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The first two articles i.n this issue were originally
presented as part of the Monash Schools' Mathematics
Lecture Series. John Stillwell spoke on 4th May, 1979, and
Malcolm Clark on 11th Apr~l, 1980. We realise that country
students cannot attend the lectures, and we hope that, by
reproducing the articles in Function, we are making amends to
some extent.

Another article by a Monash mathematician, Hans Lausch,
indicates that Australian aborigines have strict rules about
family relationships. These rules are of quite considerable
mathematical interest.

THE FRONT COVER

Phil Greetham kindly provided our Front Cover illust
ration for this issue, and for the two previous issues. He
is head of the mathematics department at Boronia Technical
School, and is also currently enrolled as a mathematics and
computer science student at Caulfield Institute of Technology.
He originally trained as an applied chemist, and then taught
chemistry, until he suddenly found a strong interest in
mathematics! His article on curve stitching in this issue
explains the front cover diagram, and several other such
figures.
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WHY MATHEMATICS IS DIFFICULT
John Stillwell

Monas4 University
At one time or another most of us have had a teacher

who tried to persuade us that mathematics was easy. We were
told that mathematics has only a few basic concepts, a few
basic facts, and everything follows by a few principles of
logic. Some have gone so far a's to say that ,the subject is
suited only to feeble or lazy intellects, incapable of
storing the large amounts of information required for subjects
like history, 'languages or chemistry.

So why do we all find mathematics difficult?

The answer, I believe, lies in a curious one-sidedness
about mathematical knowledge. Solutions of problems are
hard to find, but once found they are often easy to check.
This is what makes it possible for a teacher or a textbook
writer, who knows the so~ution, to 'make a problem look easy.
I can illustrate this by a simple mathematical ques,tion: what
are the factors of 99208417133957?

To all of you this is unknown and difficult, and you
could only find the factors by systematic search, perhaps
taking weeks. But to the poser of the problem (me) it is
known that

9918851 x 10002007 99208417133957

(because I picked these numbers out of a table of prim~s and
multiplied them) and I can claim that this fact follows by
multiplication, which any numerate child can do! The, point
is, the problem is easy only when the answer is known, because
no one knows an easy way to factorize large numbers. At
present, factorization is an art which depends on clever
guessing as much as brute computation.

The one-sidedness of the factorization problem may only
be apparent; perhaps it will be overcome by new discoveries
which make quick factoring possible. ' However, research in
logic has shown a genuine, unavoidable one-sidedness in cert
ain mathematical problems, and evidence is accumulating that
problems as simple-looking as factorization may indeed be
difficult, in the sense that the only way to solve them in
reasonable time is by clever guessing.

The next section deals with a form of one-sidedness
that is known to exist in mathematics.

Recursively enumerable sets

Most sets of whole numbers that we meet in mathematics
can be generated by mechanical rules. Here are four examples,
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in order of increasing complexity,

( I ) { po sit i v e in t e-ger'8 } {1, 2,3., 4, 5~ 6, ••• }

Rule: start wi~h 1 and keep adding 1.

( 2 ) { eve n n umbe r s} = {2, 4 , 6 , 8 , 1 0 , ...}

Rule: start with 2 and keep adding 2.

(3) {prime numbers} = {2, 3, 5, 7, 11, 13, 17, 19, ... }

Rule: for each number x in turn from ~ ~ 4 try
dividing x by all smaller numbers, and if none
divide it, put x in the set.

2 2 '
(4) {xly - yx - x = 1 for some y}

Rule? Here we have to be careful. We cannot say: for each
number x from 1, 2, 3, 4, ... try y = 1, 2, 3, 4, and see

whether y2 _ yx - x 2 1; because this will never get us past
x = 2. We will unsuccessfully try y = 1, 2, 3, 4, ... without
getting y2 - 2y - 4 = 1. To avoid getting stuck on any value
of x we must try only finitely many y for a given x'before
going back to smaller x values that are not yet settled. One
method is to divide the computation into stages, at stage s
trying all values y ~ s for each x ~ s. Then if x ~ Y and

y 2 _ yx _ x 2 = 1 we will discover this fact at stage y, and
then put x in the set.

The set in example (4) differs from the previous ones
in that we don't get its members in increasing order,. and
hence it is not clear how to find the x's not in the set.

Actually, enough is known about the equation y2 - yx - x 2
= 1

to enable us to do this, but only by another method. The
importance of the method given is that it can be used for any
algebraic equation which we may know nothing about, even one
with a series of variables Y1' .. ~'Ym in place of y. We make

this our last and most general example of set generation.

(5) {x Ip (x, Yl' ... ym) = 0 for s-ome positive integers Yl' ... Ym}

where p is a polynomial with integer coefficients.

Rule: at stage s try all values x, Y1' ... JYm ~s and see

whether P(x'Y1' ... ,Ym) = o. If so, put x in the set.

A set which can be generated by a mechanical rule is
called recursively enumerable. This idea can be made precise
in several equivalent ways. One way is to take a general
purpose computer and let the rules for set generation be
programs. A list of all programs can itself be generated,
as P

1
, P 2J P

3
, ... say. This gives us the ability to find

any member of any recursively enumerable set: if Sn is the

set generated by Pn , and x E Sn' then we shall find x by
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simply running Pn long enough, However, this knowledge of

the Sn is one-sided - we do not know how to find their non

members. In the next section we shall prove that there is
no mechanical way to do this, even for one specific
recursively enumerable set.

From now on we abbreviate "recursively enumerable" to
"r.e.".

The diagonal argument

We shall now use a classic argument of George Cantor
(1845-1918), known as the "diagonal argument". Cantor
points out that for any list of sets 8

1
, 8 2, 8 3, ... we can

define a set D not on the list by

D = {n\n ~ 8 n } .

Then D differs from each 8 n - if n E 8 n then n 4 D, if

n $ 8n then nED - and hence is not on the list. (The
construction of D is called "diagonal" because if we make an
infinite table with rows 8 1,82,83, ... and columns 1,2,3 ... ,

putting a mark in the (i,j) position if i E 8j, then to build
D we work just on the diagonal of the table, for example,

x

Figure 1.

Figure 1 shows 1 E 81~ 3 E 8
3

, and we make D different from

these sets at these positions.)

