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What happens, from generation to generation, to the size of
a population of insects? Our leading article this issue, by
Peter Kloeden, discusses some possible mathematical models that
have been used to try to find answers to this question. The
mathematics used includes some that has been discovered only
recently and has helped to unravel and give an explanation for
what at first sight seemed bizarre and almost random fluctuations
in population sizes.

This year has seen an increase in the number of schools
taking Function. We have tried to put into effect the suggestions
‘we have received in letters from readers. Continue please to
make comments. We would like more articles from school students
please. They do not have to be on difficult subjects. Anything
that interests you will probably interest your friends.
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THE FRONT COVER
J. O. Murphy, Monash University

"~ the trigonometrical functions acting in fact as a kind of
kaleidscope" is a description, extracted from a section on
repeating curves in a book on Curve Tracing, by P. Frost, first
published in 1872, of the form of curves whose equations involve
trigonometrical functions of the coordinates in place of the
coordinates themselves. If f(x,y) = 0 is the equation of any
curve, then by replacing x by a trigonometrical function of y and
y by a trigonometrical function of z, a possible new curve,
using sines for example, is given by

f(sin y, sin x) = 0.

There appear to be no specific applications for this approach in
curve tracing other than the development of elegant figures which
are obtained from symmetrical arrangements. The total effect is
made up of a basic pattern repeated periodically across the
plane. '

The front cover diagram is based on the equation

sin3y + sian - 3a sin y sin x = O,

3

derived from the auxiliary equation x° + yS - 3axy = 0, where a

is a parameter. For a < V§/2 loops are obtained which all pass
through the origin (0,0) and when a = ¥2/2 the loop, which is the
largest one possible, touches the lines y = % and x = % and has a
discontinuity in its gradient at the point of contact with these

lines. For V?/Z < a < % we have closed curves which are centered

on the point (%,%) and for values of a > % the sine type curves
result.

Our computer drawn version of the curve compares very well
with the diagram published in Frost's book mentioned above and in
view of the total computing effort involved, running time and pro-
gramming, we now have considerable regard for the accuracy of the
techniques applied by Frost over one hundred years ago. The
numerical procedures applied for plotting the curves used the Runge-
Kutta -method for solving systems of simultaneous differential
equations. This now well known numerical method was initially
developed some years after the first publication of Frost's book
by Runge (about 1894) and modified a little later on by Kutta.

Frost also exhibited drawings of the interesting curves

tansy + sinsx - 3a tan y sin z = 0

and tan3y + tansx -~ 3a tan y tan * = O

which are clearly other trigonometrical variations of the above
auXiliary equatlon' 0 0 0 0 O W W W W



STABILITY AND CHAOS IN INSECT
POPULATION DYNAMICS
Peter Kloeden, Murdoch University

For many species of insects, such as cicadas, the insects of
a given generation lay eggs and die before any insects of the next
generation appear. Biologists say that such species have non-
overlapping generations. Compared with human beings this is a
relatively uncomplicated situation, with the population of the
next generation depending only on the population of the current
generation, being related to it by what mathematicians call a
difference equation.

A difference equation is an equation of the form
@, = flz,) (1)

where f(z) is a known function and n = 0,1,2,.... In the
biological context being considered here, the function f(x)
depends on the particular species of insects, for which x, and

th

are the populations of the = and (n + 1)th generations,

x
n+1
respectively. Equation (1) says that for this species the

population T, 1 of the (n + 1)th generation is equal to f(xn)

where x, is the population of the nth generation. Moreover this

relationship holds for all generations n = 0,1,2,.... Consequent-
ly if the population zq of the initial generation is known, then
the populations LsFg,Tgsee s @pyens of all successive generations

can be calculated by repeatedly using equation (1):

@y = f(8g), @y = f(51), o5 = f(25), .- (2)

The sequence Ls&q B, e, thus describes the population

nr
dynamics for this species of insects and initial population.
Usually a different initial population will give a different
sequence of populations.

The simplest kind of difference equation has the form

T, T 0X, (3)
where o is a constant. Here the function f(x) = oax is a linear
function and equation (3) is called a linear difference equation.
For insect populations the constant o is called the growth
coefficient of the species under consideration. It is the ratio
of populations of any two successive generations and is of course
a positive number. For such an equation the simple formula

z = a’x ' (4)

n 0
th

expresses the population z, of the n generation in terms of =

and the initial population Ly (To see this, note by (2) that

_ - _ -2
xq = Az, T, = AXxy T u(axo) = 4" and so on.) Such a formula

0’




is called a solution of the difference equation. Knowing it is
very useful because the population for any initial population and
generation can then be quickly calculated without having to do
the tedious iterative calculations in (2). More importantly, it
allows a complete classification to be made of all possible
behaviour of the population dynamics. For difference equation
(3) there are three different possibilities depending on the size
of the growth coefficient a:

n
Case 1. When o > 1, then o = ®» as n » «® and so x, > © ag

n+o for all positive initial populations. Here the population
grows larger and larger with successive generations. This is
called exponential growth and was discovered by the 18th century
English clergyman Malthus, who made dire predictions of a future
world of standing room only!

Case 2. When o = 1, then a” = 1 and so x, = *, for all =n.

Here the population remains constant for all future generations,
which is called zero population growth by the American biologist
Paul Ehrlich. It offers a more optimistic view of the future
than the unbounded exponential growth of case 1.

Case 3. When 0 < a < 1, then a” > 0 as n » » and so x, 0

as n + « no matter what was the initial population. Here the
population tends to extinction. This is called exponential decay
and is well known to nuclear physicists with the radioactive
decay of elements such as plutonium.

In the past biologists often used linear difference equations
like (3) as models of the dynamics of insect populations. A major
reason for this seems to have been the simplicity and completeness
of the above analysis. Such models are however rarely realistic
and it is not too hard to see why: a larger population requires
more food and living space, the availability of which are not un-
limited. Also pollution and other environmental stresses in-
crease as the population increases. These factors not only limit
the population that can be supported, but also tend to decrease
the rate of population increase as the population approaches its
maximum saturation value. Hence the growth coefficient o in
equation (3) is not a constant, but decreases as the population
increases to its saturation value, where there is no growth. The
simplest way of describing this mathematically is

a = B(S - x) (5)

where B is a positive constant and S is the saturation population.
With this varying growth coefficient the difference equation
becomes

Topq = B(S - xn)xn (6)

with f(x) = B(S - z)x, which is a quadratic function, so equation
(6) is a nonlinear difference equation.

For equation (6) to be biologically realistic some restrict-
ions must be placed on the values of B and x. First, the
_population x cannot be negative and cannot exceed the saturation
population S, so must be restricted to the interval 0 < z < S.
Second, the constant B must be restricted to the interval



0 < B < 4/5S. To see why it cannot exceed 4/S note that the
guadratic function f(x) = B(S - z)x has the maximum value BS
when =z = S/2. As all population sequences are to lie in the

2/4

interval 0 < x < S, this maximum value 652/4 cannot exceed S.
See figure 1.
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Figure 1.

