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W~th this issue, Function.enters its third year of publication.
As it is a journal fo~ senior school students, we aim to make our
material interesting for thi~ set ot readers. three long articles
of general interest appear here: Charles Johnson's a6count of the
pioneering history of the computer, a biography of one of
Australia's -greatest women mathematicians, and a further instal
ment in Peter Finch's historical studies in statistics.

The solution of difficult and elegant problems is an
important part of all branches of mathematics. This issue con
tains a further set of problems which we hope will interest and
involve our readers. We also print solutions to·some of the
earlier problems, but leave some of the more interesting ones
open in the hope that readers will send us their answers.

The editors welcome correspondence from readers, particularly
school student readers.· Please send us solutions to problems,
letters, articles, book reviews or general comments. Feedback
from qur readers helps us to make Function a more attractive and
readable magazine. Please let us know what you think of it, and
send us your suggestions for articles you would like to read,
topics you would like covered and problems you would like solved.

It is our policy to give precedence to articles by school
students and many such articles have already appeared. It is
up to you, our readers, to help us maintain .this policy.
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THE FRONT COVER

M.A.B. Deakin. Monash University

Many elegant and unexpected theorems may be proved to hold
for the triangle. A number of these are shown on the diagram
opposite. If ABC is any triangle, we may draw perpendiculars
from each vertex to its opposite side. These perpendiculars meet
the sides in the points D~E,F. Our first theorem is that the
perpendiculars all intersect at a common point H.

If A',B',C' are the mid-points of the sides, and perpendiculars
are constructed at these points, these lines all meet at a common
point o. Now let N be the po~nt half-way between O,H.

With centre Nand raditis ND, draw a circle. Th~s circle
passes through D,E,F and also through A',B',C'. It·also passes
through points Na,Nb,Nc,the mid-p6intsof AH~BH,CH respectively.
It is thus referred to as the nine-point circle.

With centre 0 and radius OA, draw a circle. This passes
through the points A,B", C; and is referred to as the circumcirc le.
The radius of the circumcircle is exactly twice that of the
nine-point circle.

Exactly four circles (the equieirc~es) may be drawn such
that AB,BC,CA are tangents to all four. One (the inscribed
circle) lies within the triangle; the others (escribed eircles)
lie outside it. Each of these circles is tangent to the nine
point circle.

You may care to try to prove some of these results. They
hold for all triangles, even though, if ABC has an obtuse angle,
the point H lies outside the triangle. Some special cases lead
to interesting situations. What happens if ABC is an equi
lateral or right-angled triangle?

The history of these theorems is an interesting story, too.
The fact that AD, BE and CF all pass through the common point
is one of the more difficult of the classical (ancient Greek)
results. The discovery that the perpendiculars at A',B',C' all
pass through the common point 0 is also classical, and rather
easier to prove.

The question of who gets the credit for the discovery of the
nine-point circle is a more difficult one. It is sometimes
attributed to L. Euler (1707 - 1783), one of mathematics' super
stars. In this case, however, the evidence is against him. There
seem to have been several independent discoveries, but all rather
later. The earliest documented account of the theorem is due to
an otherwise obscure Englishman, Benjamin Bev~n, who published
the result in 1804, but the proof was not forthcoming until a
later paper by Butterworth (1806).



3

Many modern authors attribute the result to two French
geometers, Brianchon and Poncelet,whose discov~ry is almost
certainly'independent, but quite certainly later (1821). The
tangency of the nine-point circle to the four equicircles was
first established by the German geometer Feuerbach in 1822, but
no strictly geometric proof appeared until 1850.

It may well be that further theorems await discovery.
Geometry was taught till some 30 years ago in our schools, and
some syllabuses included the above theorems. Recently, several
eminent mathematicians, pre-eminently the French geometer,
Rene Thorn, have suggested that geometry should be reinstated
into school syllabuses, at the expense of some of the more
abstract, symbolic components.

What do our readers think?

O~ly those topics which have'a quality of "play" have
e~uca~10nal value, and of all such games, Euclidean geometry,
w1th 1tS constant references to underlying intuitively understood
fundamentals, is the least gratuitous and the richest in meaning.

Rene Thorn.
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BABBAGE' AND THE ,ORIGINS OF
COMPUTERS

C. H. J. ,Johnson, C.S.I.R.O. Divi~ion of
Chemical Physics

The programmable pocket calculator which is now so readily
available is an immediate desce~dantof the modern large scale
computer with its very much greater computing power. This in turn
has its origins in the mechanical calculators of the last century
and indeed in those of earlier centuries. The idea of using a
train of gear wheels, linked so that each time one wheel completes
a revolution, the next wheel turns so as to record the "carry" of
one unit, is very old and appears in the writings of Heron of
Alexandria in the first century A.D. Howeve,,;r , it was not until
the early seventeenth century that the idea 'of.using such a gear
train to construct an adding machine first appeared. Pascal
(1642) developed an adding machine for accounting work but the
first successful calculator that could add, subtract, multiply
and divide, seems to have been built by Leibnitz in 1695. These
early machines were not mechanically reliable, but as technology
improved more and better machines appeared, although commercially
successful calculators did not appear until about the middle of
the nineteenth century when the business world created a demand
for such machines.

Until effective desk calculators became available, all large
calculations were done by hand using logarithms for multiplications.
In particular, calculations in astronomy were done this way, a
prime example being J.C. Adams's mathematical discovery of the
planet Neptune in 1845. It seems obvious to us now that machines
could be made to do this labour but the first man to investigate
this possibility seriously was Charles Babbage who in 1821 designed
what he called a "difference engine" which consisted of a set of
linked add~ng mechanisms, capable of generating successive values
of an algebraic function by the method nf fin~te differences t .
After considerable effort he built a small machine that used only
first and second order differences t and which clearly demonstrated

tconsider the values Y = f<x) of the function f defined on some
interval [0,1], say. 'Divide the domain [0,1] up into n equal

- ! - .intervals by the points X o = 0, xl - n' ... , x n - 1, so that

Xi - x i _
l

= ~, for i= 1,2, ... ,n. Write Yi = f(x i ), for

i =. l,2, ... ,n. Then we define the first differences of f, corres
ponding to this subdivision of [0,1] as the differences Yi - Yi-l'

for i = 1,2, ... ,n. We write ~Yi for Yi - Yi-l. The second

differences of f are denoted by ~2y. and are defined by
1"

~2y. = ~y. _ ~y. 1; and so on for third differences, etc. The
1" 1" 1,,- '

method of finite differenc?s referred to here is a method of
approximating the value of a function from a knowledge of its
first, second,etc., differences. If the function is a polynomial
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the feasibility of his ideas. Babbage invented his machines at a
time when precision mechanical engineering was not of a suffic
iently high standard to make the elaborate machinery he needed,
so that he was faced at all times with the double problem not only
of designing his machinery but also of constructing the tools for
making it. It is perhaps not surprising, then, that attempts to
make a full-scale difference engine did not succeed at the·time.
Babbage also designed a program-controlled mechanical machine
that would perform an extended sequence of arbitrary arithmetic
operations and print out the results. This was his "Analytical
Engine". This machine was never built although parts of it were
made eventually.. A very great deal of Babbage's .scheme for the
analytical engine is now implemented in terms of modern tech
nology and Charles Babbage is really the originator of the
computer as we know it today. Babbage's failure to achieve any
real success was due both to the inadequacies of the technology
of the day and to the general lack of appreciation of what he was
trying to do - he was just too far ahead of his time.

Babbage's earliest recollections of his original idea for
making an automatic computer are contained in his autobiography
"Passages from the Life of a Philosopher" where he first mentions
the possibility of computing tables of logarithms by machinery.
This was about 1812 but he did not begin serious work until
around 1820 when his ideas took on a more definite form. He
observes:

"I considered that a m~chine to execute the more isolated
operations of arithmetic would be of comparatively little value,
unless it were very easily set to do its work, and unless it
executed not only accurately, but with great rapidity, whatever
it was required to do."

He then goes on to describe the way in which tables might be
constructed using the method of finite differences. Thus,

"On the other hand, the method of differences supplied a
general principle by which all Tables might be computed through
limited intervals, by one uniform process. Again, the method of
differences required the use of mechanism for Addition only."

He adds that the machine must be able to set up the tables in
type ready for printing.

