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The first issue of Function has received a warm welcome
and we thank the large number of correspondents who sent their
good wishes and encouragement. However we have not yet received
enough subscriptions to guarantee that we last out the year.
The magazine is not receiving financial help from Monash University
or any other source. If you wish to see us continue ~ one sub
scription from each school library would almost suffice - please
canvass subscriptions for us.

Our main article this issue is on catastrophe theory, perhaps
misleadingly named. The French word "catastrophe" used by the
French originator of this theory has no adequate English equivalent.
A (French) catastrophe occurs when there is a sudden and perhaps
unpredictable or uncontrollable change, but such a change need not
be any kind of (English) catastrophe. Catastrophe theory is one
of the exciting new developments of mathematics that has taken
place largely in the last ten years. It developed. originally as
an attempt to develop mathematics capable of describing biological
growth. Some of its many other areas of possible application are
mentioned in Dr Deakin's article.
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THE FRONT COVER

by J. O. Murphy, Monash University

The so-called rose curves (rhodoneae) are generated by the
polar equations

r = a cos n8 or r = a sin n8, a ~ r ~ a, a ~ 8 ~ 27T;

for each n these two curves are congruent and each can be

obtained from the other by a rotation through ;n radians. The

computer drawn diagram on the front cover illustrates r =
a sin 88, which has 16 leaves. In general r = a sin n8 has 2n
leaves if n is even, and only n leaves if n is odd. The one
petal case, r = a sin 8, which has the corresponding equation

2 a 2 a 2
x + (y - 2") - = 4 '

in rectangular coordinates, clearly generates a circle of
diameter a.

A simple integration, using the general formula

8=f3

A = ~ I r
2
d8,

8 =a

for area in polar coordinates, establishes the area of each p~tal,

and in the particular case, r = a sin 88, it is found to be- a 3;
square units. Now a general problem, which illustrates a geom
etric property of the rose curves: show that, for each even
integer n the total area enclosed by all the petal~ of

r = a sin n8 is always the same, namely, ~7Ta2. If n is odd., the

area enclosed by all the petals is, similarly, always the same,
1 2but now equals 47Ta .

Th~ rose curves r = a sin n8, for n
shown below.

1, 2 and 3 are



CATASTROPHE THEORY

by M. A. B. Deakin, Monash U~i'versity

According to its inventor, the French topologist Rene Thorn,
Catastrophe Theory is more an attitude of mind than a math
ematical theory. Even if he is right in this, however, there
is a lot of valid 'and interesting mathematics in the area.
Not only is the mathematics new and exciting in its own right,
but it has also attracted a lot of attention because of its
apparent potential for applications.

is a postulate that constitutes
may express this epigrammaticaily

Underlying this potential
Thorn's "attitude of mind". We
as Nature is almost always
well-behaved. In a very
general way, we can represent
a natural process as in
Figure 1. The output, or
result, generally depends in
a smooth and unremarkable
way on the input, or
conditions applied.

Input
"-

Figure 1

Output

--

p

0·95
T )-
o 100 T(OC)
Figure 2

P
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For instance, the density of a liquid depends in a smooth
and relatively ,simple wayan its temperature. The precise
formula expressing the
depen~ence may be very
complicated, not ex
pressible in familiar
form, or even unknown,
but the curve is an
ordinary graph, such
as Figure 2 which shows
the behaviour of water.

Smooth functions
such as this are studied
by the use of calculus.
For our present purposes,
we may say that the
essential insight provided
by calculus is the result:
sufficiently close to any
point P on its graph~ a
function may be approximated
to arbitrarily good accuracy
by a straight line~ namely
the tangent at P.

In our example, p is the density, T the temperature, and
PO' TO are the values of these variables at P. The line then

3
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has the formula

where B is a constant known as the coefficient of bulk ex
pansion. Formulae such as this are everyday fare and depend,
as this one does, on the tangent (or local linear) approximation.

In the neighbourhood of certain special pbints '(stationary
points) the local linear approximation is constant - i.e. the
tangent is flat. (The curve of Figure 2 has a stationary point
at T = 4.) However, the local linear approximation tells us
little about the shape of the curve. For further information
we must look at a local quadratic approximation. If the curve
can be approximated locally by a parabola whose shape is like

that of y = x 2 , we have a minimum point; if the shape resembles

that of y = _x2 , we have a maximum point. (We can also use a
similar analysis at points/other than singular points to achiev~
a better approximation than the local linear one.)