Unfortunately nobody has been able to discover a simple
formula like (4) for the solutions of the nonlinear difference
zquation (6). This makes an analysis of the behaviour of its
sopulation sequences much more difficult than for the linear
lifference equation (3), but such an analysis is well worth doing
cecause, as will be seen below, some very interesting and unusual
things can happen. To make it simpler, a new variable z = z/5,
the ratio of population x to saturation population S, will be used.
Substitution into equation (6) and using a new constant y = BS
zives a new difference equation

o1 " Y(1 - 2 )= 7)

n n

vhich has the same quadratic form as equation (6), but with B
replaced by vy and S set equal to 1. Consequently the restrictions
>n 8 and x to make equation (6) biologically meaningful become

)< 3z <1and 0 < Y <4 in terms of y and z for equation (7).

The behaviour of the sequences of population ratios
20,8158 gs .. depends crucially on the magnitude of Yy, with more

and more interesting and unusual possibilities as Yy gets closer
to its upper bound 4. Unlike the linear difference equation (3),
the behaviour here in many cases also depends very much on the
initial population ratio Zq-

The simplest case is one of exponential decay which occurs
vhen 0 < y < 1. To see this note for any O < z < 1 that
J)SX1-2<1and so vy(1 - 2)z < yz, which gives

<
241 Ya, (8)
for n = 0,1,2,... when used in equation (7). Repeated application
>f inequality (8) and the fact that population ratios are non-
aegative leads to the bounds

0 < s, < ynzo (9)



for n = 1,2,3,... . (To see this note by (8) that 24 < Yzq,
Zg < Y24 < Y(YZO) = Yzzo, and so on.) These bounds do not give

an exact formula for the solution of difference equation (7) as
(4) does for the linear difference equation (3), but they are Jjust
as useful in the case under consideration in investigating the
behaviour of the population ratio sequences. Here 0 < y < 1, so

Y” -+ 0 as n > « and hence from the bounds in (9) g, 0 as
n -+~ » for every initial population ratio 24 Thus for 0 < y <1,

every population ratio sequence decays exponentially to zero,
which corresponds to the extinction of the insect species.

Note here that if the population ratio is zero then it
remains zero for all future generations, which is biologically
expected for a closed environment without immigration from
elsewhere. Hence the population ratio sequence BsB1s8gs ...

corresponding to initial population ratio Bg = 0 consists only of
the zero population ratio, that is z, =0 forn=0,1,2,...

This zero population ratio is called an equiZibrium population
ratio of difference equation (7) and biologically corresponds

to zero population growth. Mathematically an equilibrium
population ratio is a fixed point of the function f(z) = v(1 - z)z
in terms of which difference equation (7) is defined, that is

2 = 0 satisfies the equation

z = f(z). (10)

When 0 < y < 1 the zero population ratio z = 0 is the only
equilibrium or zero population growth population ratio. The above
analysis shows that every other population ratio sequence con-
verges towards this equilibrium population ratio, which is then
said by mathematicians to be stable. (The terms equilibrium and
stability here are borrowed from mechanics.) Mathematically this
means for the case O < y < 1 that the behaviour of the population
ratio sequences of difference equation (7) is very regular and
predictable. Biologically it means that the insect species is
doomed to extinction, which is not necessarily a disaster if the
insects are a pest.

The next case is when vy = 1, where again the only equilibrium
population ratio is z = 0. But do all population ratio sequences
converge to this zero growth population ratio? As y = 1 the
second inequality in (9) gives no useful information here. A
few numerical calculations illustrated in figure 2 for different
initial population ratios seems to indicate that the sequences

do converge to zero. 4
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To prove this mathematically note that 0 <1 - 2 < 1 and so
(1 - z)z < z for all 0 < z < 1, which gives

0 < 3z < z

n+l n

for n = 0,1,2,... when used in equation (7). Hence the success-
ive population ratios in a sequence are decreasing. As z = 0 is
the only equilibrium ratio this means every sequence of population
ratios must converge to it. (They must converge because they are
nonnegative and decreasing. Also they cannot converge to a non-
zero population ratio, because that population ratio would be
equilibrium population ratio for difference equation (7), which
would contradict the fact that z = 0 is the only equilibrium
population when y = 1.) Consequently when y = 1 the zero
population ratio is also stable. There is however a slight
difference from the first case in that the population ratio
sequences all converge to zero, but do not converge in the rapid
exponential fashion of the first case indicated by the second in-
equality in (9).

The next case is when 1 < vy < 3. Here there are two equili-
brium population ratios for difference equation (7), namely z = 0O

and z = 1 - Y—l. To see this solve equation (10), that is,

z = y(1 - 2)z, for z. This can be done either algebraically or
graphically, where the equilibrium points are just the inter-
section points of the graphs of y = 2z and y = Y(1 - 3)z. See
figure 3.

A y=s

1-Y

Figure 3.

There are now two zero growth population ratios. The first is the
same extinction ratio z = 0 as in the earlier cases and the

second is the positive ratio z = 1 - Y—l. What happens now to the

population ratio sequences for initial population ratios different
from these two equilibrium ratios? Do they converge to one or the
other equilibrium ratio? Numerical calculations for y = 2 are
illustrated in figure 4 for several different population ratios.
These suggest that the population ratio sequences with initial
ratio zq satisfying 0 < 2q < 1 converge to the nonzero equilibrium

ratio 2 = 1 - Y—l, with only those sequences starting at z2q = 0

or 1 converging to the zero equilibrium ratio.
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Figure 4.