In this way Charles Babbage conceived the idea of a mechanical
calculator and then designed his difference engine which would
perform his calculations automatically. This was all very new and
the mathematical method ~ finite differences ~ was one that had
never been used before in a mechanical calculator. Of course, the
method only applie$ to functions which behave locally as polynom
ials, and Babbage was well aware of this. With his .model difference
engine Babbage was able to comp~te tables of squares, triangular

then it can be calculated directly from its differences. Indeed a
function is a polynomi~l of degree k if and only if its (k + l)-th
differences are zero whatever .subdivision into equal intervals of
the domain is made. The method of finite differences effectively
approximates a function by a polynomial of appropriate degree.
[For ~urther information the reader can consult Volume II of
Durell and Rob~on's Advanced Algebra, Chapter X.]



6

numbers, and successive values 9~ the polynomial x 2 + x + 41, a
quadratic function whos-e ;£irs.t thirty.....nine values are all prime.
numbers. (See Funeti"on Volume 1, Problem 5.4 and its solution
in Volume 2, Part 3.) In his work with computing machines
Babbage was always concerned that the time for basic operations
should be successively reduced. Indeed, he constantly pointed
out that there is little point in constructing a machine unless
it performs calculations very much more rapidly than a human
calculator. In a letter to Humphrey Davey, Babbage comments on
the calculation of tables of logarithms and sines to be computed
by order of the French government, computations .to twenty
significant figures over a range that made a total of eight
million digits, and says that with a difference engine working
up to sixth differences, less than a dozen operators would be
needed, as opposed to the French requirement of ninety-six, and
furthermore, the dozen would get the correct answers.

Let us now consider the mathematical principle of the
difference engine. The-machine Babbage actually constructed
worked with second differences and so solves the equ~tion

~2Yn a, where a is a constant. The genera7 solution is

!an 2 + an + b, where a and b are a~bitrary constants. If now YO
and Yl be given, so that ~yo can be calculated, and hence a and

b can be given unique values, the whole sequence of values of y
follows immediately,- as shown in the figure where a table of
squares is constructed. Note that the figure illustrates the
case for which a = b = 0 and a = 2.

The great advantage of the method of finite differences is
that only addition is required, and further, not only can the
tabular values be computed very rapidly, but the solution can be
checked at any stage~ with the virtual guar~ntee that if the
current result is correct, so also are all the previous ones.
As far as the construction of tables. was concerned, all functions
like log, tan and sin, can be approximated locally by polynomials
of sufficiently high degree, so that if a polynomial of the mth
degree is required, then we must use up the mth differences.
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Babbage's first difference engine was such a success that the
Royal Astronomical Society gave him a gold medal and the
Chancellor of the Exchequer agreed that the difference engine
in its general form was worthy of Government support. In 1823
work began on the construction of the difference engine and con
tinued steadily for four year~. However, by 1827 expenses. were
far greater than anticipated and work virtually ceased. Govern
ments changed and the project foundered, because, as the Earl of
Rosse said in his presidential address to the Royal Society in
1854, "there was no tangible evidence of immediate profit". A
final irony - in 1834 a Stockholm printer named Sheutz heard of
Babbage's engine and produced a simpler version. In 1864 the
British Government bought a copy of the Sheutz machine for com
puting life contingency tables.

Almost as soon as he started to build his difference engine,
Babbage became dissatisfied with its limitations, perceiving
that "mechanism" could be used to solve very much more general
problems. He developed mechanisms for multiplication and division,
and saw that mechanism could provide a means not only for perform
ing a sequence of elementary operations but also for controlling
this sequence. He was thus led to the Analytical Engine, a c9m
puting machine whose computational processes were to be implement
ed entirely in mechanical terms. In his concept of a computing
machine Babbage not only far outpaced the ideas of his contempor
aries but also the technology of his time and so the history of
the analytical engine is rather briefer than that of the
difference engine. Despite all his efforts - and encouragement
from other eminent .~athematicians of the day - the analytical
engine was never anywhere near completed, although several frag
ments were completed long after his death. As with the difference
engine, Babbage published no systematic account of its principle
and working. His paper "On the Mathematical Powers of the Cal
culating Engine", published at the 'end of 1837 describes the
machine in very general terms~ Some account appears in his
autobiograppy and more detailed accounts are given in
L.F. Menebraea's "Sketch of the Analytical Engine" and translated
into English, with copious notes added, by Ada Augusta King, Lady
Lovelace, Lord Byron's daughter. These notes provide the most
detailed account of the mathematical workings of the Analytical
Engine available. The account of how Babbage came to the idea
of the analytical engine is given by his son H.P. Babbage. "The
idea of the analytical engine arose thus - When the fragment of
the difference engine now in the museum was put together early in
1833, it was found that, as had been before anticipated, it
possessed powers beyond those for which it was intended, and some
of these could be, and in fact were, demonstrated with this
fragment. It is evident that by interposing a few connecting
wheels, the column of the result can be made to influence the last
difference, or any other ,part of the machine in several ways.
Following out this train of thought, he first proposed to arrange
the axes (i.e. shafts) of the Difference Engine circularly, so
that the Result column should be near the last difference, and
thus easily~ithin reach of it. He called this arrangement 'the
machine eating its own tail' (and is in fact a form of different
ial.analyser). But this soon led to the idea of controlling the
machine by entirely independent means, and making· it perform not
only addition, but all the processes of arithmetic at will in
any order and as many times as required."
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The design of the analytical eng!ne was that !t should con
sist of a store in which numbers could be set up and held in
counters (registers)., some thou.sand in all, each c,apable of
holding a fifty digit number, a mill or central processor, in
which arithmetic operations were to be carried out on numbers
taken from the store and a control unit for determining the
sequence of operations. The control of the machine was to be
carried out by means of punched cards, rather like those that
were then used for the control of Jacquard looms in making
elaborate laces. Plungers passing through holes in the cards
were to operate mechanisms for bringing numbers from the store,
initiating arithmetic operations and so on. There were to be
several types of control cards. First, the variable cards which
specified which numbers (variables) were to be taken into the mill
and the register to which the result was to be transferred. Second,
the operation cards which specified the particular operation to be
performed. Each variable which resided in the store was given a
name, a letter, and these appeared on the variable cards. It
follows, that each "instruction" requires three "addresses" for
its operation, so in modern terms, Babbage's machine may be con
sidered a three-address machine. For a give~ sequendeof
arithmetic operations, the corresponding setV~f insiructioncards
constituted a formula and at any later time the operation'of a
given set of cards could be repeated, so recalculating the
formula, with possibly different values of the variables. That
is, the analytical engine was to possess a library.

There arose the question of what the machine would do, if in
the midst of algebraic operations, it was required to perform log
arithmic or trigonometric operations. These functions were to be
provided by tables set on punched cards - the table cards - these
having been computed by the engine and "would therefore be correct".
A computing' facility in the store was to provide interpolated
values. If the machine wanted a tabular number, a logarithm, for
example, then it would ring a bell and stop itself. On this, an
attendant would look at an indicator and find that the log of
2303 was required. He would then place the appropriate card in
the machine, which would inspect the argument punched on the card
to see that it was the required one. If not it would ring a louder
bell than before and stop, otherwise it would proceed. Babbage
was very concerned that the number of variables, operations and
numerical constants used by the engine should be without limit and
said that he had "replaced infinity in space by infinity in time".
He was very conscious of working with finite means.

One of the important elements of Babbage's design of a com
puter was that the machine should be capable of "judgement", so
that in the course of a calculation when two or more courses
presented themselves, the machine should be able to select the
appropriate one, especially when the proper course to be adopted
could not be known in advance. Babbage illustrated this "Judge
ment" facilit'y by discussing an algorithm for finding the real
zeros of a polynomial of arbitrarily high degree. First, the
number at-real zeros is known from an application of Sturm's
theorem* and from this, starting at a number great~er than the

*See Advanced AZgebra, Volume II, Chapter XIII, referred to in the
previous footnote.
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largest zero, a process of succe~siye subtabulation will serve to
locate each zero. The passage through a zero is readily ascertain
ed by observing the cha~g~ in sign .inthevalue of the polynomial
and this was to be done by detecting the carry in the 'highest digit
in the register receiving the value, that is, by observing over
flow. This effect can be made to work a lever which can cause a
change in the course of events~

Perhaps, it is not surprising that Babbage's Analytical
Engine was never built - he was much too early. Babbage's machines
were entirely mechanical - electrical relays were invented by
Henry around 1835 but were not commercially available until ve.ry
much later. However, Babbage was at all times aware of the
limitations of his machines and, in particular, of making the
speed as great as possible. For the Analytical Engine, he
reckoned on a maximum speed for the moving parts to be 40 feet/
seoond and this implied, with proper carriage control, sixty
additions or subtractions per minute (and that for 50'digits
numbers) but only one multiplication or division in that time.