Thus when Sl~ 8 2 ,83, ... are the r.e. sets] D is a specific

non-r.e. set, and hence there is no mechanical rule for
listing its members. Now for the surprise: D is the
complement of an r.e. set! The complement of D is

Vi = {nln E Sn}

and we can list the members of D I in ~tages: at stage s run
each of the programs P

1
,· •• , Ps for s steps, and if P

n
is

found to list n,· put n in V '.
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This is conclusive proof that there are flone~sided"

sets: the members of V' can be listed mechanically, but not
the members of its complement, It follows that there is no
mechanical rule to decide, for given n, whether n E V " If
there were a rule to do thi.s, applying it to 1, 2., 3, in
turn and keeping the numbers for which the answer was "no"
would be a mechanical listing of V.

Various forms of this result were found by ~he logicians
Godel, Church and Turing in the 1930's, but they had little
impact on mathematics at the time, because the set V seemed to
be of no mathematical interest. The picture has changed as
more mathematical definitions of r.e. sets became available,
especially since 1970 when the Russian mathematician
Matiasevich found a definition in terms of equations.

Definition of r.e. sets by polynomial equations

Ourexample (5) showed that if P(x'Y1' .. "Ym) is a

polynomial with integer coefficients then

{xlp(x'Y 1""'Ym) = 0 for som~ positive integers Yl""'Ym}

is an r.e. set. Matiasevich's theorem is that any r.e. set
can be defined in this way. This amazing result shows that
recursive enumerability is really as elementary an idea as
polynomial equations, yet at the same time it explains why
some equations are hard to solve. In particular, there is a
polynomial pI such that

V' = {xlp' (x,Y 1,···, Ym) =0 for some positive integers Y1,·· .Ym}

and hence the non-solutions x of p' (x,Y 1 , .. ,Ym) = 0 are just

the elements of the non-r.e. set D. It follows that there
is nO mechanical rule to decide which values x are solutions
of the equation and which are not since such a rule would
enable us to generate D.

If you are wonderinf' why I don't write down the poly
nomial p' which defines V , it is because the simplest one
known has degree 4 and 153 variables, and its discoverers
didn't think it was pretty enough to publish.

Feasibility

The fact that some quite natural sets are not r.e. shows
that there are many things we can never hope to k..now. This~

can be shrugged off with remarks like "who wants to solve 4tn
degree equations anyway?", but worse is' to come. Many of the
things we thought we ,could do are actually not feasible to
carry out. Processes which are easy to describe can take so
long to execute that the universe will collapse (or maybe,
repeat itself) before we get an answer. The factorization
problem mentioned at the beginning of this article gives an
example. Nothing could be simpler than dividing a number n
by 2, 3, 4, .. . ,n - 1 to see whether n has factors. It is also
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easy to wri te down a number of, say, 5 0 digits, But then
there are about 10 5 0 numbers less than n and there is no way
it is feasible to divide by them all, even using the fastest
computers.

In the past decade a new discipline of complexity theory
has developed, which attempts to measure the complexity of
mathematical problems. We assume that a "problem" consists of
infinitely many instances or "questions" so that a method of
solution is required, rather than, say, looking up answers in
"tables. Then a problem is intrinsically complex if any method
of solution takes time which is long in comparison with the
length of questions.

Only a few problems seem to be intrinsically simple.
For example, addition. The time taken to add two n digit
numbers is proportional to n if one uses the usual method:
write the numbers one above the other and scan from right to
left, doing the carries from memory of a fixed table of addition
facts ("7 plus 9 gives 6 carry 1" etc.). Since each carry is
absorbed immediately, the scan can be made at constant speed
(provided one's memory contains all addition facts for
o~ .1 ~ ••• ~ 9!) and hence total time is proportional to n. This
'is fast, since we produce the answer virtually as soon as we
have read the question. Multiplication takes a little longer
with the usual method, of order n 2 for n digit numbers a, b,
since the products of a by all the n digi ts of b have to be
worked out. Time n 2 can also be regarded as feasible for any
n'digit numbers we would bother to write down.

In general, if each instance of a problem can be solved
in time bounded by a polynomial function of the "length" of
the instance then we say we have a polynomial time solution and
that the problem belongs to class P. Length is usually
measured by the number of symbols, thus in the case of addition
and multiplication it is the number of digits in the numbers,
and we have just shown that addition can be done in time prop
ortional to length, multiplication in time proportional to
(length)2. Thus we have polynomial time solutions to these
problems, and addition and multiplication are in class P.

In contrast, just listing all numbers less than an n digit
number takes about 10n steps, or exponential time. Expon~ntial

functions like 10n,or even 2n , grow much faster than any
polynomial, becoming astronomical in size even for small values
like n = 50~ hence exponential time solutions are not regarded
as feasible. Complexity theory has been able to show, by
diagonal arguments, that certain (solvable) problems in logic
can be solved only in exponential time. We do not know yet
whether this is true of the factorization problem. It does
seem reasonable to expect, however, that complexity theory will
eventually find some natural mathematical problems which require
exponential time for their solution. In the next section some
candidates for this position are discussed.

NP-complete problems

The apparent one-sidedness of the factorization problem
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can be expressed in terms of complexity; a systematic search
of ~ll potential. factors takes exponential time, but a correct
guess takes only polynomial time to check (since division of
numbers with ~ n digits takes around n 2 steps). Thus the
time taken to solve the problem drops from exponential to
polynomial if only we allow the "non-deterministic" step of a
correct guess. There are many other problems like this; here
are two of them.

(1) Knapsack problem. Given a set Y = {Yl'" .,Y
m

} of

numbers, and a number x, is there a subset of Y whose members
sum to x? (Think of x as the capacity of a knapsack, and
Y 1,·. "Ym as sizes of certain objects. We want to know

whether objects can be selected so as to exactly fill the sack.)
There are 2m subsets of Y (why?), so trying them all takes
exponential time; but if we correctly guess the right numbers
among Y 1 , •. "Ym we can quickly add them and check that the

total is x.

(2) Travelling salesman problem. A salesman wants to
visit n cities C

1
, •• "C

n
using the shortest possible route.

Given the distance between each pair of cities and a number x,
can we decide whether there is a route of total length ~ x
which visits all cities? In general the number of routes
grows exponentially with n, but again the problem is easy if a
correct guess is made first. We have only to add the lengths
ot the steps between successive cities on the route guessed,
and check that it comes to ~x.

The interesting feature of "good guessing" in these
problems is that it is one-sided. If there is a solution,
then it can be quickly confirmed by a correct guess. But if
there is no solution, guessing doesn't seem to help. For
example, in the event that we have an instance of the knapsack
problem with no solution, there seems to be no alternative but
to check all 2m subsets of {Y 1, ... ,Ym} and sho~ that none of
them sum to x.