To prove this mathematically is not so simple. On changing

variables to d = 3 - 1 + Y_l difference equation (7) becomes
_ -1
dpe1 = B, ~ LAY
_ -1 _ 1 _ -1
©osvy T =d(d, -y +1) -1+ y
- 2
= (2 - Y)dn - de. (11)

1

When 2, is close to 1 - y ~, then dn is close to 0 and di is even

closer to 0. Neglecting this quadratic term in (11) then gives
the linear approximation

dn+1 = (2 —Y)dn' . (12)
and so
d, = (2 - M, (13)
forn = 0,1,2,... . As 1 <y < 3, then -1 < 2 - Y < 1 and so
(2-—Y)n.+ 0 as n > ». Hence dn + 0 as n > » or equivalently
2, > 1 - y_l as n > « when dy is sufficiently close to 0 or 24

sufficiently close to 1 - Y‘l, that is the population ratio

sequences all converge to the nonzero equilibrium ratio 1 - Y"l

whenever they start sufficiently close to it. Actually every
population ratio sequence with initial 2q satisfying 0 < zo,< 1

converges to the nonzero equilibrium ratio 1 - Y—l. To see this
note from figure 3 that for any such Zq the successive ratios 2,

eventually get close enough to 1 - y_l for the linear approximation
(12) to become valid. The only population ratio sequences which do

not converge to 1 - Y'l

are those starting at 2y = 0 or 1. Dis-
regarding these two extreme cases, the nonzero equilibrium popu-
lation ratio 1 - Y_l is thus stable. Biologically this means
there is a stable nonzero population with zero population growth.
Interestingly when 2 < y < 3 the population ratio sequences

oscillate about the equilibrium ratio 1 - Y-l as they converge n
towards it. This is because 2 - Y is then negative, so (2 - YY),
and hence by (13) dn too, oscillates in sign. Sueh dying or



damped oscillations are actually observed in many laboratory
experiments, which suggests that difference equation (7) is a
fairly realistic model. See figure 5 for y = 2+5.
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When Yy = 3 numerical calculations, not illustrated here,
indicate that the behaviour of the population ratio sequences is
much the same as in the previous case. The interested reader is
invited to think of how to verify this mathematically. Note that
the linear approximation (12) does not give any useful information
in this case.

What happens when y > 3? As in the two previous cases both

0 and 1 - Y-l are still equilibrium points, but neither is stable
as there are population ratio sequences which do not converge to
either of them. In fact there are population ratio sequences
which are cyclic or periodic, that is which oscillate between
several different population ratios. The number of different
population ratios in such a cyclic sequence is called its period.
Sequences consisting of just one of the equilibrium ratios 0 or

1 - Y_l can be considered cyclic with period 1. The simplest non-
trivial cyclic sequence has period 2, that is consists of just two
different population ratios, between which it alternates. If
these two population ratios are a and b respectively then such a
cyclic sequence has the form

2y = a, 8y = b, 2y = a, Bg =‘b, 34 = a,

=g for n=20,1,2,... . Also such a sequence satis-
n+2 n

fies difference equation (7) so for n = 0,1,2,...

2,0 = £z q) = F(£(2))
where f(z) = vy(1 - z)z. Hence a and b satisfy the equation
£(F(2)) (14)
Y(1 - f(2))F (=)
Y(1 - v(1 - 2)z)v(1 - z)=.

Hence =z

Y
]




Note that both of the equilibrium ratios 0 and 1 - y_l also
satisfy equation (14) when Yy > 1 since they both satisfy equation
(10). When Y < 3 they are the only values of 3 which satisfy
equation (14), but when y > 3 there are another two values

Y1 +v) £ /YA + Y)Y = 3)
2y

These two values form a cyclic sequence of period 2. For
instance when Yy = 3°1 they are approximately equal to 0+5580 and
0+7646, respectively. The cyclic sequence starting at the
smaller of them is illustrated in figure 6.

100
0-8 L
0.6 /\/\’/
0-4 )
0- 2L
1 1 L 1 1 1
0 1 5 3 a 5 generation
Figure 6.

When Yy lies between about 3 and 34 it can be shown that the
only cyclic sequences present are the cyclic sequence of period 2
and the two cyclic sequences of period 1. It can also be shown
that every other sequence of population ratios converges to one
of these cyclic sequences. Hence the behaviour of the populations
is still quite regular and predictable, although slightly more
complicated than in the earlier cases. The mathematical details
are however quite complicated and will thus not be given here.
The interested reader may wish to do some numerical calculations
to check that this is really what does happen.

When v is slightly bigger than 3+4 there is also a cyclic
sequence of period 4. A slight increase in Y will cause a cycle
of period 8 to appear, a further increase g3 cycle of period 16,

and so on with cycles of periods of the form 2k appearing as' vy is
increased more and more. In each case the increase in Yy needed

to cause a new cycle of higher period to appear gets smaller and
smaller. However in all cases every sequence of population ratios
converges to ome of the cyclic sequences, so their behaviour is
still quite regular and predictable, although becoming increas-
ingly more complicated. To see this it is well worth doing some
numerical calculations with different initial population ratios
and different values of vy, for example with y equal to 3-4, 345,
3¢5 and 3-55.

So far all of the cyclic sequences have had periods of the

form 2k and the behaviour of all population ratio sequences has
been fairly regular, though somewhat complicated. When y is in-
creased above about 3+6 cyclic sequences appear with periods equal
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to an odd number or divisible by an odd number other than 1 and
the behaviour of some sequences of population ratios becomes

very erratic or chaotic. In fact many of the sequences do not
converge to cyclic behaviour at all. Also many sequences start-
ing very close to each other do completely different things.
Biologically it is a very disturbing discovery, which has become
known as chaos. It means that virtually nothing can be predicted
in advance about the behaviour of any given population ratio
sequence, even though this sequence obeys a fairly simple
difference equation. Spurred on by the concern this was giving
to biologists, two American mathematicians Li and Yorke proved a
remarkable theorem in 1975 using very sophisticated arguments
from the branch of mathematics called topological dynamics. They
showed that chaos occurs whenever a difference equation (1) has a
cyclic sequence of period 3, in which case it also has cyclic
sequences of every other period and infinitely many different
sequences which do not converge to cyclic behaviour. Difference
equation (7) has a cyclic sequence of period 3 when Y is greater
than about 3:8. This can be seen by solving the equation

z = F(F(f(=z))),

which is not an easy thing to do. Some numerical calculations for
Yy = 4 in figure 7 show that the behaviour of the population ratio
sequences is indeed chaotic.
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Figure 7. !

Actually chaotic behaviour occurs whenever there is a cyclic
sequence of period divisible by an odd number other than 1, for
2xample 3, 5, 6, 15. For difference equation (7) this occurs
when y is just greater than 3+57. This was proved by the
nathematician Shgrkovsky in the early 1960's, using mathematical
arguments familiar to every first year mathematics student. His
work seems however to have been motivated purely by mathematical
curiosity, not the need to explain a disturbing biological
ohenomenon. Consequently it attracted very little interest, even
from other mathematicians, for about 15 years. The passage of
time has however made the world more appreciative of his labours.

Exercise. Investigate the behaviour of the population
sequences of the nonlinear difference equation

r(l—xn)
T4 = Te

for r > 0. (Chaos occurs here when r is greater than about 3-7.)

0 0 00 O W 00 0 W 0 00
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LASERS
Gordon Troup, Monash University

LASER stands for '"Light 4Amplification by Stimulated Emission
of Radiation'", and denotes a machine which does this. The
radiation is electromagnetic radiation. 'Amplification' and
'amplify' are technical terms used in the following sense (see
Figure 1). A device accepts a small signal, and by using some
external source of power, converts this to a larger signal of the
same kind. Power is drawn from the external source.

power source

small \/\/\/\_ amplifier ] large
signal signal

Figure 1.