The first real implementation of Babbage's ideas came in
1937 when Howard Aiken planned an automatic electromechanical
calculating machine. Working with IBM - if only Babbage had
worked for the s~me firm - he produced the Automatic Sequen,ce .
Controlled Calculator, controlled by paper tape input. Aiken in
his reports makes explicit reference to Babbage, but, curiously
enough, Aiken does not seem to have known about "judgement",
and his Calculator did not have this facility. However, Aiken's
requirements for a digital calculator were very similar to
Babbagets, and perhaps rather more ambitious. The machine had to
be able to do arithmetic, it must be able to recognize the sign
of a number and the equality of two numbers, and it must also be
capable of involution and evolution. In fact Aiken's "mill" was
very similar to Babbage's. In going further, Aiken added sine
and logarithm functions, all worked by plugboards i so there was
an element of parallelism. The machines that followed used
binary arithmetic rather than decimal, they used stored programs
like modern computers, they were faster. Charles Babbage was the
first man to consider seriously automatic computing implemented in
terms of mechanism - what could he have done with the modern
mechanism which enables one to put an "analytical engine" in a
coat pocket?

If he didn't say the things that he said to me that he did
say, and his behaviour was not what he said that it was, the
situation being entirely different, it is conceivable that a
different conclusion would come from that material.

A psychiatr~st testifying at the
trial of Jack Ruby.

To find a lucid geometric representation for your non-geometric
problem could be an important step toward the solution.

How to Solve It, G. Polya, 1957.
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HANNA NEUMANN

adapted from an obituary by M.F. Newman*

Hanna Neumann was born in Berlin on 12 February, 1914, the
youngest of three children of Hermann and Katharina von Caemmerer.
Her father was killed in the first days of the 1914-18 war and as
a result the family lived impecuniously on a war pension which had
to be supplemented by other earnings. Already at the age of
thirteen Hanna contributed to the family income by coaching
younger school children~ By the time she reached the final years
at school she was coaching up to fifteen periods a week. . In 1922,
after two years in .a private school, she entered a girls' grammar
school, from where she graduated early in 1932.

Her early hobby was botany. She collected plant specimens and
built up voluminous herbaria for about four years until at about
the age of fourteen this interest was superseded by her interest
in mathematics. .

Hanna entered the University of Berlin in 1932. Her first
year was full of excitement. The lectures in Mathematics and
Physics were delivered by leaders in each field. As well as
these formal courses she took full advantage of the German
tradition of attending lectures on a wide variety of topics. ·She
listened to Kohler, one of the originators of Gestalt theory, on
Psychology; to the well known Jesuit Guardini on Dante; and to
Wolff, the leading academic lawyer in Germany, on Common Law (his
popularity was such that he always had overflow audiences in the
biggest lecture theatre. in Berlin).

In this first year at university besides the excitement of
study and the inevitable .coaching there were, because lectures
started early (8.00 a.m. and sometimes in summer 7.00 a.m.) and
finished late, coffee breaks. Hanna soon found herself in a
group of people, all senior to her - some already with doctorates 
many! of whom were later to make their mark in mathematical circles.
It ihcluded her future husband, Bernhard Neumann,who later became
Profkssor of Mathematics at the Australian National University.

I

! The friendship between Hanna and Bernhard started in January
1933 and quickly blossomed into something special. In August 1933
Ber~hard left for Cambridge in England; it had becom~ clear that

*The full obituary appears in Vol.29, No.1 of The Australian
Mathematics Teacher (1973), pp.1-22. We thank the editor of
that journal, Mr John Veness, and Dr Newman for their permission
to use this material in Function .
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Germany would not be a place for Jewish people ~or some time to
come~ At Easter of 1934 Hanna visited Bernhard in London and
they became secretly engaged; .already the ~limate in: Germany,
and soon the law, was against such (-mixed ( marriages-. Then
Hanna returned to h~r studies.

Her university course involved attendance at lecture courses,
problem classes, practical classes, seminars and a physical edu
cation course (swimming in Hanna's case).- There was also a
final examination.

There is a story about the practical Physics class in her
second year which illustrates a significant feature of Hanna's
make-up. During the course the students, working in pairs, were
required to use a theodolite to measure the height of a distant
chimney s-~ack. Hanna and her partner made the measurements, did
the appropriate calculations and took the work for marking. They
were told their result was significantly wrong and to repeat the
work. This they did with essentially the same result. They were
then told how far short their result was and to try again. They
did with again much the same result. They then managed to per
suade the demonstrator to check the measurements. Much to his
surprise his agreed with theirs. Investigations revealed tnat a
few years earlier the stack had been lowered by several courses
of bricks!

For the ~ourth and final year of her degree Hanna chose to be
examined in Mathematics, P~ysics and Philpsophy. This involved an
oral examination in all three subjects and extended essays in
Mathematics and Philosophy. The summer" semester of '1936 was spent
preparing for the orals in August, but her preparation was
seriously disrupted by an attack of scarlet fever. Nevertheless
she obtained distinctions in both 'Mathematics and Physics and good
marks in Philosophy, for an overall award with distinction.

During all thi~ time Hanna and Bernha~d kept in contact by
correspondence. It was, in the circumstances, not an easy
correspondence; it was conducted anonymously through various
friendly channels. They met only once during this period - in
Denmark "for a couple of weeks in 1936 when Bernhard was travelling
from the International Congress of Mathematicians in Oslo.

Following the completion of her first degree Hanna was
accepted as a research student at the University in Gottingen,
Germany. She also found a minor tutoring job with which she
could finance her stay. Before taking up studies there in the
summer of 1937, Hanna spent six months working in the statistics
department of an institute of military economics.

In Gottingen Hanna found time for some chess and some
gliding. She also found time to attend a course on Czech -
this because a friend wanted to learn the language and the
minimum class size was two. The course was no hardship as
Hanna had a flair for learning languages, one that she put to
good use later in her professional career in reading papers in a
wide variety of languages.

Early 1938 saw the annexation of Austria and summer the
Czechoslovak crlS1S. Hanna decided it would be impossible to
complete her course without risking a prolonged delay in her
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marriage plans. So, aXter three semesters, she gave up her
course and in July 1938 went to Britain.

The first years in Britain were far from easy. Yet they
saw the beginning of her family, and the beginning of productive
research. Hanna and Bernhard felt they could not openly marry
until his parents were safe from possible reprisals. Bernhard
was. a Temporary Assistant Lecturer in Cardiff. Hanna went to
live in Bristol.

Late in 1938 Hanna and Bernhard were secretly married in
Cardiff. They finally s~t up house together in Cardiff early in
1939 when Bernhard's parents joined them. Later that year their
first child, Irene, "was born. During this time in Cardiff Hanna's
earlier interest in botany was turned to practical use. The
family were able to vary and supplement their diet with the use
of such plants as sorrel which could be found growing wild.

Both Hanna and Bernhard were classified as 'least restricted'
aliens. This meant that at first they were not affected by
restrictions on aliens. However, after Dunkirk a larger part of
the coast was barred to all aliens-and they were required to leave
Cardiff. They moved to Oxford - because it was a university town.
Within a week Bernhard was interned and a few months later
released into the British army'. Meanwhile Hanna, expecting a'
second child, made arrangements to complete a doctorate (D.Phil.).
This was made possible by the Society of Oxford Home Students
(later St Anne's College) through which she enrolled, and a
generous waiver of fees that Oxford University gra'nted to all
refugee students whose courses had been interrupted. Just after
Christmas the second child, Peter, was born (he has become a
mathematics don at Oxford after himself gaining a D. Phil. from
there) .

rhe major problem during this time was accommodation. The
original flat became unavailable towards the end of 1941. It was
not easy to find accommodation with two young children and was
made no easier by having to compete with refugees from the bombing
of London. All Hanna could find was a subletting of part of a
house - with shared facilities. A year later another move
became necessary. This time Hanna found a brilliant solution.
She rented a caravan and got permission from a market gardener
to park it on his farm. She also, as was necessary, had it
declared 'approved rooms' by the Oxford Delegacy of Lodgings.

It was then that the thesis was largely written; in a
caravan by qandlelight. The typing was done on a card-table by a
haystack when the weather permitteq. The thesis was submitted in
mid-1943. Soon after, restrictions on aliens were eased and Hanna
was able to return to Cardiff. In November of that year the third
child, Barbara, was born (she graduated in Mat~ematics from Sussex
University and went on to teach mathematics in a secondary school).
The oral examination took place in Oxford in April, 1944. Hanna
returned to Cardiff with her D.Phil.