Problems whose solutions can be obtained in polynomial
time assuming correct guesses are called NP problems. (N for
non-deterministic, P for polynomial). It is conjectured that
some NP problems can be solved in polynomial time only non
deterministically, i.e. by making correct guesses.----This is
called the "NP =1= P conjecture". Strong candidates in support
of NP =1= P are a class of problems, including knapsack and
travelling salesman, called NP-complete. It has been proved
that if anyone of these problems can be solved in polynomial
time without guessing, then so can all NP problems. The
NP-complete class includes hundreds of well-known problems about
equations, paths in networks, map colo~ring, scheduling and
time-tabling. Since many people have worked on these problems
without success, the NP =1= P question has become one of the
major unsolved problems in mathematics.
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If it turns out to be true that NP * P, this will not only
help explain why mathematics is difficult, it will also
confirm that imagination and guessing are essential in solving
difficult problems.

STONEHENGE AND ANCIENT EGYPT:
THE MATHEMATICS OF
RADIOCARBON DATING

Malcolm Clark
Monash University

Howald is old? For all of us, the passage of time is
inexorable, and yet intangible. It is little wonder that
events which occurred long before recorded history have held a
peculiar fascination. Consider, for example, Stonehenge, the
huge and enigmatic monument of great sarsen stones on the
Salisbury Plain in southern Britain. Who built it? Why,
how and when was it built?

The dating of events in man's past is the central problem
facing archaeologists and prehistorians. Prior to 1950,
almost all archaeological dating was done on the basis Df the
similarity, or otherwise, of items (such as bronze spearheads,
fragments of pottery, etc.) found at various archaeological
sites. Radiocarbon dating, developed in 1950 by W.F. Libby,
provided for the first time a method of dating which was
independent of archaeological assumptions, apparently
sufficiently accurate, and widely applicable.

Radiocarbon, orcarbon-14, is produced in the upper
atmosphere by the action of cosmic-ray-produced neutrons on

N14 atoms. This resulting radioactive isotope of carbon
behaves chemically like the other non-radioactive isotopes,

C12 and C13 , and so in particular, combines with oxygen to
form carbon dioxide. After relatively rapid mixing in the
atmosphere) this (radioactive) carbon dioxide becomes absorbed
by plants and animals. While the plant or animal remains
alive, any carbon-l4 which decays away is presumed to be
replaced by "fresh 11 carbon-14 from the atmosphere. Under

such equilibrium conditions, the concentration of C14 at
any particular time in the past is assumed to have been the
same in all living organisms (and in the atmosphere).

However, once an organism dies, its radiocarbon is no
longer replaced but decays exponentially, at a known rate.
Suppose now that we have a sample from an archaeological site,
say a piece of charcoal. This sample was once a living
organism (and so would have absorbed carbon-14), but it died
when burnt say .J: years ago. In this context, the
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exponential decay of carbon-14 may be represented by the
equation

A
m (1)

where A(x) denotes the concentration of carbon-14 in the
sample when it died x years ago, and Am the concentration
in the sample now. The parameter A is related to T, the
half-life of carbon-14, by the equation A = (1n2)/T. For
any sample, its carbon-14 concentration at the enq of any
interval of T years is exactly half its concentration at the
beginning of that time-interval. For carbon-14, T = 5730
years, so that A ~ 0.000121.

For most archaeological samples, both x, its "true"
age, and A(x), its initial carbon-14 concentration, are
unknown. In order to proceed, Libby made the crucial
assumption that the global concentration of carbon-14 in the
biosphere has remained constant over at least the last 60,000
years (corresponding to about 10 half-lives). In other words,
A(x) ~ AO' the concentration of carbon-14 i~ living matter now.
Under this assumption, the radiocarbon age, y, of our sample
is found by solving the equation

giving

Am

y 1 1n
I [~:]

(2)

(3)

Libby was well aware that the accuracy of radiocarbon
dating rested heavily on the validity of the latter assumption.
Clearly, the only way to check such assumptions was to obtain
radiocarbon dates from a series of samples whose age is known
independently by other means. This was done, in the first
instance, using objects from certain archaeological sites in
Egypt and the Middle East, such as pieces of wood, flax or
linen from inside the tombs of the Pharoahs. The ages of
such samples could be determined to within about 100 years
from the Egyptian historical calendar. The agreement between
these historical dates and their corresponding radiocarbon
dates was good, but not exact. Perfect agreement was not
expected since~ as we shall see later, radiocarbon dates
contain unavoidable random errors of measurement, and for these
samples, the historical dates were not k~own exactly either.

Tree-ring dating provided the opportunity for a more
precise and extensive comparison, especially when applied
to samples of bristlecone pine. These trees, growing at an
altitude of 3000 metres in California, live for up to 4,600
years. Samples of wood from any living bristlecone pine tree
can be dated directly, with virtually no error, simply by
counting annual growth rings, working backwards from the
outermost ring. Furthermore, it has been possible to date
fragments of bristlecone pine which are even older than the
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oldest living tree, by looking at patterns in the ring-widths.
By matching ring-width patterns from successively older
trees, Ferguson (of the University of Arizona) has built up a
tree-ring chronology of bristlecone pine extending back 8200
years, with at most 2 years error.

This is a sample of bristlecone
pine, about 6000 years old.
The sample represents about 200
years of growth, with about 3
rings per mm.

Over 1000 tree-ring-dated samples of bristlecone pine
have now been radiocarbon-dated as well. These results show
that for samples up to 3000 years old, the radiocarbon dates
and tree-ring dates agree quite well. But beyond gOOO years
ago, the radiocarbon dates diverge progressively from the
corresponding tree-ring dat0s,the former being systematically
too young (i.e. more recent) by up to 700 years. (fee
Figure 1.)
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Since the tree-ring dates are correct to within 2 years
or so, what has gone wrong? If we substitute equation (1)
in equation (3) and simplify, we obtain the equation

(4)

defining the theoretical relationship between radiocarbon
dates y, tree-ring dates or calenda~ ages x, and past levels
of carbon-14 in the atmosphere, A(x). The :measurements on
the bristlecone pine samples demonstrate unequivocally that,
for x > 3000~ Y < x. This implies, from (4), that

tn(A~X))>O, or equivalently, A(x) > A
O

.
o

(See Figure 2.) Thus, contrary to Libby's original assump
tion, the atmospheric concentration of carbon-14 has not
remained constant. The relatively high concentration from
'8000 to 3000 years ago could have been caused by changes in
the earth's magnetic field, the earth's climate, or solar
activity. Indeed, the bristlecone pine data is now of
equal interest to geophysicists as to archaeologists.
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Present

In practice, to obtain the radiocarbon date of a sample,
its current carbon-14 concentration, Am' is measured indirectl~

by counting the number of C14 atoms which disintegrate over a
given time interval. Each disintegration results in the
emission of a beta-particle. It turns out that the number,
N(tJ, of particles emitted per gram of carbon in an interval
of t minutes, is a random variable ha~ing a Poisson
distribution with parameter Amt. In particular, the mean
value of N(t) is Amt, which is also the variance of N(t).