If a tuning fork is struck and held only in the hand, it
produces a very weak sound. However, if its base is placed on
a large box, the sound is much louder. This is often termed
amplification, but the energy comes from the tuning fork itself.
'Matching', or 'transducing' is a better term for this phenomenon.

The majority of lasers in teaching laboratories are actually
oscillators rather than amplifiers - they generate their own
signal, taking power from an external source. How does an
amplifier become an oscillator?

Consider a loudspeaker system in a hall. We have all heard
the 'squeal' at some time when the amplifier has too high a gain
(ratio of output signal to input signal). What happens is that
some of the output signal from the loudspeakers reaches the
microphone and is fed back into the amplifier again. When the
gain of the amplifier is sufficiently high, and the signal that
is 'fed back' is in phase with any other input signal at a
particular frequency, the system becomes an oscillator - it emits
a signal without, eventually, the necessity for any outside 'input'
signal. (See Figure 2.)
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power source

input > amplifier e output
4
A \
feedback path eventual
oscillator

Figure 2.

The build-up of these oscillations, whether at a frequency

of a few hertz or ~-1014 hertz (optical frequencies) can be
described by a cubic equation - the simplest equation of
'catastrophe theory' (see Function, Volume 1, Part 2, pp.3-11).

What happens in a laser oscillator (we can see why 'loser'
is not used!) is usually the following. Some material (an ionised
gas [plasmal , or a liquid, or a solid) is made amplifying at some
particular frequency. The amplifying material is usually rod-
shaped (long and thin), and mirrors are placed at e€ither end of
the rod. If for the moment we forget the spread of light by
diffraction (the length and width of the rod are usually very
large indeed compared with the wavelength of the radiation
concerned), then reference to Figure 3 will show that, for plane
parallel mirrors for example, only that radiation travelling along
the axis of the amplifying rod will remain in the system for any
appreciable length of time. The 'feedback' mechanism is obvious:
the radiation emitted from the end of the rod is reflected
directly back into the rod.

R

2 .
Ml,M2 - mirrors
LL C - amplifying material
= Rl - path confining radiation
1 within the system
+ Rz - path not confining radiation

% M within the system
1 c 2

Figure 3.
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When the mirrors are spaced by an integral numbgr of half-
wavelengths at the frequency at which the rod ampllfle; (remem?er
wavelength x frequency = wave speed), and the power gain per single
pass through the system is just slightly greater than the power
losses due to diffraction and imperfect reflection, the system
becomes an oscillator, generating an output signal by itself, but
of course drawing power from some external source.

To understand why the laser oscillator needs no egternal )
signal to trigger it off, we need now to consider.the 1n?eract10n
of atoms or molecules with electromagnetic radiation. F}rst we
need to know that atoms and molecules can only possess discrete,
and not continuous values of energy. Consider, for example, the
hydrogen atom. From the point of view of electromggpetlc.theory,
the negatively charged electron can occupy any position with
respect to the positively charged proton (nucleus). The stable
orbits for the electron round the nucleus in the square-law
Coulomb force field will be circles or ellipses, and the values
of the total energy (potential plus kinetic) open to the whole
system are continuous. But from the point of view of quantum
theory, only certain values of the total energy are allgwed. A
particle on an inclined plane has a continuum of potential
energies open to it; a particle on the rungs of a ladd?r, say,
has only discrete (stable) potential energies open to it.

Quantum theory also tells us that the atom or molecule can
only exchange energy with the electromagnetic radiation field
under the following conditions. If the frequency of the electro-
magnetic field is f, then

hf = B, - By (1)
(Bohr frequency condition) where E2,E1 are two discrete energy

states of the molecule, E2 > El,and h is Planck's constant. If

the energy of the atom increases, we have absorption of radiation:
if the energy of the electromagnetic field increases, we have
emission of radiation. '

In 1917, Einstein considered the absorption and emission
processes, and put forward the following theory. Firstly, atoms
in an excited state (EZ’ say) would drop spontaneously to the

ground state (El’ say), with the emission of radiation of energy

and frequency given by equation (1). This is known as spontaneous
emission.. The elementary probability GP(S) that this should occur

in a small time interval §¢, Einstein wrote as
SP(S) = N2 A21 St (2)

where N2 is the riumber of atoms in state Ez and A21 is a constant
depending on the atom. Atoms in the ground state E1 will absorb

energy from the radiation field at the frequency determined by
equation (1); the elementary probability éP(a) for this is

6P(a) = Nl 312 Uf St (3)

where Nl is the number of atoms in state El, and Uf is the energy-
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density per unit frequency range of the incident radiation. 312
is a constant depending on the atom.

In the presence of radiation of the appropriate frequency
(Equation (1)), atoms in the excited state will be stimulated
to give up their energy by the radiation. This is called
stimulated emission, and can-only occur in the presence of
radiation of the right frequency, whereas spontaneous emission may

occur whether such radiation is present or not. Further,
stimulated emission bears a definite phase relationship to the
incoming radiation whereas spontaneous emission does not. In

general, stimulated emission adds to the incoming radiation
(interferes constructively with it) whereas spontaneous emission
can add to it or subtract from it (interfere constructively or
destructively with it). Hence spontaneous emission is ''noise'".

The elementary probability GP(st) for stimulated emission is

GP(St) = N, Byy Up 8t (4)

where Bzi is a constant depending on the atom. Einstein then
postulated that

Big = Baq ' ; 5)
i.e. that the absorption and stimulated emission coefficients,
as they are called, are equal. He further showed that, for an
enclosure large compared with the wavelength of the interacting
radiation, .

= 2 -3
A21 = B12 X hf x 8nf% (6)

where ¢ is the speed of light. It turns out that in the micro-

wave region, where the wavelength of the radiation is of the

3

order of a centimetre the factor 8nf20_ is so small that 4 is

) 21
negligible. Consequently, we need only consider equations (3)
and (4). We see that if Nz > Nl (more atoms in the upper energy

state) the probability of stimulated emission is greater than that
for absorption, so that the net result is an increase in energy
of the radiation at the approptiate frequency: i.e., amplification.

In thermal equilibrium, the number of atoms in their various
energy states is distributed so that
N2 N e[ _(EZ—El)/kT]

vy

where k is a fundamental constant called Boltzmann's constant:
this is called the Boltzmann distribution over the energy states.
So in thermal equilibrium Nz < Nl, and we shall always get a net
absorption of energy. We must find some way of making Nz > Nl

to obtain amplification; i.e., we must put energy into the
system to destroy the thermal equilibrium. Before going on to
consider how we may do this, it is worth considering equation (6)

3

again for the optical situation, where 8ﬂf2c_ is large, and it
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would therefore appear that (Equation (2) spontaneous emission

(noise) dominates. It turns out that 8wfzc-3 is the number of
modes per unit volume per unit frequency range for the radiation

at the interaction frequency. A mode is a solution of Maxwell's
electromagnetic equations - which for this case reduce to a wave
equation - satisfying the boundary conditions. So if we can reduce
the number of modes available we can reduce the spontaneous
emission power. How do we do this? We can make the container

for the atoms long and thin, as discussed at the beginning of the
article, and so define only a single preferred direction by the
careful use of mirrors.