As a matter of fact, all but a few rather unusual maxima
and minima may be locally approximated by parabolae. (The
n-dimensional generalisation of this statement is known as
Morse's Lemma; it is the starting point of a branch of math
ematics known as Morse Theory which is closely related to
Catastrophe Theory. Morse. Theory is not, however, related in
any way to Morse Code. It is named after its inventor, the
American mathematician Marston Morse.)

A related result (which you should be able to prove)

states that every quadratic y = ax 2 ' + bx + c may, by suitable
choice of origin and by suitable scaling of the axes, be reduced

to the form y = x 2 (So all parabolae can be drawn using a
single template!) This theorem, incidentally, was in the
Victorian school curriculum 25 years ago.

When we come to cubics,
something more interesting
happens. Any cubic equation

y = Ax 3 + Bx 2 + ex + Dean
be reduced to the form

y = x 3 + ax by suitable
placement of the origin and
suitable scaling of the axes.
(Can you prove this?)

y

Figure 3

x

However, the shape of
the graph now depends upon the
sign of a. If a < 0, then the
graph is as shown in Figure 3,
while if a > 0, the appearance
is that of Figure 4.

Figure 4

x



We may now imagine a
situation such as that shown
in Figure 5. Here a particle
is able to rest at the
minimum point P as long as
that minimum exists; that
is, as long as a < O.

y

x

5

But now suppose that the
value of a is progressively Figure 5
increased" e. g. by slowly
pulling on the curve in the direction of the arrows. Eventually,
we reach a configuration for which a = 0 and the minimum ceases
to exist. The particle now falls to the left. A quite continuous
input has produced a sudden jump in the output. The particle
will fall until it encount~rs another minimum (beyond the range
of validity of the local cubic approximation).

Such a sudden change is termed a catastrophe. Catastrophes
are the exceptions to the orderly behaviour of nature.

The density of water
manifests a similar behaviour,
for the water boils if heated
sufficiently. Figure 6 shows
a more complete graph than
Figure 2. (Note that the
scale has had to be altered.
The density of steam is about

-56 x 10 gm/c.c., and this
is so small as to be in
distinguishable from zero on
either scale. The slight lean
of the apparently vertical line
is barely visible.)

The boiling point is
immediately obvious on this
diagram because of the abnormal
appearance of the graph there.
This is an example of a
catastrophe also ..

p
(gm/cc)

l.----_~

o 100 T(OC)

Figure 6The systematic study of
such exceptions to the orderly
behaviour of nature forms the subject matter of the new science
of Catastrophe Theory. It is .a very recent area of mathematics,
which first burst into prominence with the publication of Thorn's
book Structural Stability and Morphogenesis in 1972.

The basic theorem of Catastrophe Theory gives a classification
of the various types of catastrophe that can occur in certain
important (but still far from completely general) situations.
Its basic assumption is that the state of the system under study
can be determined by maximising or minimising some suitable
function. In statics, for.example, ·the configuration achieved
minimises potential energy; in dynamics, a quantity termed action
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is minimised; in thermodynamics, entropy is maximised; in
geometrical optics, the total travel time of a light ray is
'minimised; in many areas of genetics, mean population fitness
is maximised, and in managerial science, many firms seek to
maximise profit. (It is the thermodynamic case that covers
our example of boiling water.)

A catastrophe occurs in such a context when the system
adjusts from one maximum or minimum to another, or when a
previously available maximum or minimum suddenly ceases to
exist.

a

fold

Figure 7

This gives the graph drawn in
Figure 7. (The dotted line
corresponds to the maximum in
Figure 3.) The shape of this
graph has led to catastrophes of this type being termed
catastrophes, also referred to sometimes as threshold
catastrophes.

The very simplest catastrophe is the one we saw earlier
with the stretching cubic.
The position of the minimum Xp
point P can be found by a
straightforward differentiation.
Its x-coordinate, x p ' is given by

In this example, the value of x p defines for us the stat~

of the system. It is referred to as a state ,variabZe. The
val~e of x p depends upon the value of a. This latter is under

our control, and is termed a control variable. The control
variable (or more generally, variables) correspond to the
input of Figure 1, while the state variable (or variables) may
be thought of as the output.

All situations that involve a single control variable can,
as a consequence of Thorn's classification theorem, be approx
imated locally by a cubic. The fact that the approximation is
local stops the particle P in Figure 5 from necessarily falling
forever; it is allowed that another minimum exist in what my
5-year old son would call "the far distance". With this proviso,
it is possible to set up an exact analogy between the boiling
water and a variant of the stretching cubic.