A ye4r later the war in Europe was over. Bernhard was
demobilized from the army, and resumed his university career at
the beginning of 1946 with a Temporary Lectureship at the University
College in Hull'. At the same time the fourth child, Walter, was
born (after studying at universities in New York, Adelaide and Bonn,
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he gained a doctorate and is now active in mathematical research).
For the next academic fear (these ~un ~rom October to June in
Britain) Bernhard was' mtitdea Lecturer. Hanna was otfered a
Tempora~y Assistant Lectureship which she took and -thus began her
formal teaching career.

Hanna was to stay in Hull for twelve years rising through
the ranks to be by the end of her time there a Senior Lecturer.

She took an active interest in her students. She was a
strong supporter of the student mathematical" society. She gave
lectures to it on a number of occasions on such topics as:
Dissection of rectangles into incongruent squares; Difficulties
in defining the area of surfaces; and Prime numbers. Her aim was
to exhibit some of the facets of mathematics for which there was
not enough time in the regular courses and, as always, to'convey
her joy in mathematics. It was one of Hannafsstr~king qualities
that she found joy in so much. The model building group also
had her active support; in particular she participated in the
making of paper models of regular and other solids. The out
standing fea~ure, though, was her coffee evening. She often
invited staff and students to meet at her house over coffee.
This turned into a regular weekly open house at which her
students were always welcome and, as one of her colleagues of
those times says, "many benefited greatly from being able to
drop in for company, discussion and often help with personal
affairs". She was very interested in people and in seeing that
they made the most of their abilities. One finds over and over
that her interest in someone's work and her' encouragement of it
played a significant role.

Meanwhile the family thrived and grew with the addition of
a fifth child, Daniel, born in 1951 (he has completed a university
course in Mathematics and Greek and is now a violinist with the
Melbourne Elizabethan Orchestra). This was, of course, a very
busy time for Hanna. Even with a home-help (in whom she
invariably inspired intense loyalty), she had to be well-organized
and calIon all her resources of stamina, will-power and 'self
discipline. Visitors were always struck by the organization of
the children: all had tasks to do and carried them out with
responsibility and effic~epcy.

From 1948 Bernhard had been lecturing at Manchester Univer
sity and at various times from then on Hanna looked for a suitable
position in Manchester so that the family could lead a life under
one roof. This search finally succeeded in 1958.

At Manchester Hanna set about organising courses which would
show the students something of mathematics as she saw it. She
developed a style of teaching which aimed at making the acquisition
of very abstract ideas accessible through judicious use of con
crete examples and graded exercises. She tried to emphasise
to the undergraduate students that parts of mathematics other than
calculus were being applied to branches of human endeavour other
than physics.



Hanna also ~et about building up an active teaching and
research team around her~

Life thus continued very busy. Hanna would sometimes work
all night reading manuscr~p~s or preparing lectures, take a good
long shower and appear in the office seemingly as fresh as if she
had had a night's sleep. She did not allow this pressure of
work to interfere with her contact with fellow staff and students
nor with taking an interest in their work. There were regular
coffee sessions at which they would discuss problems· of interest.
She was not beyond gettihg new experi~nces such as that of wall
papering.

One of Hanna's research ~nterests was in an area of.pure
mathematics known as group theory. Group theory is studied by
mathematicians largely for the fascination of its problems and
the appeal of its ideas. However certain aspects of it have
proved useful in the application of mathematics to various fields
but especially physics. While Hanna was always at pains ~o stress
that she saw the intrinsic motivations of beauty and joy as quite
crucial, she was also interested in explorinK such applications.
Therefore she agreed to take part in a post-graduate course run by
mathematicians and physicists on representations of groups. The
mathematicians were to begin by giving a detailed account of
those parts of the theory of interest to the physicists and then
the physicists were to take over and explain how the theory was
used. Hanna gave the mathematical lectures during 1960-1; the
physlcal part never eventuated.

During 1960-1 preparations were made for a joint study leave
by Hanna and Bernhard at the Courant Institute of Mathematical
Sciences in New York in 1961-2; Hanna was a Visiting Research
Scientist. It was also then that an offer came to Bernhard to
set up a research department of mathematics at the Australian
National University. Hanna was offered a post as ·Reader (now
called Professorial Fellow) in that department. They ~ccepted,

with Bernhard to take up his appointment after the year in New
York and Hanna a year later after discharging her obligations to
her research students in Manchester.

In August 1963 Hanna left Britain to face new challenges in
Australia. Hanna came to a research post in which she hoped to
pursue her research interests and guide some research students
to doctorates.

Instead Hanna found herself heading into major teaching
responsibility. She was invited to take the newly created chair
of Pure Mathematics in the National University's School of
General Studies (that is the part of the university which is
responsible for the teaching of undergraduate students and in
which the academic staff are expected to devote a significant
part of their time to teaching duties). With the chair went the
headship of the Department of Pure Mathematics which, together
with the Department of Applied' Mathematics, had grown out of
the fission of the former Department of Mathematics. She
accepted' the invitation and took up the appointment in April, 1964.

She also quickly became involved with helping teachers in
secondary schools with some of the problems being created by the
introduction of the Wyndham scheme into secondary schooling in
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N.S.W. This scheme iriyqlyed a radlcal restructuring which forced
the creation o~ new syllabuses~ In mathematics these new
syllabus-es re;(lected s.ome ot the changes that were taking place in
the teaching of mathematics in other parts at the worrd. Many
teachers found. that their training had not prepared them to teach
some aspects of these syllabuses. In the first term of 1964 Hanna
and Ken Mattei, one of the mathematics masters in Canberra,· ran
(under the auspices of the Canberta Mathematical Association) a
once-a-week course for teachers entitled "Th.e language of sets in
school mathe~~tics't. This was Hanna's first excursion into this
kind of activity, however her experience and sensitivity enabled
her to hit the right note and she was thanked tt .. ~ for the
lessons and guidance given so cheerfully and efficiently". This
direct involvement with secondary teachers was to continue for the
rest of her life.

Hanna was concerned to see that all students got courses
suited to their needs. On the one hand she wanted the better
students to get a real appreciation of mathematics so that they
could sensibly decide whether they wanted to make a career within
mathematics and be well prepared to do so. In this respect,
besides making available an intensive course of study through
lectures, she instituted forms of examining, especially take-home
assignments, which encouraged more sustained use of the ideas and
techniques involved than the conventional short closed-book
examination. She also made a supervised project an important
component of the final honours year. While this was not intended,
these projects occasionally prodticed original research some of
which has been published. On the other'hand she was deeply
concerned that students with a limited background who were
intending only one yearts study of mathematics at university
should get as clear an understanding as possible of the nature of
the subject because many of these people would be required to
make some use of 'mathematics later in their lives. She was keen
to get·over the idea that doing and thinking about mathematics
can be joyous human activities, though it needed effort to get
the rewards.· She conveyed this by her own obvious joy in the
subject and her willingness to work hard. ·The sticcess of the
intensive course is easily measurable: at least a dozen students
have gone on to complete doctorates in such widely scattered
places as Cambridge, Edinburgh and Oxford in Great Britain, Chicago
and Seattle in U.S.A. and Kingston in Canada as well as in
Australia; mostly in mathematics but also in computing, physics
and the history of science. These doctorates have been attained
by graduates from the honours classes of 1965 to 1968 and
represent about half the graduates from those classes.

Hanna took on an increasing number pf responsibilities which
reduced the time she had for research and research~related

activities. In Who's Who Hanna's recreations were listed as
cycling and photography: indeed it was a common sight to see
Hanna and Bernhard cycle to and from their offices or to their
lunch-time coffee in the city. They also developed a fondness
for four-wheel travel and saw much of Australia, especially the
back-blocks which so many city-dwellers never see. The
photography, which had been a brief interest during student
holidao/s, was revived by coming across some old p~otos that she
had taken. This interest was combined with the old interest in
botany to build up an impressive collection of photographs of
flowers and trees of all sorts but especially of many varieties
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of acacia. The chase for these involved much use of four wheels.
It also resul ted in bodily damage, and at least.· one broken rib is
directly attributable to a chase after an elusive acacia. Such
ailments had no notice~ble effect on her work,~ and even a leg in
plaster could do no more than keep her away from classes for a
week - she still prepared the lectures for a colleague to give.

In the eight years Hanna spent in Australia she made quite
an impact on the Australian mathematical community.