Let us further suppose that in our system, we have achieved

the situation Nz > Nl‘ An atom may spontaneously emit along the

preferred direction. This radiation will be amplified by the
stimulated emission process, pass to one of the mirrors, be
reflected (fed) back, and so on, until eventually if the gain is
sufficiently high, oscillation is set up. So it is the spontaneous
emission in the laser which triggers the onset of the oscillations.

Finally, let us consider a possible way of gettiﬁg more atoms
into the upper state E2 than the lower state El. Basically, we
need at least one extra energy level - let us call this ES’ and
3<l\72<1171.
But suppose by some means (e.g. an electric discharge; electron
bombardment; even electromagnetic radiation at the appropriate

frequency) we make Né ] Ni, while leaving N2 relatively‘

undisturbed. Since we cannot, in this situation, create or des-
troy electrons,N1 + N2 + N3 is a constant; the dashes denote non-
thermal equilibrium. Then it can occur that N2 > Ni, and the
condition for amplification is fulfilled. Note that the energy

to 'pump' the system, as it is called, comes from outside the
atoms; and since (E3 - El) > (Ez - El) the laser is not generally

1et‘E3 > Ez (see Figure 4). In thermal equilibrium, ¥

a particularly efficient system.

Es
'pump T
[ P2
energy Y A P
\~ 1
Figure 4. 'signal’
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Of course, actual energy-level diagrams and situations may
be much more complex than have been shown here. And there is a
great deal of very beautiful, if complicated, theory that has
been omitted. If you get the impression that there is much more
physics to the laser than mathematics, you are correct. It is
perhaps the most wonderful and elegant invention of the twentieth
century, and requires a great deal of physics (naturally with the
appropriate concomitant mathematics). for complete understanding.

O 00 0 0 W O 0 0 o 0 00

DESIGNING A PRACTICAL CALENDAR
- FOR MARS
George Strugwell, 106 Bell Street, Coburg

The planet Mars may be regarded as the Earth's little
brother: their axial tilts relative to their respective orbital
planes are about the same, so that each displays north and south
polar caps which wax and wane with the seasons; their days are
approximately the same length; and the product of the sidereal
year and equatorial diameter of the one precisely equals the
other. Of all the planets and satellites of the solar system,
apart from the Earth, Mars alone presents the possibility of
colonization or, at any rate, of the establishment of an
observation station and, where there are men, the need will arise
for a calendar.

The reference books provide the following particulars:

Martian sidereal day = 24 hours 37 minutes 22678 seconds (in
terrestrial solar units)
= 1-025 96 terrestrial solar days (in
terrestrial solar units)
Martian year = 686 days 23 hours 30 minutes 53 seconds (in
terrestrial solar units)
= 686-979 78 terrestrial solar days.
Therefore, a Martial year = 686-979 78 : 1.025 95
= 669:599 Martial sidereal days.

In its orbit around the sun the Earth revolves once more 1in
regard to the stars than to the sun: i.e., . a year of 366-2422
terrestrial sidereal days equals one of 3652422 terrestrial solar
days. Likewise for Mars, a year equals 668-599 Martian solar days.
Thus in a thousand Martian years there will be 668 599 solar days,
which to preserve reasonable uniformity of length and division
into whole days will need to consist of 599 years of 669 days and
401 years of 668 days. A proposed arrangement appears hereunder.

A year of 669 or 668 days will need subdivisions and the ones
suggested are 24 months of 28 or 27 days each: they have nothing
to do with the moon, but are so-called merely because they are
approximately a terrestrial month long. The names proposed are
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combinations of those of the 24 letters of the Greek alphabet and
of the Greek cardinal numbers one to six repeated four times, i.e.
once each quarter-year. Since Martian geographical nomenclature
is mostly, if not entirely, Greek, names derived from that
language seem most apt for the purposes of a Martian calendar.

For practical workaday purposes and for religious reasons the
seven-day week will need to be kept up as in the Gregorian
calendar, but with one important exception. A year of 669 days
plus one of 668 days equals 1337 days, i.e. exactly 191 weeks.
However, 99 times in a thousand years a.day - here called
"Decaday" - will appear quite outside the seven-day week and on
those occasions give rise to a three-day weekend. Thus, the
Martian calendar will be maintained as a perpetual biennial
repetition, always commencing on a Sunday and ending on a
Saturday (or Decaday) as follows:

MARTIAN PERPETUAL CALENDAR

ALPHEN BEDU GANTRIA DELTETRA
S M T W TP F S§ys MT WTU F Sy S M T WT F,  S|S MT W T F S
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 12 3 4 5 6 7
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17 18 19 20 21 22 23 [17 18 19 20 21 22 23 |17 18 19 20 21 22 23 |17 18 19 20 21 22 23
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. ALPEEN BEDU GANTRIA DELTETRA
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most of the even-numbered years:

There are always 669 days in odd-numbered years and 668 in

-0 (other than -000) also have 669 days, the additional day,
Decaday ZSR Omeghex being outside the seven-day week and occurring

between Saturday 27R Omeghex and Sunday 1lst Alphen.

cycle of a thousand years there are:

Odd-numbered years

Decadal other than millennial years

Millennial year
Other even-numbered years

500

99

1

1000

of the latter those ending in

Thus, in a
of 669 days = 334 500
of 669 days = 66 291
of 668 days = 668
of 668 days = 267 200
years equals 668 599

days
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27 days has ZETHEX

As well does MUHEX and SIGMEX,
All the rest have 28, :

But to keep the record straight,
OMEGHEX in even-numbered years
Loses one; but shed no tears,

A holiday is on the way

With the 28th a Decaday.

Derek A. Holton

© 0 © © 0 0 00 00 W

HOW TO TRISECT AN ANGLE

Let /BAC be any angle; an angle whose measure

D

— — — B!

B g

G
1 Pi
is 3 of that of [/BAC can be constructed as follows: construct BB'
parallel to AC, and BP perpendicular to BB' (see the figure).

Mark a length equal to twice B4 on a ruler then by placing your
ruler on the point 4 turn it and slide it until the marked length

has its ends on BP and BB' - as GD in the figure. [DAC is
1
3 of /BAC.

PROBLEM 5.1

Prove +this construction: it may help you to join B to the
mid-point of GD.

