers of 2. Let PN(a) be the proportion of numbers in

this set whose first digit is a. Find Lim PN(a). Is the
N-+oo

first digit of 2 n more likely to be 7 or 8?

This is an interesting problem which no reader has yet attempt
ed. We would be interested to see computational results, which
lead to an interesting pattern.

PROBLEM 5.1.1.
This one was passed on to us from a Russian problem book.

Three poor woodcutters, stranded in the bitter winter seek
shelter in an abandoned cottage. "I", said the first, "have
5 logs of wood to h.elp keep us warm".' "And I", said the
second, "have 3". "Alas", said the third, "I have no wood, but
I hav? 8 kopeks to repay you for allowing me to share your fire".

How should the 8 kopeks be distributed between the first
two woodcutters?
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PROBLEM 5.1.2.
This problem has generated some controve.rsy, but we print

it an·yway.

A boy, a girl and a dog go for a walk down the road, setting
out together. The boy walks at a brisk 8 kph, while the girl
strolls at a leisurely 5 kph. The dog frisks backwards and for
wards between them at 16 kph. After one hour, where is the dog,
and in what direction is it facing?

PROBLEM 5.1.3.
Suppose a debt of $1000 incurs simPle interest of 10% p.a.

The borrower can repay a maximum of $25 per month. How long
will it take to pay the debt off? Th~s problem is easily re
duced to a simple equation, but here is how some accountants do
it.

First estimate is 100025 40 months.

Interest on $1000 for 40 months

1New principal = $13333 . 1
13333Second estimate is ~ , which rounds up to 54 months.

Interest on $1000 for 54 months = $450.

New principal = $1450.

Third estimate is 145025 58 months.

Interest on $1000 for 58 months = $483~.
o

New principal = $1483~.

114.833Fourth estimate is~ , which rounds up to 60 months.

Interest on $1000 for 60 months = $500.

New principal = $1500.

Fifth estimate is 1~~0 = 60 months.

Thus the answer to the problem is 60 months.

Does this method always work, and if so, why?

PROBLEM 5.1,4. (Submitted by Garnet J. Greenbury, Brisbane.)

Prove that the sum of the squares of any five consecutive
integers is always divisible by five.



" 29

A THERMODYNAMIC PROOF OF AN INEQUALITY

Suppose a"j"b are two positive numbers. Their average or,
more correctly, arithmetic mean is i{a + b). However, for some
purposes, the average is computed differently, as the geometric
mean 1Cib. "Let A be the arithmetic mean and" G the geometric.
A relatively elementary theorem states that A ~ G.

The simplest proof runs as follows. We consider the ex

pression (Ia - 1b)2. This, being a square, cannot be negative.
So

or, if we expand

In other words, A ~ G, as required.

Recently (1978), Dr P.T. Landsberg of the University of
Southampton devised an alternative and startling proof. It
uses thermodynamic rather than mathematical concepts, and so
may be" viewed as an application of Physics to Mathematics
(rather than the reverse - more commonly seen).

Landsberg takes two bodies of equal mass, but at different
temperatures. He supposes that these two are brought into con
tact, but isolated from the outside world. (W~ might, for in
stance, put equal masses of water and ice into a calorimeter or
thermos flask.) Let the temperatures at the start of the ex
periment be a,b.

After a period of time, the two bodies exchange heat and
both reach an equilibrium temperature.. Now, by the first law
of thermodynamics, energy is conserved and, as energy here is
proportional to the temperature, the initial energy is propor
tional to a + b and the final energy to 2c (say} where c is the
equilibrium temperature. Hence a + b = 2c or c = A.

But now we may use the second law of thermodynamics, which
states-that the entropy must increase. (Entropy measures the
degradation in the quality or usefulness of energy.) Here en
tropy is proportional to the logarithm of temperature. The
initial entropy is thus log' a + log b or log abo The

final entropy is 2 log c or log c
2

•

So c 2 ~ ab, or A ;;;::: G.

This "proof" is readily extended to more general cases,
such as

a +b +c~ ra:EiC
3

and so on.
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COMPUTERS CAN PLAY CHESS

[We have had several requests for an article on computer chess
and hope soon to supply one. Meanwhile 3 here i$ some back
ground on the history and present staie of the art. Eds.]

As early as 1769, one Baron von Kempelen claimed to have
constructed a chess-playing automaton. In th.is, however, he
lied - a human was cunningly concealed ins-ide the works of
the "machine". The "machine" claimed many famous opponents,
including Napoleon who lost to it very quickly.