In 1966 Hanna was elected to be one of the foundation Vice
Presidents of the Australian Association of Mathematics Teachers.
A little later in the same year she was elected Vice-President of
the Canberra Mathematical Association and in 1967-8 became its
President. When the A.N.U.-A.A.M.T. National Summer School for
talented high school students was started in 1969 she was an
enthusiastic supporter of it and on two occasions gave lectures
on geometry which proved very popular. In March, 1969, her
academic excellence was given further recognition by her election
to a Fellowship of the Australian Academy of Science (F.A.A.).

Hanna took a 12-month study leave break (with Bernhard) in
August 1969. No sooner were they back than Hanna was invited to
make a lecture tour of Canada under the Commonwealth Universities
Interchan~e Scheme. This was arranged for the (Canadian) winter
of 1971-2. At the end of October 1971 Hanna set off on her
Canadian lecture tour. On the evening of the 12th of November;
while visiting Carleton University, Ottawa, she felt ill, admitted
herself to hospital and quickly went into a coma. She died on the
14th without regaining consciousne$s.

At wQrk Hanna believed in making herself available: as far
as formal commitments allowed, she was always in her office with
the door open. She encouraged students to seek help with their
difficulties and she was often to be seen explaining a point at
her blackboard. She also found herself helping students with
non-mathematical problems. Her impact here is best summed up by
the following extract from a letter by two students published in
the local paper just after her death:

"We will remember h.er not only as a mathematician; she was a
friend who always had a sympathetic ear for any student, and was
never too busy.

We will always miss her tremendous dedication and sincerity,
and the friendliness of her presence."

That straight thinking and log~cal expression does not come
naturally, even to many highly educated people, was brought home
to me just recently during a concert. The room was hot, and
after the interval the players returned in shirt sleeves, without
their coats. The leader bowed and said, 'Excuse us, ladies and
gentlemen, for wearing our shirts' .... [Students should)
spontaneously shudder on hearing someone apologizing for wearing
his shirt when he means to apologize for riot wearing his coat!

Hanna Neumann.
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RUSSIAN ARISTOCRAT ARITHMETIC

Neil Cameron, Monash University

On a recent visit to a remote Scottish manor house (near the
Mull of Kintyre) I gave my us~al after dinner party piece, showing
how any two whole numbers can be multiplied using only the
operations of adding, doubling and halving while casting off
remainders. The technique is probably familiar to you, is
variously attributed to Russian Peasants and Ancient Egyptians
and is easily understood once you appreciate binary arithmetic.

For example, the following scheme gives the product of 56
and 21.

@ 112 @ 448~
21 10 5 2 1

and @ +@+@= 1176 (= 21 x 56).

The idea is to keep halving the smaller numbers (while casting
off any remainders) until the number 1 is reached, at the same
time doubling the larger numbers an equal number of times,
identifying the larger'numbers corresponding to those smaller
numbers which are odd and adding the former together.

Given any real number z, the integer part [z] of z is that
unique integer n such that n ~ z < n + 1. Let x be a positive
integer and define a finite sequence of integers as follows:

x(O) = x

and x(n+1) [tx(n)],
for integers n, 0 ~ n < k where x(k) = 1.

For example, 21(0) = 21, 21(1) = [21j~ = 10, 21(2) = 5,

21(3) = 2, 21(4) = 1. Now identify those r, 0 ~ r ~ k for

which x(r) is odd and call these values of r, n
1

,n
2

, ... nm, where
o ~ n 1 < < nm = k.

Then you can check that

n n 2 n 12 m + ... + 2 + 2 = x

is the binary decomposition of x. For example, 24
+ 22 + 2 0 21

is the binary decomposition of 21.

We can now justify the above scheme. If y is the larger
number and x the smaller number then
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n n
2 n

(2
m + 2 l)y~y + .. , . + 2

n n
2

n
12 m y + ... + 2 Y + 2 y,

the sum of the appropriate large numbers-. For example,

21 x 56 24
x 56 + 22 x 56 + 2° x 56.

"What about division?tr, asked my host since this is a much
harder exercise for pupils at school. We all know that to do
long division yo~ must be able to subtract. It is not hard to
find a scheme for division involving only the operations used
before together with subtraction. The following is a scheme for
finding the quotient of 1176 and 56, which, given the extra
sophistication, I am frivolously calling Russian Aristocrat
Arithmetic.

1176 588 294 147 73 36

896 448 224 112 [§§J
@ 8 4 2 1

280 140 70 35

224 112 CW
CV 2 1

56

~

(0
0 and @+CV+6)= 21 (= 1176/56).

How does it work? Why does it work? Perhaps a look at the
following scheme for 1176/21 will help you discover.

1176 588 294 14-7 73 36 18

672 336 168 84 42 1n1
@ 16 8 4 2 1

504 252 126 63 31 15

336 168 84 42 f@
@ 8 4 2 1

168 84 42 21

168 84 42 ~
@ 4 2 1

0 and @ + @ +@= 56 (= 1176/21).

00 00 00 00 00 00 00 00 00 00
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A MODEL FOR AN A PRIORI PROBABILITY

J.W. Hi,lle, S..C.V. Frankston

When discussing probabilities of events, few. people have any
hesitation in accepting Proh{Head} = ~ when a coin is tossed or

Prob{Six} = ~ when a die is rolled. However, if a drawing pin is

thrown onto a surface, it may land either with its point up or its
point down, and in estimatingProb Point Down , many people have
difficulty suggesting a value in which they have reasonable con
fidence. Questions of pointer length, mass and diameter of head
etc. may prevent us from making a sound intuitive estimate, so I
decided to analyse the possibilities of a pin reaching equilibrium
to form an a priori estimate of the required probability.

B
(i)

A

1800

___ L,,_~ _
. a / , Q,

/ ,
/ ,

/ ,

c

Let th~. rC.!E;t.e of positions"
shown ~~ )i~, represent
possible pin positions just
prior to coming to rest.
For positions A to C via B
the pin should come to rest
in the point down position
(event P, say). Since this
occurs for positions cover
ing 180 0 of the possible
360 0 for the pin, this
sciggests Prob{P} is at least
0-5.

y
(ii) For positions X to Z via Y, the pin should come to rest head
down (event P') and if a. represents the "balance point" of the
pin, the model $uggests event P is realised if the pin occupies
any positon between X and Y via B before coming to rest.

Assuming that all possible positions of the pin are equally
likely we are led to predict that:

Prob{P} = 180 + 2a. ( . d )360 a 1n egrees.
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<'.1.ii) a may be obtai.ned by a consi.deration o;e th.e moments as
:(ollows:

y.\
\ - ..... -
\
\

B

Cons~der the vertical section through the pin (ABE) with
head centre of mass· at e and poiater centre of mass at D.

E

m,g mt.Q
Let CA = d1 , CD = d2 , mass of head = m1 , mass of pointer = m2

and angle ACX = e = angle ZCD. The pin will return to the point
down position if:

m2g·AY > m1g·AX (moments about A)

i.e. m2o(CZ AX) > m1 0AX

i.e. m2o(d2cos e - d1sin e) > m1od1 sin e

i.e. cot e > (d 1 /d2 )(1 + m1 /m 2 )

. t e < 1 h
~.e. an s(l + k) were s

Hence, a Tan-1 {1/s(k + 1)}.

Since tan a (and hence a for the range involved) depends
inversely on sand k, pins with large, massive heads give small a
values and Prob{P} will not be much in excess of 0·5. For pins
with small,light heads, a may be quite large and Prcib{P} may be
considerably in excess of 0·5. The table gives some selected
values of sand k and the expected value of Prob{P}.

s = 0·5

k 1 2 5 10 20 50

a = Tan-1 {1/s(k + 1) } 45 33·7 18·4 10·3 5·4 2·2

Prob{P} 0·75 0·69 0·60 0·56 0·53 0·51

s 1·0

k 1 2 5 10 20 50

a Tan-1 {1/s(k + 1)} 26· 6 18·4 9 0 5 5·2 2·7 1·1

Prob{P} 0·65 0·60 0·55 0·53 0·52 0 0 51
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(iv) A test at the derived results then depends on knowledge "o~

Band k and available pins were analysed R$··follows:

Treating the pin as circular disc with attached cylinder,
a rough estimate of k was found from

where t 1 = thickness of head, t
2

is the density.

thickness of p~inter, and p

Only three types of pins were available for measurement and
these gave the following approximate results:

~ Type II Type III

d1 5-5 rom 6-3 rnm 4·8 rom

d2 3·5 rom 4-0 mm 3-4 rom

t 1 0-8 rom 0-9 rom 0·6 rom

t 2 I-I rom 1-35 nun 1·0 nun

s 1·57 I-58 1·41

k 11-43 9 0 80 8-13

Prob{P} 0-52 0·52 0-52

Only Type I pins were available in quantity and 100 pins were
tossed 5 times giving 52, 52, 53, 62, "and 52 cases of pins in the

point down pos~tion. The observed proportion of ~i = 0·54 pro

vided some ·confirmation of the model's validity and I found it
interesting to note that a pin appears to behave in a manner not
very different from that of a "fair" coin.