Addendum. This construction appears in a ménuscript of
Isaac Newton which was written about 1672, but whether it is
Newton's own idea, or originates earlier I do not know.

Gordon C.Smith

' 00 00 00 0 O 0 0 0

At every stage in business, a disaster can occur. These
kinds of considerations can make business a little less satisfying
than proving a good theorem. For instance, once Pythagoras had
his theorem down, he didn't have to worry about people finding a

. better one, or producing a cheaper one, or some kid swallowing a
triangle and gagging on the hypotenuse.

Sam Savage - inventor of Shmuzzles.
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TO RUN OR NOT TO RUN?
P. L. Galbraith, University of Queensland

An interesting and much discussed question is whether it is
better to run or walk to the nearest 'shelter when caught in the
rain with no protection.

It has been rumoured that this problem was first formulated
by English cricketers during intervals in which the sun interrup-
ted their adjournments for rain. The development of the umbrella
field was seen as an attempt to find a comprehensive solution.
Recently however Weiner (1) has assured us through his reference
(2) that the problem has exercised the minds of a wider audience.

The problem can be modelled in a number of ways: one (two
dimensional) version forms the basis of this article.

Assumptions

(1) A Test Match is due to start at the M.C.G. (This is an
existence condition: it ensures the rain.)

(2) The rain has speed u, density p (drops/unit area) and falls
in a direction making an angle o with the vertical.

(3) A person caught in the rain runs at speed U on horizontal
ground towards a shelter at distance L. (U can have any constant
value up to the maximum of which the individual is capable.)

While running the body is angled at 6 to the direction of
motion where 0 < 6 < /2.

(4) We consider the situation in which the direction of the rain
is with or against the motion of the victim. This makes the
problem a two dimensional one. In these circumstances no rain
will strike the sides of the person who may thus be modelled as a
plane figure with a front and back each of area 4. (This involves
the further assumption that rain falling on the head top is
negligible in comparison to that falling on the front and/or back.)

Case 1: Running with following rain.
Y

A

aYx Figure 1.

X




AB represents the cross-section of the person described.
in the assumptions who is moving parallel to the X-axis with
speed U. # is the inward normal unit vector to 4B from the
'weather side'. Taking the unit vectors Z and j along the X and
Y axes respectively we have

=Ul:;

= sin® Z - cosd j,

W D

u(sina 2 - CcOoso Z).
The velocity of the rain relative to 4B is
u-U=(usin o - U)L - u cosa 4

so the volume of water striking 4B per unit time is given by

pA(y - U).ﬁ pA(u sin o - U)sin 6 + pAU cos a cos 9,

~

1 e A RS

pAl u(cos o cos 6 + sin o sin 6) - U sin 8],

[

pAlu cos(® - a) - U sin 6].

Since the time taken to reach shelter is given by L/U the
total volume of water received by 4B is -

V.= pAlu cos(® - a) - U sin 6] .L/U
= pAL[% cos(6 - a) - sin 9]
= k[% cos(8 ~ o) - sin 6] where k = pAL is constant.
Now for a uniform rainstorm u,o are fixed. If the 'running

angle' 6 is also held constant then V becomes a function of U.

The quantity of water received is thus determined by the
behaviour of the function defined by

S V(Y) =[k % cos(9® - o) - sin 9] provided vV > 0.
A sketch graph of this function is shown in Figure 2.

A

(
&

u cos(6-a)
sin 6 Figure 2.
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u cos(9 - a)
sin 6

is part of an hyperbola) is strictly decreasing the minimum value

is attained for this value of U.

Since V = Qe=U = and the function (whose graph

Maintaining this speed ensures that the velocity of the rain
relative to AB is kept tangential to 4B.

If U is increased beyond this value then the rain has a
normal component inwards to the underside of 4B i.e. the person
is effectively running into the rain by going too fast. Such a
situation is not satisfactorily described by a function which
takes negative values (which would happen here) so a re-examination
of the solution is suggested.

This is achieved by adjusting the expression for the volume
of water striking 4B per unit time to pA | (y - U).#| which can never
be negative. i

Recalling that |z - a| = 2z - a if z »
a - x if z <
we see that the volume function becomes

0,
0,

v(U) = k|% cos(® - a) - sin 8],
= k|% - a) - si ~ u cos(® - a)
k[U cos(6 o) sin 9] if 0 < U < Sin g
_ . _u _ . u _cos(8 - a)
= k[sin © o cos(6 a)l it U > =i 5

The graph of this function is sketched in Figure 3.

k sin 8

Y

0 u cos(6-a)

= Figure 3.
sin 6

As U becomes very large the vélume of water received
approaches a value k sin 6 which is independent of U. There are
human limits on U but it seems that running too fast

(U > Z_Egﬁégﬁlgil) increases the wetting properties of the rain.

This might seem a bit surprising so let us check the solution by
an alternative method.
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Figure 4

In order to avoid wetting from the 'underside' the time
taken for rain to fall the vertical distance BD must be less than
or equal to the time taken for A4 to reach 4' when moving with
speed U.

BD < (AD + DA'Y)
U COS O U ’

Hence it is necessary that

AB sin 6 _ (AB cos 6 + 4B sin 6 tan a)

t.e. u cos a U
ile sin 6 < (cos 6 cos o + sin O sin a)
e u Ccos o U cos a
i.e. v < Z_EQE%%_%_E) which checks with the above.
Case 2: Approaching rain.
Y
A
I
B
Q a
0
4 Z ann 4
Figure 5.
In this case we have U = Uz,

-sing £ + cosf g,

IR S

fl

u(-sina Z - coso j),
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S0 that the velocity of rain relative to 4B is given by
¥ - U= -(usin o + U){ - u cos og .

The volume of rain falling on 4B while traversing distance I
at speed U is as before

o

v pAI(% - U).% %

k|sin 6 - % cos(6 + a)|

after substitution and simplification.

= i 2 . > u _cos(8 + aj
Hence Vv k[ sin © 7 cos(6 + a)] if U s s

It

U s ; u cos(b + a)
k[U cos(6 + a) sin € if U < s
Firstly we note that the real possibility exists that

9+0L>%.

If this is so then V(U) = k[ sin & - -Zi cos(8 + a)] for all
U since U > 0.

In this case the graph of V(U) for v > 0 is as shown in
Figure 6.

k sin

Figure 6

The function is strictly decreasing on U > 0 so the volume of
water received is minimized by running as fast as possible.

If 0 <06 + a < % then the graph of V(U) has precisely the
same form as the graph of Figure 3 except that the minimum point

. . — u cos(8 + a)
1s now given by U = —sins -

By moving with this speed the velocity of the rain relative
to 4B is directed along B4.