Now the natural estimate of A is
m

N(tJN = --t-- = average rate of emission of S-particles.

It then follows that N, our estimate of Am' is also a

random variable, with mean value Am and variance given by

1 x Variance of N(tJ
~

1

~
A tm

A
m
t

Thus, in principle, the variance of N can be made arbitrarily
small simply by counting for a sufficiently long time. In
practice, radiocarbon laboratories cannot afford to devote a
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very long time to any particular sample. Because of the
random nature of radioactive disintegrations, all radi6carbon
dates are subject to unavoidable random errors of measurement,
with a resulting standard deviation of between 40 and 120
years for most samples.

To the archaeologist, it does not matter why radiocarbon
dates are not always correct~ All that he needs is a
correction curve or table giving the empirical relationship
between radiocarbon dates and tree-ring or calendar dates.
The derivation of such a curve is essentially a statistical
problem, since one must take acco~nt of the likely measurement
errors in the radiocarbon dates, as specified by their
standard deviations. Several alternative correction curves
have been derived from the bristlecone pine data; these
curves all show the same general trend but differ in their
fine structure.

There have been numerous theories and speculations
concerning the origin and purpose of Stonehenge. Some
archaeologists have suggested that it was built by Bronze-Age
people of the so-called Wessex culture, whose artifacts bear
striking similarities to those found at Mycenae (in Greece) .
It has even been suggested that Stonehenge was built by
craftsmen and builders from Mycenae, in which case Stonehenge
would have been built around 1500 B.C., or 3480 years ago.
This Mycenean connection appeared to be confirmed with the
discovery in 1953 of stone carvings at Stonehenge similar to
those at Mycenae. In 1959, the first radiocarbon sample
from Stonehenge (an antler pick) yielded an uncorrected
radiocarbon age of 3700 years, with a standard deviation of
150 years, and therefore not inconsistent with the hypothesis
of Mycenean influence. However, the corrected radiocarbon
age, after correction against the bristlecone pine data
(see Figure 1), is 4000 years (2020 B.C.), some 500 years
before Mycenae. Mycenean infltience in the building of
Stonehenge is clearly impossible.

Stonehenge is just one example of the archaeological
implications of the correction curve for radiocarbon dates.
In general, the revised radiocarbon dates show that the
Neolithic and Bronze Age cultures in western and northern
Europe are consistently older than the corresponding Aegean
and Near Eastern cultures from which, according to the
traditional "diffusion theory" of archaeology, they were
assumed to be derived. Prehistorians can no longer regard
the Near East as the ultimate source "f European ci\'iliL:at i'Jl1.

Further reading:

1. C. Renfrew, "Ancient Europe is older than we thought".
National Geographic~ lQ~, 615-623, November 1977.

2. C. Renfrew, Before Civilisation: The Radiocarbon
Revolution and Prehistoric Europe~ Penguin Books, 1976.
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CURVE STITCHING AND SEW ON
Po Greetham

Boronia Technical School

Since its birth, Function magazine has been decorated a
number of times with curve-stitching designs. (See Vol. I
Pt. 5, Vol. 2, Parts 1, 2, 4, Vol 3 Pt. 3.) The beauty of
many of them is undeniable. The purpose of this article is
to consider them a little more closely.

Curve stitching seems to have been the creation of
Mary Everest Boole(1832-19l6). The life and work of Mary
Boole have been paled by the brilliance of her better-known
husband, George. She was, however, a fascinating and
intelligent person and Bell l is perhaps a little unkind when
he claims that George was "subconsciously striving for the
social respectability that he once thought a knowledge of
Greek could confer", when he married her. With ideas often
beyond her time, she wrote on topics including early learning
experience, mathematics education, love, the occult and
vegetarianism. For a list of her books, see reference 2.

In contrast to her husband's humble birth, Mary's family
was well-connected. One uncle was Sir George Everest the
geographer, who had a mountain named after him. He was the
first to survey Mt. Everest. Her father was a friend of
Herschel and Babbage, founders of the Analytical Society which
had a profound effect upon the development of mathematics in
England. An aunt was professor of classics at Cork
University, the uniyersity in which George was later to hold
the chair of mathematics. Mary herself held a position at
Queen's College in London.

Mary's interest in curve-stitching is related to her
ideas on child learning and development. Whilst being a
believer that young children should not be cramm~d with
concepts and work too advanced for them lest it fallon
"infertile soil", she advocated that they should have creati ve,
thought-provoking, .and int'eresting experiences so that later
in life when ideas are more directly presented the seeds of
understanding should have taken root from the childhood "play"
activities. It was against this background that curve
stitching was developed.

At the risk of too-lengthy a quotation, she writes of her
own early experience of this art: "In my young days cards of
different shapes were sold in pairs, in fancy shops, for making
needle-books and pin-cushions. The cards were intended to be
painted on; and there was a row of holes round the edge by
which twin cards were to be sewn together. As I could not
pairit, it got somehow suggested to me that I might decorate
the cards by lacing silk threads across the blank spaces by
means of holes. When I was tired of so lacing that the
threads crossed in the centre and covered the whole card, it
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occurred to me to vary the amusement by passing the thread
from each hole to one not exactly opposite it, thus leaving
a space in the middle. I can now feel the delight with
which I discovered that the little blank space so left in the
middle of the card was bounded by a symmetrical curve made up
of tiny bits of each of my straight silk lines, and that I
could modify it by altering the distance of the down-stitch
from the up-stitch immediately preceding." Early examples
of the cards developed by Mary were called "Boole Curve-Sewing
Cards". Mary introduced· the subject to her friend
Edith Somervell who consequently wrote a book entitled "A
Rhythmic Approach to Mathematics", published in 1906, which
became a popular text on what was to become known as curve~

stitching. The growth in popularity over the past decade or
so has often left curve-stitching as an art-form with little
mathematics, so now let us tip the scales towards mathematics
a little.

Basically, curve stitching consists of forming straight
line segments by sewing thread between pairs of holes. If
the holes are suitably located, the line segments are tangents
to a smooth curve, and they outline the shape of that curve.
We discuss several examples below.

