THE MAGIC HEXAGON
by M.A.B. Deakin, Monash University

Many readers will be familiar with the magic squares -
arrangements like that shown in
Figure 1. The nine (in this
case) small squares form a 4 9 )
larger square with the property
that for each row, each column

and both diagonals, the sum of . 3 5 7
the numbers involved is 15.

Another feature in this 8 1 6
arrangement is the use of each
of the consecutive numbers one
to nine exactly once. Figure 1

There are other magic squares. A 4 x 4 square 1is
depicted in Durer's famous engraving Melencolia I. Here
the numbers 1 to 16 are arranged in such a way that each
row, column or diagonal sums to 34.

The study of such magic squares can hardly be said to
be a major theme of mathematics, but it is an interesting
and widely known recreational topic. It becomes more and
more complicated as the size of the square is increased, and
much remains to be discovered, even for relatively small
squares. Often amateurs surprise professional mathematicians
by finding previously unknown results.

You might like to try your own hand exploring this area.
For a start, calculate what the sum of the numbers should be
in a 5 x 5 square, and an n X n square.

Apparently more complicated
than the magic squares are the
magic hexagons. Regular hexagons
pack neatly as in Figure 2. Here
19 small hexagonal cells are
placed together to form a shape
which, while not a hexagon, has
the same six-sided symmetry as
a hexagon. By a slight, but
allowable, misuse of language, Figure 2
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this figure is referred to as a hexagon: 1in this case a
hexagon of order three, as there are three cells on each
side.

If we examine the structure of the hexagon in Figure 2,
we see that there are 5 horizontal rows of cells, 5 rows
slanting from top left to bottom right of the page and 5
slanting from top right to bottom left. There are 19 cells
in all arranged in a total of 15 rows.

The problem is to arrange the numbers 1 to 19 in the
cells of Figure 2 so that the sum along each row is the same
as the sum along every other row. We're not asking you to
do this (for reasons which will become obvious), but you
could try to see why each row must add up to 38.

The answer to the arrangement problem is usually attributed
to Clifford Adams, an amateur mathematician who may be said,
without exaggeration, to have devoted half a lifetime to its
solution.

Adams, a railway clerk, began his search in 1910. He had
a set of hexagonal ceramic tiles specially made, each bearing
a number from 1 to 19, and used these in an experimental
effort of mammoth proportions. (Disregarding the different
points of view achieved by rotations and reflections, how
many combinations are there?)

His spare time was devoted to this problem for 47 years.
He finally found a solution while convalescing following an
operation and jotted it down on a piece of paper. When he
returned home, however, he found that he had mislaid the
solution.

It attests to his determination that for five years, he
continued (he had by then retired) his efforts to reconstruct
the solution. He never succeeded. Instead, he had the good
luck to locate the missing piece of paper. -

He forwarded a copy to Martin Gardner, the Scientific
American columnist, in December 1962. (If you don't know
Gardner's columns and the Problem Books he compiles from them,
you have a treat in store.)

Let Gardner now take up the story:

"When I received this hexagon from Adams, I was only
mildly impressed. I assumed that there was probably an !
extensive literature on magic hexagons and that Adams had ;
simply discovered one of the hundreds of order-3 patterns.
To my surprise a search of the literature disclosed not a
single magic hexagon. I knew that there were 880 different
varieties of magic squares of order 4, and that order-5
magic squares ... [had not then] ... been enumerated because
their number runs into millions. It seemed strange that no-
thing on magic hexagons should have been published."
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" Gardner contacted Charles W. Trigg, a United States
mathematician with a wide reputation in the area of comb-
inatorics (the branch of mathematics involved) and asked
for his opinion. Trigg took a month to reply, but the
answer was worth waiting for.

Apart from trivial alterations caused by rotation or
reflection, Adams' magic hexagon was the only one that could
exist.

Well, not quite. There is one other. Here it is: E:j
This is so trivial that we don't count it. It is easy to
see also that there is no magic

hexagon of order 2. Suppose we ee
have an order-2 hexagon as shown

in Figure 3. The numbers one to °“
seven must be arranged in the “
cells so that nine different

sets of numbers all add up to Figure 3

the same figure. Suppose the

top entries are a and b, as shown. Then all rows must add
up to a + b, whatever that may be. But now what are we to
put in the far left cell? We have:

a+x=a+b
so that
x = b,
and the number b is used twice, which is against the ruies.

(An alternative impossibility proof notices that the row
sum must be 28/3. Can you produce this proof?)

Two more things remain to be proved in order to show
that Trigg's theorem (if we may so term the uniqueness claim)
is true. We need to be assured that:

(1) There is no magic hexagon of order n, if n > 3.