A CORRECTION AND AN APOLOGY

Although we try to keep errors out of Function as best we can,
mistakes do creep in from time to time. Usually, these are un
important, and we do not bother to draw attention to them.
Regrettably, Volume 2, Number 5 contained two misprints of a
rather more serious nature.

Our solution to Problem 1.i on page 28 has (in its second

line) 2 n being divisible by an odd number, which is, of course,

a nonsense. The number 2n should have been 2 n - 1!

We also apologise to George Strugnetl, author of the article
on Martian calendars, for our mis-spelling of his name.
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TOPICS IN THE HISTORY OF STATI·STICAL THOUGHT
AND PRACTICE

III. THE COMMUNICATION OF CHOLERA AND AN
EXPERIMENT ON THE GRANDEST SCALE

Peter D. Finch, Monash University

Cholera is caused by a bacillus which is mainly spread by in
fected water though, like typhoid, it can also be spread by flies,
infected food and carriers. Fever develops after a short incuba
tion period; this is followed by abdominal pain , severe vomiting
and diarrhoea. Loss of fluid leads to muscle cramps and the
motions become of the so-called 'rice-water' type, i.e. there is
no solid matter and the appearance is that of water to which a
little milk has been added. This stage is followed by collapse
and, if adequate treatment is not available, ~eath results in about
70 per cent of cases.

Cholera was unknown to western medicine until about 1769 when
it was encountered in India, many thousands dying in an epidemic
which did not subside until 1790. From that time it gradually
spread throughout Europe, America and Asia. It reached England
in 1830 and the first case in London was recorded in the Autumn
of 1848; this· was followed by the epidemic of 1849. It was
particularly virulent in the Crimea during the siege of
Sevastopol 1854-5 when, in a period of only six months, 73 per
cent of 8 regiments of the British army died from disease,
principally cholera.

The way in which cholera is communicated was established by
John Snow, M.D. (1813-58) in a work which has become one of the
classics 6f epidemiology. Once cholera had reached England its
control and prevention became a matter of urgency to the medical
profession of that country. Various puzzling facts came to light
and theories purporting to explain them were proposed. At that
time modern bacteriology had yet to be developed and the causes
and nature of disease were not understood. It had been discovered
that some diseases could be artificially transmitted by inoculation
of 'morbid matter' but this had not been demonstrated for the
enteric infections and it was not even clear that the latter were,
in fact, communicable.

After the London epidemic of 1849, Dr William Farr, one of the
pioneers of medical statistics, noticed a remarkable coincidence
between mortality from Cholera in different districts and their
elevation, the higher districts suffering less than the lower ones.
He suggested that the level of soil might have some direct
influence on the prevalence of cholera. In 1850 a Mr John Lea~ of
Cincinnati U.S.A., advanced his 'geological' theory that the
oholera-poison existed in the air about the sick but required
calcareous or magnesian salts in the drinking-water to give it
effect. He was led to this theory by noting that in the west
of the U. S".A. cholera had attacked districts using calcerous
water but passed by those using sandstone or soft water.
Another view held that the disease was communicated by effluvia
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given off by the patient into the surrounding air and inhaled by
others. Some supported ~he localisation theory which supposed that
cholera was due to an unknown something in the atmosphere which
became localised and had its effects increased by gas~s given off
from decomposing animal" and vegetable matters. None of these
theories could explain all of the facts which gradually came to
light. Snow argued that cholera was communicated from person to
person by contamination of food and drink from the evacuations of
those already affected, principally through contaminated water
supplies. He showed how this theory accounted for all the known
facts.

Some of the things to be explained were puzzling. In the
first place there was evidence to suggest that cholera was not
communicable. There were numerous instances of persons having
contact with those affected and yet not themselves going down
with cholera. A striking instance of non-communication·, which was
well-documented, occurred in 1814 when cholera appeared with great
severity in the 1st bat. 9th regt. N.I.*onits march from Jaulnah
to Trichinopoly~ For another battalion, which accompanied it, did
not suffer cholera, even though it had seemingly been exposed to
exactly the same circumstances. Ag<ain a note had appeared in the
Medical Times and Gazette for 1854 pointing out that, at the
Newcastle dispensary the previous year, one of the dispensers
drank by mistake some rice-water evacuation without ill-effect.
Against this it was observed that the duration of cholera in a
place was usually in direct proportion to the size of its
populaticin. It remained but two or three weeks in a village, two
to three months in.a good-sized town, whilst in a large city if
often remained a who+e year or longer. This pointed to the
propagation of the disease from patient to patient for, as Snow
remarked, ' .. . if each case were not connected with a previous one~

... ~ there is not. reason why the twenty cases which occur in a.
vi llage should not" be distributed over as long a period as the
twenty hundred cases which occur in a large town'.

Another puzzling fact was that in England cholera always
started in autumn, made little progress during winter and spring
but increased rapidly to reach its climax at the end of summer;
it then declined as the cooler weather set :in; whereas, in
Scotland, cholera ran its course right through winter immediately
following its introduction in autumn. Again there seemed to be a
curi6us sex effect. At the beginning of an epidemic male deaths
exceeded those· of females yet when the epidemic reached its peak
that situation was reversed and deaths of females exceeded those
of males. It was noted too that mortality from cholera varied
considerably with occupation .. For example, it was 1 in 24 for
both Sailors and ballast-heavers, 1 in 32 for coalporters and
coalheavers but only 1 in 265 for medical men, 1 in 325 for under
takers and 1 in 1,572 in footmen and men servants. Moreover
medical statistics showed that the mining population of Great
Britain had suffered more from cholera than any other occupation.

Snow was able to explain all these facts. He started with
detailed case studies from allover Britain and convincingly
demonstrated both the communicability of cholera and its mode of
communicati,on. A typical case study concerned a man from Hull,
where cholera was prevalent, who went to Pocklington, lodged with
a Samuel Wride, was attacked by cholera on the day he arrived,
September 8, and died the next day. Wride was attacked on

*Native Infantry
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September 11 and died $hortly aAte~wards~ A neighbour,
Mrs Kneeshaw, who had Y1site~ Wride at that time went down with
cholera on September 9 and her son 6n the 10th. He died on
Sept'ember 15, she lived three weeks. On September 16 7 Mr and Mrs
Flint, and Mr and Mrs Giles Kneeshaw, and two children, came from
York to visit the sick Mrs Kneeshaw at Pocklington. -There had
been no cholera in York for some time. They all returned to York
the next day except Mr G. Kneeshaw who stayed at Pocklington until
September 24 when he returned to York. He was attacked by cholera
on his return and died the next day. On September 27 Mrs Flint
was attacked but recovered. Her sister attended her, was attacked
on October 1 and died October 6. The infection now spread in York.
A Mrs Hardcastle went down with cholera on October 3 and died the
same day. Miss Agar residing with her died of cholera on October 7.
Mr C. Agar visited Mrs Hardcastle on October 3, was attacked the
next day and died October 6. A Miss Robinson who came to take care
of the house after the deaths of Mrs Hardcastle and Miss Agar was
attacked'and died of cholera on October 11. Many detailed
studies like this, involving a painstaking tracing of the course
of the disease, provided strong evidence in favour of communica
bility. But they did not in themselves explai.n how it was
communicated. -,

Snow investigated the mode of communication in two ways.
Firstly he examined particular outbreaks of cholera and showed
that they were indeed associated with contamination of water
supplies. The most famous of these was the case of the Broad
Street pump which was dramatised by Richard Gordon (of the
'Doctor' series fame, 'Doctor at Large' etc. ,) in 'The Sleep of
Life', a novel about the discovery of anaesthesia to which Snow
made important contributions. Secondly he indicated how contami
nation of food and drink by the evacuations of those already
affected could explain general facts like those mentioned earlier.
A typical example of 'the case-study approach is provided by his
investigation of the cholera outbreak of 1849' in Albion Terrace.
This had a very high mortality and was particularly striking be
cause there were no other cases in the immediate neighbourhood;
the houses opposite to; behind and in the same line at each end
of those affected remaining free from cholera. Snow found that
the affected houses shared a common water supply different from
that of neighbouring houses. It came from a spring in the road,
was conducted by a drain to the back of the houses and flowed
into supply tanks for each of them. The tanks were placed on
the same level and pumping from one drew water from the ,others
so that any impurity getting into one tank was imparted to the
rest. Under the privy of each house there- was a cesspool
situated near its water tank. On July 26 there was a storm,
some of the overflow-pipes from the cesspools became blocked,
burst and subsequently contaminated the, water tanks. The first
case of cholera occurred on July 28 and that person died on the
same day. There were 2 deaths on August 3rd, 4 on the 4th, 2 on
the 6th, 2 on the 7th, 4 on the 8th, 3 on the 9th, 1 on the 11th
and 1 on the 13th. In addition to these 20 deaths there were
some 4 or 5 more from those who fled the houses after the out
break had started. Snow commented, "There are no data for showing
how the disease was communicated to the first patient~ at No.13~

on July 28th; but it was two or three days afterwards~ when the
evacuations'from this patient must have entered the drains having
a communication with the water supplied to aZl the houses~ that
other persons were attacked~ and in two 4ays more the disease
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prevailed to an alarming extent .. , the only apecial and peculiar
cause connected with the g~eat calamity •.. was the state of the
water~ which was followed by the cholera in almost every house to
which it extended~ whilst all the surrounding houses were quite
free from the disease." .