The two different circumstances are illustrated in Figures
7(a) and (b).
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y
y A
A B uy B
P
T T
3 3
S — = X
A - A
Figure 7(a) 8 + o > %, Figure 7(b) 0 < 6 + a < I
™ ™ i
e.g., 6 = 3 & =7 e.g., 0 =g, o= f%

For the experimentally minded, weather bureau (approx1mate)
figures for various conditions have been glven as

Light shower (15 k.p.h.), sharp shower (45 k.p.h.),
thunderstorm with downdraft (180 k.p.h.).

Interpretation

The model presented here has the following messages for flat
people caught in rainstorms.

(1) 1If caught in heavy following rain run for it.

(2) If the following rain is light do not run as fast as possible.
(The most comfortable course of action is to maintain an upright
position and a speed equal to the horizontal component of the
velocity of the rain. Why?)

(3) If running into the weather take due note of the angle of
the rain. If the body can be inclined so that the (steeply
falling rain) falls on the back then provided that the shower is
not too sharp minimum wetting will be achieved by maintaining the
u cos(® + a)

speed U = <in 8

(4) I1f the oncoming shower is sharp or if it is light but despite
all contortions directed into the face then run for it.

Discuseion

(1) To evaluate the above findings we need to examine our
assumptions in relation to the real world.

Assumption (4) suggests that the results may be of relevance
to humans (particularly advanced weight watchers) but are of
little or no value to plum puddings. On the other hand ginger-
bread men should find the theoretical results highly reliable.
Indeed confidence in -the theoretical results has been increased
by recent research into the origins of the famous gingerbread

3
poem” .
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'Run, run as fast as you can
You can't catch me, I'm the gingerbread man.'

It has been established that these words were first penned
during a heavy rainstorm and are seen to be consistent with the
findings above. .

(2) Returning to the human approximation some subjects find it
difficult to incline the whole body (from top to toe) at a
uniform angle 6 to the direction of motion.

A modification of the model is shown below in which the
lower half (the running part) of the body is held vertical and
the upper half inclined.

/)

With respective areas Al and Az theory can be developed in
an exactly parallel way to the foregoing. Try it.

(3) A further practical problem has arisen in cases where the
optimum value of U has to be calculated. Mathematicians concern-
ed about precision have traditionally carried with them a pro-
tractor, theodolite, or some other means of measuring the angle

of the rain, and a set of logarithm tables. Unfortunately the ;
time taken to calculate U has invariably defeated the purpose of
knowing it. Such people by virtue of the combination of water

and log tables are said to become waterlogged. It is hoped that
the development of the electronic calculator will revolutionize
this whole area. Work is continuing.
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A physicist, biologist and a mathematician were in an air-
craft. They saw below a large flock of sheep all of which were
white, except for one which was black. The physicist concluded
that black sheep occur only rarely on the earth's surface. The
biologist concluded that other sheep, namely the parents of the
one he saw, were probably black. The mathematician concluded
that there is at least one sheep, which,at any rate when viewed
from the top, is black.
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SOLUTION TO PROBLEM 1.1
The problem is:

We have a pack of cards, an even number ¢ of them. By a
"shuffle'" we shall mean that we divide the pack into a top half
"and a bottom half, then put the pack back together again by
alternately taking one card from each half starting with the
bottom half. For instance, if the cards were initially 1, 2, 3, 4,
after one shuffle they would become 3, 1, 4, 2. How many shuffles
does it take for the cards to return to their original position?

Solution

The answer is that »n shuffles are required where » is the

smallest integer such that 2" is divisible by ¢ + 1. For
example, for an ordinary pack of 52 cards, n = 52; for a pack of
12 cards, »n = 12; for a pack of 14 cards, =»n= 4; for a pack of 16
cards, n = 8.

To prove that this is the answer consider what happens when
one shuffle takes place. After the shuffle tke 1lst card has
moved into 2nd place, the 2nd card has moved into 4th place, ...,
the %c-th card (remember ¢ is even) has moved into c¢-th place;

the (%+1)—th card has moved into 1st place, the (%+2)—th card has

moved into 3rd place, ..., and finally the e~th card has moved
into (e-1)-th place. Consider again the last % cards. The

(%+1)—th card has moved to the (2(§+1) - (c+1))—th place; the

(%+2)—th card has moved to the (2(%+2) - (c+1))—th place; ...;
and finally the e-th card has moved into the (2¢ - (e+l))-th place.

, ,e..5C, the

So, in summary, we can say for each », r 3
< ¢ and k is

=1,2
r-th card has moved into the position k% where 1 < k
the remainder obtained when 2r is divided by ¢ + 1.

E

Consequently, after 2 shuffles the card initially in the r-th
place has moved to the place given by the remainder obtained when

22r is divided by ¢ + 1. Similarly, after n shuffles the r-th

card has moved to the place given by the remainder when 2"p is
divided by ¢ + 1.

Thus the cards first return to their original position when
n 1is the smallest integer such that, for each r, r = 1,2,...,¢,

the remainder when 2"y is divided by ¢ + 1 equals ». This will
hold for all » if and only if it holds for » = 1.

Note: When ¢ is even it can be shown that there always

exists an intéger n such that 2" gives remainder 1 when divided
by ¢ + 1. Let E(d) denote the number of positive integers less
than 4 and prime to d: for example £E(2) = 1, E(8) = 4, E(15) = 8,
E(53) = 52, Then it may be shown that the smallest such integer
n is a divisor of E(e + 1).
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SOLUTION TO PROBLEM 1.2
The problem is:

1 have the following options of depositing $100 for one year.
The bank will give me $4 interest at the end of the year. A
Housing Co-operative will give me interest at the rate of 2% per
half-year (compound, so it pays interest in the second half also
on the first half's interest). A Credit Union will give me
interest at the rate 1/3% per month, compound.. A friend says he
will give me interest equivalent to the 4% per annum rate, but
compounding every instant! Which should I choose, and how much
interest do I get?

Solution

This problem has a trick.in it: +the final alternative, which
is described as being "equivalent to the 4% per annum rate' is
hence, by definition, the same as the first alternative. Each
gives $4 interest at the end of the year. The second alternative
gives $2 interest at the half-year and then 2% on $102 (the $100
deposit together with the interest already earned), i.e. $2.04 at
the end of the year. The total interest earned from the Housing
Co-operative is therefore $4.04.

With the third alternative, the Credit Union, if I have $P
invested at the beginning of any month, then at the end of the

1y . 1 _ 1
month I get §% interest, i.e. I have $(P + 566P)—-$P(1 + §-66),
in toto. Since I start with $100, at the end of the first month
I theérefore have $100(1 + 5%6)f hence at the end of the second

month I have $(100(1 + 5%5))(1 + §%6); and so on, ungil finally,
2

at the end of the twelfth month I have $100<1 + §%5> .  This

gives the best return: it may be calculated that, to the nearest

cent, the interest at the end of the year is 4 dollars 7 cents.