1. The Parabola.

In Figure 1, S is a given point, the 'tIfocus" , and the
"directrix" is' a gi ven line.

M

a

Directrix

x

Figure 1.

The set of all points, P,
whose cartesian equation,
is

such that PS =PM~ forms a parabola
choosing coordinates as in Figure 1,

It is easily checked that any line, other than the y-axis, which
is tangent to the parabola·must have an equation of the form
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y :=: mx + £.
m

(1 )

Conversely, if we draw lines whose equation is (1),
varying m from line to line, we will get a set of tangents
to the parabola, and the shape of the parabola will be
discernible from its tangents. In Figure 2, equally spaced

Figure 2.

points along two intersecting lines have been joined. It is
an interesting exercise to show that, by suitably choosing an
origin and axes, the stitched lines all have equations of the
form (1), which explains why the lines appear to bound a
parabolic region. The tangent lines are said to "envelop"
the parabola.

2. The Cardioid.

Just as a parabolic envelope is based upon the
intersection of two straight lines, the cardioid is based
on the circle.

Several approaches may be taken. -The cardioid may be
constructed by drawing a base circle, dividing it into any
number of equal arcs, and joining point 1 to 2-, 2 to 4-, etc.,
more generally x to 2x, as shown in Figure 3.

Another construction is shown in Figure 4. Again a base
circle is constructed and divided into an arbitrary number of
arcs. A tangent is drawn to each point, and a perpendicular
to each tangent drawn to a point 0 on the circle. The locus
of the intersections of the perpendiculars with the tangents is
a cardioid. If we use this last construction, we may derive
the equation of the cardioid as follows. We refer to Figure 5.
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Figure 4.

o

Figure 5.

8=0

Let Q be a point on the ·cardioid, R be a point on the base
circle, centre C, radius a, e be the angle QOC, and OQ = r.
Then OQ = PQ + OP. Now OP = acos8 and PQ = CR = a~ so that

OQ = r = a(l + cos8)~

which is the polar equ~tion of a cardioid.

3. The Astroid.

The astroid (or four-cusp hypocycloid), see Figure 6, is
sometimes described as the envelope of a line segment of
fixed length which slides between two perpendicular lines.
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For example, think of a ladder as it slides down a wall,

Figure 6.

We shall discuss the cartesian equation of the astroid,
by using the notation of Figure 7. ·We shall consider only
the fi~st quadrant part of the curve. Let RQ be a line

y

Q

o R

Figure 7.

x

segment of unit length. Its equation is

y - (tan 8)x + sin 8. (2)
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Consider now the curve given parametrically by

y (3 )

so that its cartesian equation is

2/3 2/3 = '1 .x + y

The curve has a derivative got by differentiating (3),

(4)

~
dx

dy/de
dx/de

3 sin
2

ecos e
- 3 cos

2
esine

sin e
cos e

and hence the tangent to the curve at the point

(cos 3e3 sin 3 eJ has equation

which may be simplified to agree with (2). Hence the tangent
lines (2) envelop 'the curve with equation (4), an astroid.

4. Straight Lines.

In the above situations, the curves have been generated
by a set of straight lines. Although it would be more
difficult to stitch, it is possible for a pair of straight
lines to be generated by a family of circles. In ,the figure
on the front cover the set of circles

(x
1 2
2"a

generates the straight lines y = t x as a varies as a
parameter.

Of course the preceding examples are only a few of the
myriad of designs possible, but they are further limited in
that they are in two dimensions only. From its inception,
curve stitching in more dimensions has been considered.

Quoting again from Mary Boole: "The use of the single
sewing cards is to provide children in the kindergarten with
the means of finding out the exact nature of the relation
between one dimension and two.

There is another set of sewing cards which is made by
laying two cards side by side on the table and pasting a
tape over the crack between them. This tape forms a hinge.
You can lay one card flat and stand the other edgeways
upright, and lace patterns between them from one to the other.
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The use of this part of the method is to provide girls.
[Mary taught in an all~girls school] in the higher forms
with a means of learning the relation between two dimensions
and three.

There is another set of models, the use of which is to
provide people who have left school with a means of learning
the relation between three dimensions and four.

The use of the books which are signed George Bople or
Mary Everest Boole is to provide reasonable people, who have
learned the logic of algebra conscientiously, with a means·
of teaching themselves the relations between n dimensions and
n + 1 dimensions, whatever number n may be."

(Maybe a kind reader would consider writing a future
article on the models for the relation of three dimensions to
four, or n to n + 1 !),

In briefly considering three-dimensional curve
stitching I tegret that our two-dimensional paper is unable
to accurately illustrate the excellent models which are
possible. However, if we extrapolate the concept of curve
stitching slightly, to include rigid or semi-rigid materials
forming the envelope, then we are. all able to see some
excellent examples in architecture.
One current example is the spire to
be constructed on the Melbourne Arts
Centre.

In a recent interview with
"The Age" 3 the Architect, Sir Roy
Grounds, described something of
its creation. The open-Iattice
constructed version of the
single-layered space frame was
chosen in order that the wind
load did not crush the buildings
below. In a remarkable insight
to the beauty, simplicity and
humble birth of the spire, Sir Roy
constructed the final concept model at home with string and
pieces of wood. Following this "the drawings, hyperbolic
paraboloids, had to be done by computer because almost every
dimension was different." (How far curve-stitching has come
from Mary Boole's kindergarten children!). And in reference
to the beauty we feel for these forms: "I kept thinking of the
Hudson River Bridge, and spider webs that I have seen time and
time again with dew on them in the early morning".

A hyperbolic paraboloid is formed when a parabola is
moved so that its vertex travels along another parabola
(Figure 8). The surface so formed has the property that
its intersection with a horizontal plane is a hyperbola; hence
its name. A number of hyperbolic paraboloids can be pieced
together to make attractive surfaces for roofs, spires, domes
etc. especially when constructed by the relatively new
reticulated space frame method. This allows for a thin, light
surface requiring relatively little support and is therefore



Figure 8.

more aesthetically pleasing than the older concrete
construction.

Curve-stitching, therefore, is a topic which ranges
from an interesting and educational activity for pre-school
children to the most sophisticated forms of draughting and
engineering possible today. At any point in this spectrum
there is a curve, or a surface, the investigation of which
is stimulating, interesting and always aesthetically
pleasing. I leave this for the reader to explore.
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WHO WE·RE THE FIRST
MATHEMATICIANS IN THE
SOUTHERN HEMISPHERE ?