Numerous examples like this seemed to confirm that cholera
was indeed transmitted in the way Snow suggested, at least in
special cases. But that type of argument, though important, could
not go beyond the special case and it would scarcely be convincing
to explain the widespread London epidemic of 1849, for example, by
a succession of coincidences involving burst pipes and a large
number of different contaminations of separate water supplies.
Moreover it remained to be shown how the suggested mode of
communication could explain the general phenomena noted earlier.
Let us now indicate some of Snow's explanation~ of those
phenomena.

The case of the two battalions, one infected the other not,
was easily disposed of. The official report on that outbreak had
noted that at Cunnatore the force had been so encamped, that while
the 5th Native Infantry had their water supplied from wells, the
9th Native Infantry procured their water from tanks in low ground.
Moreover it seemed that sepoys of low caste and camp followers had
indiscriminantly bathed in those tanks. The inference is clear.
Snow explained the disparity between the English and Scottish
experiences in the following way. In England, he argued, people
seldom drink unboiled water, except in hot weather. They generally
drink tea or beer. In Scotland, however, beer and tea were not
widely drunk and unboiled water was freely mixed with whiskey.

The changing relative mortality of the sexes was explained by
noting that the greater part of the female population remained at
home, whereas the men moved about in following their occupations
and so experienced a greater initial risk. Later, when the cholera
had spread, the women were equally at risk with the men but also
endured the 'additional risk associated with nursing the sick.
Disparity between the mortality rates of different occupations
were explained in a similar way. Snow noted that those with a
high mortality, like sailors, ballast-heavers, coalporters and
coalheavers, all lived or worked on the river Thames, where it
was the habit to drink water drawn by pailfuls from the side of
a ship. Their higher mortality was to be expected because
sewage was generally disposed of in the river. The high incidence
of cholera among coal miners was explained when Snow learnt in
response to enquiries that 'the pit is one huge privy'. He
argued, 'There are no privies in the coal-pits .... The workmen
stay so long ... they are obliged to take a supply of food with
them~ which they eat invariably with unwashed hands~ and without
knife and fork.' Farr's suggestion about the level of the soil
was disposed of by citing instances of cholera in the most
elevated towns of the country. Snow argued that the increased
prevalence of cholera in the low-lying districts of London was
related to the greater contamination of their water supplies.
Finally he pointed out that the cited instance of a dispenser
drinking rice-water evacuation without ill-effect was not
necessarily opposed to his theory. For, he argueq, though the
cholera-poison is in those evacuations it is not necessarily
uniformly distributed throughout it and could have been absent
from the portion drunk.
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A lesser man than Snow might well have stopped at this point.
He had painstakingly collected a vast amount of data pertaining to
the spread of cholera and he had produced a plausible 'theory' to
account for it. The fact that he did not stop there is an object
lesson for the social and educational theorists of today, some of
whom seem to take the view that the mere expression of their
opinion is sufficient grounds for the adoption of their suggested
remedies for the ills of society. Snow remarked, "I had no
reason to doubt the correctness of the conclusions I had drawn
from the great number of facts already in my possession~ but I
felt that the circumstances of the cholera-poison passing down
the sewers into a great river~ and being distributed through
miles of pipes 3 and yet producing its specificeffects~ was so
startling a nature~ and so vast importance to the community~

that it could not be too rigidly examined3 or established on too
firm a basis." Snow now sought to explain how the London cholera
epidemic of 1849 had been spread by means of the water supply.

At that time water was supplied to houses in South London
mainly by two private companies. The water was obtained from
various sources, but much came from the Thame8 - that of one
company from above, that·of the other from below, the points at
which sewage was discharged into it. Moreover the various
companies often supplied the same areas, even different houses in
the same street. Snow remarks:

"Each company s~pplies both rich and poor~ both large h~uses
and small; there is no difference in either the condition or occu
pation of the persons receiving the water of the different
Companies . ... As there is no difference whatever~ either in the
houses or the people receiving the supply of the two Water Companies~

or in any of the physical conditions with which they are surrounded~

it is obvious that no experiment could have been devised which would
mope thopoughly test the effect of water supply on the progress of
cholera than this~ which circumstances placed ready made before the
obsep~ep.

The experiment too was on the grandest scale. No fewer than
three hundred thousand people of both sexes~ of every age and
occupation~ and of every rank and station~ from gentlefolks down
to the very poor~ were divided into two groups without their ~hoice~

and~ in most cases~ without their knowledge; one group being supplied
with water containing the s~wage of London~ and amongst it~ whatever
might have come from the cholera patients~ the other group having
water quite free from such impurity.

To turn this grand experiment to account~ all that was
required was to learn the supply of water to each individual house
where a fatal attack of cholera might occur ... "

Snow proceeded therefore to the huge task of investigating
cholera mortality as related to the two principal water supplies
in South London, that contaminated by sewage from the Southwark
and Vauxhall Company and the relatively pure water from the Lambeth
Company. He obtained information on the total number of houses
supplied by each company but he had no exact information about the
number of houses supplied in each sub-district. While he was able
to ascertain the number of deaths from cholera in the consumers of
each water supply in each sub-distriGt and to show that quite
uniformly the number of deaths was greater among the consumers of
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the Southw~rk ~nd Vauxhall than o~ the Lambeth supply 1 he was not
able to calculate actual mortal~ty rates in tpe two groups by sub~

districts. This was done .later by the General Board of Health
which undertook an official enquiry and supplied the detailed
statistics Snow had lacked. These confirmed Snow~s conclusions.
In the table below we reproduce some of Snowts results. It
indicates that the death rate from cholera for those supplied
with water by the Southwark and Vauxhall Company was almost six
times as great as it was for those with water from the Lambeth
Company; the more detailed results of the later official enquiry
showed that it was, in fact 1 almost seven times ~s great.

Population Deaths by Deaths in
in 1851 Cholera in 10,000

14 weeks living
ending Oct.14

London 2,362,236 10,367 43

West Districts 376,427 1,992 53
North Districts 490,396 735 14
Central Districts 393,256 612 15
East Districts 485,522 1,461 30
South Districts 616,635 5,567 90

Houses supplied by Southwark 266,516 4,093 153
and Vauxhall Company

Houses supplied by Lambeth 173,748 461 26
Company

Reference

Snow on Cholera: being a reprint of two papers by
John Snow M.D. Hafner Publishing Company. New York and London.
1965.

She saw every relationship as a pair of intersecting circles.
It would seem at.firs~ glance that the more they overlapped the
be~ter the relat10nsh1p: but this is not so. Beyond a certain
pOlnt the. law of diminishing returns sets in, and there are not
enoug~ pr1vate resources left on either side to-enrich the life
that 1S shared. Probably perfection is reached when the area of
the two outer cresce~ts, added together, is e~actly equal to that
of the leaf~shaped.P1ece in the middle. On paper there must be
some neat mathemat1cal formula for arriving at this; in life; none.

Mrs Minive"r, Jan Struther, 1939.

Nothing is more expected than the unexpected.

Epilogues, Remy ~e Gourmont, 1906.
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PROBLEM SECTION

Each issue of Function contains a set of problems for you to
try. Please send us problems of your own and solutions to the
problems we print. We give first some solutions to earlier
problems.

SOLUTION TO PROBLEM 1.2.7
This problem drew attention to a remarkable approximation

to sin x. The formula Sex) = x(1-0·16605x2 + O·00761x4 ) gives an
approximation to sin x that is valid for all x in the domain

o ~ x ~;. The maximum error is less than 2 x 10-4 .