SOLUTION TO PROBLEM 1.3
The problem is:

Is 22/2/2022 a Twosday (Tuesday)? How about 2/2/2202?
(See Function (1977), Volume 1, pp 19-23.)

Solution

In the article of Fumction referred to, at the foot of page
22, there is the formula

[26( + 1)] [z [
D + | ) | + Z + [Z] + [Z] - 2J - 1,
where x is the day of the week (z = 0,1,2,3,4,5 or 6, correspond-
ing to Sunday, Monday, ..., Saturday, respectively), where D is
the number giving the date of the month, ¥ the number of the
month of the year 100J + Z, and where, in applying the formula,
January and February in any year are regarded as the 13th and
14th months, respectively, of the previous year.

"

x
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Applying the formula to 22/2/2022 gives

[26(14 + 1)] | l21] , [20]

S 21 + 5 221 - 40 - 1
L7 10 | L] " 4]

22 + 39 +21 + 5+ 5 -40 -1
1+4+0+3+2-1

= 2.

x = 22 +

]

n

So 22/2/2022 is a Tuesday.

Similarly, using the formula for 2/2/2202, we find that
this is also a Tuesday.

SOLUTION TO PROBLEM 3.5

The problem is:

If a side of a triangle is of length less than the average
length of the other two sides, show that its opposite angle is less,
in magnitude, than the average of the other two angle magnitudes.

Solution

Let the sides of the triangle be of lengths a, b, and ¢ with
opposite angles of size 4, B, and ¢, degrees, respectively. We

have to show that if a < (b + ¢), then 4 < (B + C).

Suppose that a and 4 are fixed. Then, as we now show, b + ¢
takes its maximum value when B = (¢, i.e. when b = c.

From
b = € S— = k, say, a constant
sin B sin C sin 4° ’ ? ’
we get b+ ¢ = k(sin B + sin C).
Thus b + ¢ = k(sin B+ sin(180 - 4 - B)),

since 4 + B + ¢ = 180. Since 4 is constant therefore » + ¢ is a
function of B, b + ¢ = f(B), say. Then

£'(B) = k(cos B - cos(180 - 4 - B))
and F£'(B) = ~k(sin B + sin(180 - 4 -~ B));

and p + ¢ attains a (local) maximum where f'(B) = 0 and
f"(B) < 0. Now f'(B) = O when

cos B = cos(180 - 4 - B),
and the only solution to this with 0 < B < 180, is

B =180 - 4 - B,
A

i.e. B == 90 - 5

For this value of B, f'"(B) < 0. Hence b + ¢ takes a maximum value
when b = ¢. Since fhas no (local) minima for the domain of values
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of B, viz. 0 < B < 18Q - A, being considered, B = C gives the
absolute maximum value of f-

An alternative geometrical proof of the above result, which
makes it intuitively clear, can be found as follows. Consider
the side of length a as fixed; if 4 is constant then the remaining
vertex of the triangle is restricted to lie on an arc of a circle
of which the fixed side is a chord; if b + ¢ is fixed then the
remaining vertex lies on an ellipse for which the fixed side has
the foci of the ellipse as its end points. TFor fixed 4 and a,
b + ¢ takes its maximum value when the circle and ellipse touch
and this happens only when b = c.

Now let us return to solving the problem. So we assume that
a < (b + ¢). We shall show that 4 > 3(B + () leads to a contra-
diction, and so deduce that 4 < %(B + ().

!

Since 3(4 + B + C) = 90, A > 3(B + ¢) is the same as
A > 90 - 34, i.e. 4 > 60. If 4 60, then the largest value of
b + ¢, as has just been proved, is when B = ¢. Thus the triangle
is equilateral and a = b = ¢, whence a = (b + ¢); which contra-—
dicts the assumption a < 3(b + ¢). If 4 > 60, then considering
again the case B = ¢ in which the triangle is isosceles, which
gives the maximum value of b + ¢, we easily see that b + ¢ is
smaller than in the equilateral triangle with the same base of
length a (the isosceles triangle on the same base has its apex
inside the equilateral triangle). Hence %(p + ¢) < a, which is
again a contradiction. :

]

The proof of the result required is complete.

SOLUTION TO PROBLEM 3.1
The problem is:

As a classroom project, two students keep a calendar of the
weather, according to the following scheme: Days on which the
weather is good are marked with the sign +, while days on which
the weather is bad are marked with the sign -. The first student
makes three observations daily, one in the morning, one in the
afternoon and one in the evening. If it rains at the time of any
of these observations, he writes -, but otherwise he writes +.
The second student makes observations at the same times as the
first student, writing + if the weather is fair at any of these
times and - otherwise. Thus it would seem that the weather on
any given day might be described as ++, +-, -+ or -- (the first
symbol made by the first student, the second symbol by the second
student). Are these four cases all actually possible?

Solution

The answer to this problem depends on the meaning the second
student gives to "fair weather'. If by "fair" he means ''not rain-
ing'" then ++ and -- are the only pairs possible. On the other hand,
with normal usage of fair to indicate, say, that it is not raining
and that (this would depend on personal judgement) the sky is not
overcast, then +- would be possible but -+ would not.
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SOLUTION TO PROBLEM 3.4

The problem is:

Spot the fallacy:

. 2
Since coszx =1 - sin"x,
.2 %
it follows that 1 +cosx=1+ (1 - sinx)?, \
.2 (3.2
that is (1 + cos x)z = {1 + (1 - sin“x)®}“.
In particular, when x = m, we have
1.2
1-1%2=11+@a-0%%
or 0= (1 + 1)2
= 4,
Solution

From coszx =1 - sinzx it follows that

/. . 2
cos £ = /1 - sin"zx,

the choice of sign depending on the value of x. When cos x is
negative, the negative sign must be chosen. So when ¢ = 7, SO

/. ;2
that cos ¢ = -1, cos x may be replaced by -Y1 - sin"zx but not by

2

+/1 - sin“x as was done in the above argument.

PROBLEM 5.2

Observe that the value of

2 3

1 n
sr st Tart - Y GE DT

.1 5 23 .

is 5, 5 31> for n = 1,2,3, respectively. Guess the general law

and prove your guess.

PROBLEM 5.3

A right angled triangle has area 4 and hypotenuse of length
¢. On each side of the triangle draw a square, exterior to the
triangle. Now imagine a tight rubber band placed around your
figure. What area would it enclose?

PROBLEM 5.4
Let P be a non-constant polynomial with integer coefficients.

If n(P) is the number of distinct integers k such that ([P(k)12 = 1,

prove that n(P) - deg(P) < 2, where deg(P) denotes the degree of
the polynomial P.

0 00 00 W 0 W 0 0 0
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