Hans Lausch
Monash University

I still recall vividly a conversation that took place
11 years ago between myself and a young Aboriginal woman in
Coober Pedy where I found myself stranded for five days with
motor damage. While we were talking, a number of people
entered or left the room, and on numerous occasions she pointed
out to me that this or that person was her brother or her
sister. To take her remarks literally would have meant to
accept that she had some 30 brothers and sisters between the
ages of 7 and 70. Was she just telling a story? Or is
generous adoption a feature of indigenous societies? Or was
she a missionary's victim, being told that we were all
brothers and sisters? As it happens, there is a much more
plausible answer to this question: applied algebra!

Let us first consider some of our own possible ancestors:
the Romans, or the Anglosaxons and other Teutonic tribes.
The Roman grandfather was Itavuslt, the Roman uncle "avunculus",
which incidentally is the origin of our term "uncle It . "Unc'le"
thus was "little grandfather". Nephews as well as grandsons
were called Itneposlt. . The Anglosaxons had similar "confusions"
with their relatives. In 18th century German, "Ohm" meant
grandfather, "Oheim" uncle. A number of North American
Indians still address grandfathers and uncles in the same way.
Is there an explanation for this phenomenon?

In modern Western society· it is commonly assumed that
marriage is entirely a matter of free choice between individ
uals. There are, however, a number of constraints aimed at
the avoidance of what is known as "incest": father-daughter
marriages, mother-son marriages, and brother-sister marriages
are outlawed, marriages .between first cousins, uncle and niece,
aunt and nephew are at least discouraged by various versions
of Christianity. The comparatively large number of eligible
individuals in our society facilitates the choice of spouses
from outside the group.of closest relatives. This situation
changes drastically if a given society is small, e.g. consists
of a few hundred individuals. Incest prohibition in both
its narrower and wider meaning will lead to more rigid
regulations and constraints on the choice of spouses. A
very common solution is to divide the society into subsections
which, for brevity's sake, we will henceforward call clans,
and establish certain "contracts" between the clans pertaining
to marriage and procreation. To be more specific, let S be
the set of all clans, say S = {a, B, Y, ... }, and let us
subject S to the following "laws":
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1. There is a permanent rule fixing the single clan among
whos~ women the men of a given clan must find their
wives. In other words, there is a rule or "wife function"
W which assigns to each clan a a clan Weal -from which
~-men have to take their wives.

2. Men from two different clans cannot marry women of the
same clan. Note that without this rule there would be
at least one clan whose females could not find husbands.
Hence if ~ * B, then W(a) * W(B).

3. All children of a couple are assigned to a single clan,
uniquely determined by the clans of their mother and their
father. This means that there is a rule or "child
function" C which assigns to each clan a. a clan C(a) to
which the children of an a-man belong.

4. Children whose fathers are in different clans must them
selves be in different clans. Were this not so, then
within one generation there would be at least one clan
which could not regenerate itself by way of newcomers,
i.e. newborn children. Hence if a * B, then C(a) * C(B).

5 . (i) A man can never marry a woman of his own clan. Other
wise his own sister would be an eligible s~ouse 
incest! Hence W(a) ¢ a for all clans a..

(ii) W(a) ¢ C(a) for all clans ~: this prohibits father
daughter marriages.

(iii) Cea) ¢ a for all clans a.; this effectively prohibits
mother-son marriages. For if mother-son marriages
were possible, then mother would be eligible to both
father and 'son which by "law" 2 would mean that
father and son belong to the' same clan, ~ say; i.e.
Ceo.) = ~, violating the constraint we started with.

Before introducing our sixth and final law, let us briefly
reflect upon the functions Wand C. Laws 2 and 4 tell us
that they must be so-called l-l-funotions, and since there is
only a finite number of clans, both Wand C have the effect of
permuting clans. An example which comes from some
Aboriginal societies, will illustrate this:
Let S = {a, B, y, o} be a 4-clan society. A solid arrow
labelled Wpointing from a to S will mean S =~ W(a), a broken
arrow labellpd r pointing from a to y will m~an Y Cen), etc.
The "picture ll 0 f 1.h is society then ; '-=

a ;.; B
• .~~~l •

"
W I,

"
I,

C" C e 'I C
: I I,
,t W t l

'. .. .1

y" W 0
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We may table the two functions WJ C as follows:

x W(x) C(x)
a S y

S a 0

y 0 a

0 y B

We observe that all four clans appear in both the W- and the
C-column, but in different arrangements, i.e. permuted. If
we wish to find the clan to which a given clan gives wives
away, we have to look for the given clan in the W-column and
then cross over to the x-column, e.g. clan S gives its females
to clan a since W(a) = B. This allows us to define a

"husband function" w- l : W-1CS) = a means W(a) = B. Similarly,

using C, we may define a "father"function C- l by: C-l(y) = a

if and only if CCa) = y. It is obviously true for all clans x

that W-1CW(x)) = WCW-1Cx)) = x, and C-1CC(x)) = C(C-1Cx)).

Brackets are a little bit cumbersome, and also unnecessary, so

we may write W- 1Wx for w- 1CWCx)), etc. Row can we find the
clans of other relatives, e.g. mother's brother's daughter's
clan for an a-individual? Mother's clan is father's wife's

clan, in short WC-la. This is also mother's brother's 6lan.

Mother's brother's daughter's clan is then CWc-la, which is B
in our example. We see that any string consisting of

the functions WJ w- 1
J CJ c- l designates a relative, and vice

versa, any relative by blood or marriage can be described by
such a string. This leads us to ou"r last "law":

6. Whether two people who are related by marriage and
descent links are in the same clan depends only on the
kind of relationship, not on the clan either one belongs
to. E.g. if it happens that my son's son is in my own
clan, then every male's son's son will be in the same clan
as this male. In other words, if for two relatives'
strings R ,S it is true that Ra = So, for one clan a, then
Rx = Sx for all clans x. This means that designating a
clan amounts to designating a specified class of relatives.
In our ~xample, x = CCx ~ WWx for all clans x, i.e.
sisters, a male's son's daughter (CC), and a wife's
brother's wife (WW) will all belong to the same clan, and
to a member of this clan it will not be absurd to refer to
all" these individuals by the same term, e .,g. "sister".
Remember now.the Aboriginal woman's story.