(2) Among all the (how many did you get?) possibiliéies
of order 3, only one is magic.

At first sight, we would think that the first statement,
which comprises infinitely many cases, would be harder to prove
than the second. In point of fact, this is not the difficult
part. The proof is a little long to include in this article,
and contains some ideas that will be new to, but not above the
capabilities of, the readers of Function. Interested readers
will find it on pages 71-73 of Ross Honsberger's Mathematical
Gems. (A more cryptic account is given by Martin Gardner,
Seitentific American, August 1963, p. 116.)

It remained to Trigg to show that of all the (?)
possibilities of order 3, only one was magic. This he
accomplished in a proof that, on Gardner's account,

RN used a ream and a half [750 pages] of sheets on which
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the cell pattern had been reproduced six times'", i.e. the
"answer was obtained by combining brute force ..... with
clever short cuts".

That short cuts were necessary may be seen easily enough.
There are (?) possible combinations, of which Trigg needed
to discuss only 6 x 750.

The case is somewhat reminiscent of that discussed by
John Stillwell in the first issue of Function. In discussing
the four colour problem, he referred to the Haken-Appel
solution as "a barbarous way to do mathematics'", and our
editorial indicated that some check was necessary before the
result could be unprovisionally accepted.

Trigg's theorem provides a similar case. The result is
not important enough for anyone to pay for its publication.
It is no slight on Gardner to say that he probably did not
check all the details. Are we then to hold Trigg's theorem
unproved, or only probably right? .

In this case, the answer is '"no'". The result was proved
independently by Frank Allaire (in 1969). Allaire was then
a second-year student at the University of Toronto. Using an
elegant computer programme, Allaire reduced the problem to 70
cases (each involving many sub-cases) and confirmed Trigg's
theorem in 17 seconds of computer time. Enough of his method
is now public (see, e.g., pp. 73-76 of Mathematical Gems) that
any bright young mathematician with a flair for combinatorics
and computing can check the result.

Trigg and Allaire thus not only duplicated the result of
Adams' search, but extended it. Trigg (without a computer by
the way) did more in a month than Adams achieved in 47 years.
However, just as Allaire knew from Trigg's work what he had
to aim for, so Trigg knew from Adams' more pioneering efforts
where he was going. (Trigg's ''clever short cuts", the result
of a well-practised mathematical mind, had much to do with
this also.) Did Adams himself have some guiding star? It
appears now that he may have done. Gardner more recently (in
University of Chicago Magazine, Spring, 1975) shows a picture
of a puzzle incorporating the magic hexagon. This was patented
in 1896 by William Radcliffe, a schoolteacher on the Isle of
Man. Was Adams influenced by a (possibly subconscious) memory
of Radcliffe's puzzle?

Two other possible discoverers exist, although they too
may owe a debt to Radcliffe. An unpublished manuscript from
wartime Germany (1940) contains the result. The author is
Martin Kuhl of Hanover.

More ironically, a lotof the time Adams was agonising
over his lost paper, the result was in print, widely dist-
ributed, but unrecognized. It is published, as a diagram,
with no words at all, in Mathematical Gazette (1958), p. 291.
The author of the strangely silent article was Tom Vickers.
Perhaps the reason that Vickers' result was overlooked is
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the one which will strike any reader who cares to look it up.
Visually, it's quite different from Figure 2, (For a start,
it's a hexagon and not just a courtesy hexagon.)

Another reason is more subtle, but perhaps more important.
Vickers' paper was overlooked, just as Adams' paper was almost
dismissed by Gardner. Both were seen at first as quaint
numerical curiosities. These are not, as such, of great
mathematical interest. They merit attention, however, when
we can say something truly surprising about them -~ when we
"embed" them in deeper, more general, results. This is what
Trigg did in this instance. Once he had done that, people
took notice.

At the beginning of this article, I referred to magic
hexagons as being "apparently more complicated than magic
squares'. They are not really more complicated, :however.

There is only one of them. Meanwhile, results on magic squares
proliferate and we have no comprehensive framework in which to
place them. Provision of such frameworks is what mathematics
is about.

Here are two problems to consider:

(a) Equilateral triangles can fit together to form larger
equilateral triangles; small squares combine into
larger squares; regular hexagons interlock to make
up "hexagons'. No other regular plane figures can
do this. Why not?

(b) We have talked of magic hexagons and magic squares.
What of magic triangles?

P.S. You didn't really think I was condemning you to 47 years'
hard labour, did you? Here is the magic hexagon:
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