Charles Babbage, who suggested many of the principles of
computing in the co"urse of work on 'his i'analytical engine"
(see Funotion, Vol.3, Part 1), discussed the topic of computer
chess, as rather later did Norbert Wiener in hjs book Cyber
netics. Between 1937 and 1945, one Konrad Zuse began work on
a program and made very considerable progress.

It was, however, Claude Shannon whose work was most in
fluential. He began to address the problem in 1948 and laid
the groundwork for almost all the subsequent advances. A pro
gramme was begun by Alan Turing in 1951, and though never
brought to perfection, wa~ the first to (after a fashion) work.

By 1957, the Los Alamos laboratory in New Mexico had pro
duced a programme that played a simplified version of the game
(there were no bishops;. Nonetheless it took on average 12
minutes per move and was programmed by a "brute force" method
consisting of an exhaustive search two moves (or more accur~te

ly 4 plies - two moves and two replies) deep.

In 1958, the first genuine programme appeared at Massachu
setts Institute of Technology. This also implemented some of
the programming short-cuts that have entered modern programmes.
This led to further theoretical advances.

Meanwhile Soviet programmers had not been inactive.
Dr Mikhail Botvinnik, on and off through this period the world
champion, and an electrical engineer, interested himself in the
problem and made his expertise available to the programmers.
In the west, a number of masters, most notably the ex-world
champion and grandmaster, Dr Max Euwe (a mathematician) involv
ed themselves in the endeavour.

Further developments were made through the sixties by
Alan Kotok and Richard Greenblatt. In 1966, two programmes,
one essentially by Kotok, the other developed by the Soviet
investigators, played a match. The Soviet programme won two
games and drew the remaining two. This gave the search for
improved programmes much publicity. It was felt that
Greenblatt's programme, Mac Hack VI, had it been ready in time,
might have done rather better.

Two years later, the British master Levy bet th.at no pro
gramme could beat him within the next ten years. The stake
was £10,000, th~ deadline 31 August, 1978. Botvinnik's comment
was tl I,' m sorry for his money" 0



31

Th~s spurred a flurry of activity including thB institution
of tournaments. between programme.s. The first of these to be
held at the world level occurred in 1974. It took place in
Stockholm and was won by the Soviet programme KAISSA. The
first of a number o:f related U.S. programmes ·(CHESS 4.0) was
runner-up. CHESS 4.6 reversed this three years later.

Levy and CHESS 4.6 that year played with a win to Levy and
a win (but in a game not played to tournament rules) to CHESS
4.6. Later CHESS 4.6 went on to beat Michael Stean, then
Britain's number two player, and a grandmaster.

In the following 'year, Levy won his bet by beating CHESS
4.7 with a score of 3i - 1i. Last year, the world champion,
Anatoly Karpov played 25 computers simultaneously. Only one
managed to ach~eve a winning position against him and even
this one subsequently lost.

Currently the best programmes (BELLE and CHESS 4.9) play at
a very high level. Levels of play are assessed by an elaborate
rating system. On this system, BELLE rates at somewhat above
2000, which puts it ahead of all but about 10-15 of Australian
players, but a long way behind Karpov who rates at nearly 2700.

A related development has been the production of small
single-purpose home computers. Several are commercially avail
able in Australia and these play at a level of about 1000.
(The earlier models were much worse.) A couple of years ago,
one lost all its games when entered in the Tasmanian junior
championship. Any regular club player can beat them with
relative ease.

Recently a former Australian champion, Fred Flatow, review
ed one for the publication Chess in AustraZia (known affection
ately to its devotees as C.I.A.). He noted that it played end
games very badly but had good tactical "skill" in some situa
tions. To beat such a programme, exchange material and win
the endgame. (The current versions are still incapable of mat
ing with a queen advantage against a lone king.) This method
of play is boring, but invariably successful. For an interest
ing game, play an opening that is unfamiliar or inferior and
make tactical complications.

The topic may seem to be a trivial one, but it is related
to the development of what is termed "artificial intelligence".
Furthermore, the financial rewards are not inconsiderable 
there is still money to be made in the entertainment industry.

THE LITERAL MEANING

Mathematicians, like lawyers, interpret statements literally
and take care to phrase them in such a way as to avoid misunder-"
standings. Overleaf Mike and Brian Morearty (Year lO, Mt Tamilmas
H.S., California) offer their literal interpretations of two
familiar instructions.
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