We have associated with each relative a certain string R

consisting of functions WJ · w- 1
J .C, C- l . If S is another string
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designating another relative, then by simply applying R
first, and then S we can evaluate for each clan x a new
clan, namely the S-relatives of the R-relatives of x, SRx;
e.g. if R = CW (wife's brother's children), S = W-1C (a male's
daughter's husband), then SRx = W- 1CCWx (wife's brother's son's
daughter's husband of members of x), a rather intriguing
relationship. For convenience we· may invent the "empty"
string I which stands for a blank, i.e. Ix = x, for all
c1~ns x. With this notation it -is now easy to show that

(1) (RS)T = R(ST), for any three strings R, S, T.

(2) RI = IR = R, for all strings R.

(3) for each string R there is a string R- 1 such that

RR- 1 = R- 1 R I;

e.g. if R = WC- 1w- 1 we take R- 1 WCw- 1 , then RR- 1
=

WC- 1 (W- 1W)CW- 1 . Since w-1Wx x lx~ we can simplify

("cancel out") the expression to RR- 1 = W(C- 1 C)W- 1
; again

C- 1C cancels out, thus RR- 1 = Ww- 1
= I, again by

cancellation. Similarly we argue for R- 1R = I.

Statements (1), (2), (3) are nowadays known as the axioms
of group theory, a mathematical subject that was initiated by
the French mathematician Galois (1810-1832) about whom there
is an article in another FUNCTION-issue (Vol 3, Part 2,
April 1979). The graphic presentation of groups, i.e. the

, way we depicted our clan system as a dots-and-arrow pattern
dates back to the British mathematician Cayley (1821-1895).
A group is called commutative (or abelian) if for any two

, -1 -1
elements R~ S of the group (strings of W~ W ~ C~ C in our
model), RS = SR is true. Our 4-clan society is such an
example (check!). But in a number of other Australian
societies this fails to be so. Why? Suppose RS = SR for
any two strings. Then, in particular, WC = CW and if we

put c- 1 on the right of each side of the equation, we obtain

WCC- 1 = cwc- 1 . As cc- 1 can be deleted, we have W = cwc- 1 .

We remember that for any clan x, cwc- 1 x is the clan of
mother's brother's daughter, a certain type of first cousin.
Our equation tells us that this clan coincides with Wx, the
"wife-givers" of x. In other words, a certain type of first
cousin is an eligible wife. To some societies this is not
objectionable, to others it borders on outr~ght incest.

The mathematical theory of groups produces a number of
important theorems that can be applied to ou~ societies.
Here is one which when applied reads as follows: Suppose
a society is such that

(1) any clan member can be a relative of any other clan
member, i.e. for any two clans a, B there is a string
R such that B = Ra;



26

(2) the number of clans in the society is either a prime
number, or the square ofa prime number.

Then a mother's brother's daughter is an eligible spouse.

In a sense the Aborigines were the first mathematicians
of the southern hemisphere: they laid down formal rules which
nowadays are most adequately described in mathematical terms.
It is quite appropriate to note that modern Australian
mathematics has a strong bias towards group theory. Many
new and exciting results in group theory originate from
Australia.

Finally, here is one society which you yourself may
analyse. It is the model of the Arunta society of Central
Australia whose most famous member was the painter Albert
Namatjira. The model presented here is the one as conceived
by the Aruntas themselves. It has eight clans. Anthrop- 1

ologists found, by analysing their kinship terms, that the
society is more accurately described by a l6-clan model, each
clan splitting into two subclans. Here we stick to the
Aboriginal conception, and also present the original clan
names instead of the symbols a, S, y ...
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FURTHER READING

Robin Fox, Kinship and Marriage. Penguin Books.

This paperback which has been reprinted a number of
times informs the reader about the social use of
kinship and marriage laws within societies and studies
a wide variety of systems from allover the world.
Easy to read for the non-expert.

Harrison C. White, An Anatomy of Kinship. Prentice-Hall, 1963.

A book for the anthropologist with little mathematical
background, develops basic group theoretical ideas for
the purpose of analysing societies and compares
models with actual observations.

Claude Levi-Strauss, EZementary Structures of Kinship.
Presses Universitaires de France, 1949. Not too long
ago, the author of this book gave a series of lectures
on ABC radio on structural anthropology. He is one of
the world's leading anthropologists who through his
"structural" approach has taken anthropology one step
closer to becoming an exact science: his ideas facilitate
mathematical model building. In the appendix of his
book, the famous French mathematician Andre Weil uses
group theory the first time for the study of marriage
systems.

Kemeny, Snell and Thompson, Introduction to Finite
Mathematics. Prentice-Hall, 1960. This book offers

a range of interesting applications of group theory;
kinship systems are amongst them. The six "laws"
for clans of this article are a variation of the axioms
mentioned in this book.

PROBLEM -SECTION

MORE ON PROBLEM 1.2.6.
This was perhaps our oest problem so far (depending on

your taste !). Henry Finucan (University of Queensland) has
drawn our attention to its being published in Scientific
American, December 1979 p.20. There, it'was slightly
modified and the solution given was consequently wrong!
Martin Gardner promised to write at length on the problem
in a later Scientific American, but we haven't seen that
article yet. Incidentally, our version of the problem was
told to us by Hans Lausch, who has an article in this issue
on another matter. He heard it in Vienna.
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SOLUTION TO PROBLEM 3.5.2

MANIKATO AND THE TV CAMERA

by M.A.B. Deakin and C.B. Fandry, Monash University.

This problem is based on Problem 25, Section ID(a) of
Fitzpatrick and Galbraith's text for Victorian HSC Applied
Mathematics. p Q

< 5 •

maximised. (The dot indicates differ
to t, the time).

A TV camera at D
focusses on a horse
entering the straight
at P, with speed u,
and accelerating along
it at constant acceler
ation a. OP has
length i. If Q is a
subsequent position of
the horse L 0 PQ is a
right angle and L POQ
is 6 (radians). If
PQ = s, find the v~lue

of s for-which 9 is
entiation with respect

We have

1
i

I
o

8

S == Q, tan 6, (1)

so that

i e sec2 6

We also have

2
· sQ, 6(1+ 2 ),

Q,
(2)

~2 u 2 + 2as. (3)

From Equations (2), (3), we find:

(4)

o It would now be possible to write s = ut + tat 2 , find
S ~s a function of t, differentiate and set ~ = 0 and so
on. This makes the problem very complicated. A much better
method is to observe that if ~ is maximised, then ~2 is also
maximised. .

Thus, use Equation (4) directly and set

de 2
dS-- = o.

This gives, after some simplification,

(5 )
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(6)

so that

s =
_u2 + lu4 + 3a2 i 2

3a ( 7)

the required answer.