SOLUTION TO PROBLEM 1.5.1
This problem asked which of a hoop, a disc and a sphere, each

of radius R, and each rolled down an inclined plane, reached the
bottom in the least time. By solving the equations of motion, we
can show that the accelerations of the three ~re respectively
1. 2. 5. h . th . 1·' t· f th2g Sln ex, 3g Sln ex, 'fg Sln ex., were ex lS e lnc lna lon 0 e

plant and g is the acceleration due to gravity.

However, a more elegant solution is possible. In each case,
an initial potential energy is converted to a final kinetic
energy which has two components ~ translational and rotational.
The rotational component is least where most of the mass is con
centrated near the centre - i.e. in the case of the sphere. The
sphere thus has the highest translational kinetic energy at any
time~ Similarly, the hoop will have the lowest.

SOLUTION TO PROBLEM 2.2.4
The problem asked was:

Let n be an integer greater than 2. Prove that the n-th
power of the length of the hypotenuse of a right angled triangle
-is greater than the sum of the n-th powers of the lengths of the
other two sides.

The following elegant solution was supplied by Geoffrey
Chappell, then a student at Kepnoch High School, Bundaberg:

Let x,y be the sides and z the hypotenuse: x,y,z > 0 and

x 2 + y2 z2. Define h by y2 = hx2 so h > O.

z2 (h + 1)x2 , x n + yn (h n / 2 + 1)xn ,

zn (z2)n/2 = (h + 1)n/2 x n .

Now zn (xn + yn) [ (h + l)P - (hP + 1)) .xn

.where

nwhere P = '2 > 1.

zn _ (x n + yn) = g(h).xn , (h > 0) (1)
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g(h) (h + l)P - (hP + 1)

g'(h) p(h + 1)p-1 p.hP- 1 = p[ (h + 1)p-1 _ hP- 1].

But because p - 1 > 0, then, for positive h, hP- 1 is an increas

ing function of hand (h + 1)p-1 - hP- 1 > O. Now P > 0 so for
h >" 0, g' (h) > a or g' (h) > a." This implies that g(h) > i(O).
But g(O) = ° so g(h) > 0. Referring to (1), x n > 0 because

x > 0; g(h) > ° so zn - (x n + yn) > 0 or zn > xn + yn.

SOLUTION TO PROBLEM 2.4.1
The problem was to simplify the statement:

If Monday is a public holiday, then I will not go to the
beach, or I will stay at home, or I will neither stay at home
nor go to the beach.

Assuming that the speaker's home is not on the beach, we
can simplify his statement to this: "If Monday is a public
holiday, I will not go to the beach."

SOLUTION TO PROBLEM 2.4.2
There are 700 hymns in a church hymn book. It "is required

to print a set of cards, each with one digit on it, so that the
numbers of any four hymns (to be sung on Sunday) can be displayed
on a notice boa.rd. How many cards are required? (Give two
answers, one assUming that an inverted 6 can be used as a 9, the
other without that option.)

First consider the case without the option. The hymns could
be 111, 121, 131, 141 or some other combination needing nine l's.
Similarly nine cards are required far each digit 2,3,4,5,6. In
the case of 0, we could have 100, 200, 300, 400 or some such. We
require eight O's. Similarly eight cards are required for each
digit 7,8,9. The total is 86.

Where we do have the option, no nines are needed as such, but
we could have 696, 669, 666, 699, for example. We save eight nines
but require three extra 6's. The total is 81.

SOLUTION TO PROBLEM 2.4.3

Readers were asked to find the number of a's at the end of
1000!, and were referred to Derek Holton's article in Function~

Vol.2, No.4. Following the reasoning of Phase 4 of the article,
. . 1000 1000 l 1000 .

we f1nd that the number 1S --5-- +~ + 125' l.e. 248.

SOLUTION TO PROBLEM 2.4.4
From the roof of a 300 metre building in New York, two"

marbles are dropped, one being released when the other has
already fallen 1 rom. How far apart will they be when the first
hits the ground?

Let g be the acceleration due to gravity, S the height of the
building, 6S the initial discrepancy, S - S' the final discrepancy.
The first marble takes time T to fall where T = I2s/g". The initial
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time-discrepancy is 6T =. 124$ / g ~ When the first marble hi ts the
ground the seco~d has been in ~light for A time T - 6T, and has

1 _fi5'CT:: In-- 2travelled a distance S·' = '2g [ y 28 f g - '1'268 I g] i. e.

8' = 8 + 68 - 2/SFS ~ 8 - 21s68 as 68 is small. Then S - 8' = 2186S
to high accuracy. For the figures given, this works out to be
about 1.1m.

We will not yet give the solution to.
PROBLEM 2.3.2.

What point on the earth's surface is furthest from the earth's
centre?

No correct answer to this interesting (and non-trivial)
problem 'has yet reached the editors.

Here are some new problems.

PROBLEM 3.1.1
Two of a 3-man jury each independently arrive at a correct

decision with probability p. The third flips a·coin. The
decision of the majority is final~ What is the probability of
the jury's reaching a correct decision?

PROBLEM 3.1.2
The product of four consecutive integers is a square - find

the integers. Do the same for the case of four consecutive odd
integers.

PROBLEM 3.1.3
In the diagram opposite, the lines drawn are the set of all

common tangents to the circles. Prove that the points A,B,C,are
collinear.

PROBLEM 3.1.4
A man and a horse run a race, one hundred metres straight,

and return. The horse leaps 3 metres at each stride and the man
only 2, but then the man makes three strides to each two of the
horse. Who wins the race?

PROBLEM 3.1.5
In a tennis tournament there are 2n participants. In the

first round of the tournament each part~cipant plays just once,
so there are n games each occupying a pair of players. Show that
the pairings for the first round can be arranged in exactly

1 x 3 x 5 x ... x (2n - 1)

different ways.
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PROBLEM 3.1.6

Hanging over a pulley is a rope with a weight atone end.
At the other, there is a monkey of equal weight. The rope
weighs 250 gm per metre. The combined ages of the monkey and its
father total 4 years and the weight of the monkey is as many
kilograms as his father is years old. The father is twice as old
as the monkey was when the father was half as old as the monkey
will be when the monkey is three times as old as the father was
when he was three times as old as the monkey was. The weight· of
the weight plus the weight of ~he rope is half as much again as·
the difference between the weight of the weight and the weight
of the weight plus the weight of the monkey.

How long is the rope?

00000000000000000000000000

A

j
/

c



32

A BRITISH DEVELOPMENT

The London Observer for 3.12.78 carried an item by
Auriol Stevens, their education correspondent. Its heading
was "Sixth form maths may be made compulsory". It read in part:

"Mathematics will become compulsory in some sixth forms if
suggestions put forward by a working party of independent school
headmasters last week are adopted.

Maths, the headmasters say, has become essential not only for
scientists and technologists but for any educated person. They
have designed a one-year course for non-mathematicians, and are
asking members of the Headmaster's Conference to experiment with i1

The move reflects the growing importance of mathematics.
Demand for courses by schoolchildren and for maths qualifications
by employers, universities, polytechnics and colleges has far out
stripped supply. Schools are having difficulty staffing the
classes needed. Maths graduates are able to take the~r pick of
jobs.

About 3 400 maths graduates are produced each year, and,
although the number of maths and science graduates teaching in
schools has trebled in the last 25 years, figures published by
the Education Deaprtment" show a sharp rise in the demand for
maths teachers, with more than 1 100 vacant places."

MONASH LECTURES ON MATHEMATICAL TOPICS) 1979
Monash University Mathematics Department invites secondary

school students studying mathematics, particularly those in years
11 and 12 (R.S.C.), to a series of lectures on mathemat~cal topi~s

The first lecture of 1979 will be given by the Chairman of the
Mathematics Department, Professor G.B. Preston, who will speak on

"Mathematical Paradoxes tl
,

Friday, 23rd March, 1979,
at 7 p.m. in the Rotunda lecture theatre Ri.

The lectures are free, and open to teachers and parents accompany
ing students. Each lecture will last for approximately one hour,
and will not assume attendance at other lectures in the series.
The lecture theatre Ri is located in the "Rotunda", which is
linked to the Alexander Theatre at Monash. For further directions
please enquire at the Gatehouse, in the main entrance in Wellingto
Road. Parking is possible in any car park at Monash.

Further lectures are planned for April 6, 20; May 4; June 8,
22; July 6, 20; August 3, and details of these will be available
at the first lecture and a complete program will also be posted
to schools.

Enquiries: G. Watterson
Phone: 541 2550~
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