The problem, as stated by Fitzpatrick and Galbraith, refers
to a car rather than a horse, but it gives values for u (13.2

ms- l ) and a (1.1 ms-2 ) more appropriate to a good racehorse
(say Manikato). The given value of i is 60 m, so that we
may use Equation (7) to deduce the given answer (lO.35m). An
extension of the problem might ask for the maximum value ofe. An explicit formula could be given here, but is clumsy. It
is best to calculate s from Equation (7) and then use Equation
(4) to find max 8 = 0.22 radius per second (2.1 rev.fmin).

It is best to solve the problem generally, as we have done
here, and insert numerical values at the end. For one thing,
this allows a number of. checks on the working. The easiest of
these is to compute the' required s in the case a = 0.
Equation (7) is inapplicable directly, but Equation (6) gives
s = 0, which is clearly correct on geometrical grounds.

We have shown this problem to a number of mathematicians.
Interestingly, many different techniques were used, some of
them very elegant. The solution presented above, however, is
probably the simplest derivation of Equation (7).

MORE· ON PROBLEM 3.4.1.
The solution given in the last issue assumed that in

travelling through traffic lights, it was sufficient to start
across the intersection whenever the lights are green. But
if you are cautious and wise, you should also travel at
sufficient speed to cross during the green and amber phases,
and not get caught with the lights turning red. If you can
use all the green and amber period to cross, your speed should

b 'I 20 Z6GO 2 4 k h f th . t ·t· .e at east 28+2 x 1000 =. .p.. or e Sl ua lon glven

in the problem. If you start out at the end of the green
20 3600

phase, your speed should be at least 2 x 1000 = 36 k.p.h.
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SOLUTION TO PROBLEM 3.5.3,
k k k k

Set Sk(n) ~ 1 + 2 + 3 +... + n .

Sl(n)? S2(n)? S3(n)?

When does n divide

It can be shown, with some difficulty, that 2 2
Sl(n) = n(n+1)/2~ 8 2 (n) = n(n+1)(2n+l)/6 and S3(n) = n (n+l) /4.

Thu~ Sl(n) is divisible by n if (n+1)/2 is an integer, i.e. if

n is odd. S2(n) is divisible by n if (n+l)(2n+l) is div

isible by 2 x 3. But this requires that n be odd, otherwise
neither n + 1 nor 2n +1 is divisibte by 2. Further, n must
not be divisible by 3 so that one of n + 1 or 2n + 1 is
divisible by 3. S3(n) will be divisible by n if n is divisible

by 4 or if n is odd.

The same condition as for S3(n) ensures that Sk(n) is
divisible by n for k odd, k > 3. Sk(n) is divisible by n~

for k even, if n is not divisible by 2,3 or any other prime
p for which p - 1 divides k. These general results are
considerably harder to prove, though.

SOLUTION TO PROBLEM 3.5.4.

If the number of kilometres in a mile is given approx
imately as 8/5~ this presumably means that the simpler ratios

3/2 and 5/3 are less accurate. Thus ~~ is closer than either

45 50 46 530 or 30 ~ so that the true ratio is between -yO- = 1.55 and

49 .
30'= 1.63 . (It is about 1.609~ in fact.)

.SOLUTION TO PROBLEM 4.1.1.

But YCB and BAX are
Thus we need y and'

Find conditions under which XY
and OY are both rational.

Following M. & J. Hirshorn,
Austn. Math. Soc. Gazette 1979
Vol 6 No 2, let AX = x and
CY = y. We need OY = Y + 1 and

XY = !(x+1) 2 + (y+1) 2 to be rational.
similar triangles so that y/l = l/x.

1(1 + 1)2 + (y + 1)2 to be rational.
y

n integers, then we need

o

Now if

A

m
y = n ~ m and

x
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to be rational. This will be the case only if m2 + n 2 is a
222perfect square, i.e. m + n = r for some integer r.

This means the triangle OYX has sides

OY = Y _,I- 1 = (m+n) m OX = 1 + I = (m+n)n Xy = (m+n) ~
mn ~ y ~~ mn

in the ratios m: n: r,' that is, proportional to a "Pythagorean

triad" of integ;ers such that m2 + n 2
= r 2 . This is the

required condition.

SOLUTION TO PROBLEM 4.1.2.
Find the positive numbers x~ y~ z such that xy = z~

xz = y and yz = x. Multiplying both sides of the first two
equations yields xyxz = zy~ and using the third, this
reduces to 'xxx = x. The only positive solution is x = 1
(and similarly y = z = 1). The problem also asked whether
it was possible to find six different positive numbers ..such
that each is the product of two of the others. We leave
this open for readers to attempt.

SOLUTION TO PROBLEM 4.1.3.

A point p~ from which
a given square subtends an 'P
angle of 90°, has a locus
consisting of four semicircles,
as in the diagram. An
angle in a semicircle is
a right angle.

SOLUTION TO PROBLEM 4.1.4.
In choosing a lady to be a wife, out of three pres~nted

in random order, a man would have probability 1/3 of getting
the best wife if he chose the first, or the second, or the
third regardless of the other ladies. But if he ignores the
first, chooses the second if she is better than the first, but
otherwise chooses the third, the man has probability l/G of
getting the best wife. This is therefore the best strategy.
The reason is that, if we label the wives g (good)~ b(better),
and B (best), there are 6 orders of presentation possible:
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(1) gbB

(5) Bgb

(2) gBb

(6) Bbg

(3) bgB (4) bBg

In cases (2), (3), and (4), the strategy yields him the best
wife. They have probability 3/6 = 1/2.

PROBLEM 4.3.1. (Submitted by Colin Wright 1 Monash Science
student,)

Given a cube, is it possible to cut a hole in it through
which a larger cube can be passed?

PROBLEM 4.3.2.
In connection with the article on curve stitching in

this issue, the following questions arise.

(i) Prove equation (1) on p.16, and its applicability
to Figure 2.

(ii) Show that the lines y = ± x are tangents to the

circles (x_a)2 + y2 = ~ a
2 as a varies. [See front cover.]

(iii) The mid-point of a ladder sliding down a wall does
not trace out an astroid. What is its curve?

(iv) The ladder in Figure 6 on p.l8 has constant
length and so the curve-stitching to produce the astroid is
difficult. One cannot just sew stitches from equally spaced
points on each axis. What curve wouZd be obtained by
joining equally-spaced points?

PROBLEM 4.3.3.
You wish to paint the shaded region in the target.

(i) Supposing that it is sufficient
information to know the length,
2x, of the chord in the diagram,
what is the area to be painted?
(No complicated calculations~)

(ii) Prove that 2x is sufficient
information to find the shaded
area.
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