However, we shall follow a different road here, for we are
still oversimplifying the behaviour of the water. The density
of a fluid depends not only on the temperature, but also on the
pressure. Hence a full analysis uses two control variables
(temperature and pressure) and one state variable (density).

According to Thom's theorem, this new situation can always'
be approximated locally by a quartic function

y = x 4 + ax 2 + bx, (*)
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where the minima of y will give values of a state variable x p

and a, b are the control variables. (Can you show that all
quartics can be reduced to the above form by suitable choice
of s~ales and origin?)

Putting the derivative ~; equal to zero, we find the
tstationary values of the quartic function (*) . Denote by x p

the corresponding value(s) of x. Then

4x~ + 2axp + b = 0.

This equation is a cubic in x p ' For some values of

a, b, it will have three solutions (2 minima and a maximum),
for others there will be only a single solution (which is a
minimum). The graph of x p as it depends upon a, b is the

complicated-looking pleated surface shown in Figure 8. It is

a

b

Figure 8

this figure which has become almost the trademark of Catastrophe
Theory. '(Although whether it is capable of supporting all the
alleged applications being hung on it - from behaviour of dogs
to stock exchange crashes, from fashions in curricula to optical
caustics, from prison riots to falling in love - is another, and
moot, point.)

The two different behaviours of the quartic function are
separated by the curve

8a 3 + 27b 2 = 0,

t See Problem 2.1.
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shown in Figure 9. When

8a 3 + 27b 2 < 0, two minima
exist (i.e. for values of
(a, b) lying under the curve);
in the case where the in
equality is reversed, there is
a single minimum. The point
on the curve of Figure 9 is
called a cusp and hence this
catastrophe is termed the
cusp catastrophe. Figure 9

b

In our case of the boiling water, a quantity called
"entropy" is maximised - or equivalently its negative, the
negentropy, is minimised. The exact definitions of entropy
and negentropy need not concern us here. All we need to
know is that the negentropy can be locally approximated by
a quartic (*), where the control variables a, b are functions
of temperature and pressure.

Figure 11

Gas Liquid
Figure 10

Now, for some quartics,
such as that of Figure 10,
there are two minima, while
for others (as in Figure 11),
there is only one.

On'the intuitive level,
we might guess that where two
minima are' possible, these
correspond to two possible
states of our system (liquid
an~ gaseous), while the
unique minimum allows only one
state to exist. In the case
where two states are possible,
the one that is achieved is
the one for which the minimum
value is the less. This rule
is termed the Maxwell convention
and it applies to our liquid-gas
system. (Other cases, including
mechanical systems like Fi'gure 4, rC4.1ire somewhat different
rules, which is why a direct ~nalogy between boiling water
and stretching cubics is Dot quite exact.)

This allows us to make a number of predictions which are
in fact borne out by experiment. First, there are critical
values for p (the pressure) and for T, above which only one
state can be observed and below which two are possible.
Secondly, there are two ways to produce liquid-gas transition~:

we might go smoothly "round the back" of the critical point P
(see Figure 12) as we might come "round the front" and see a
sudden'change of state.
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p

p

Figure 12

Figure 12 diagrams a situatio&~~ Wpifh a gas is first
heated at constant pressure, then~~ at constant temp
erature, then cooled back to its original temperature~ This
corresponds to the path ABCD~ The point representing the
state of the system has been moved from the lower surface to
the upper,' i.e. the system has changed from the gaseous to
the liquid state.

The quartic negentropy
function has gone through
the sequence of shapes shown
in Figure 13. The gas has
become a liquid without appear
ing to liquefy in any sudden
or dramatic way.

A B

If we now, however,
decrease the pressure, we reach
a point F at which the liquid
becomes unstable (the left-hand
trough in Figure l3D ·increases
in size until the corresponding
minimum is the lower; so that
Figure l3A is recovered).

C D
There is then a sudden re-

adjustment (boiling) and the Figure 13
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system is once again represented by the original point A.

All this has actually been observed. There is an
excellent account, in fact, in Chapter 5 of Glasstone and
Lewis' Elements of Physical Chemistry, which goes into a lot
more detail. The experiment requires fairly high pressures
and is difficult (and dangerous) to do without special apparatus.
Nevertheless the predictions of Catastrophe Theory correspond
exactly to the experimental facts.

The mathematician who pointed out the relationship described
above was D.H. Fowler, who also performed another service to the
mathematical community when he translated Structural StabiClity
and Morphogenesis from the original French. It was in this book
that Thorn stated his f~mous classification theorem, known as the
Theorem of the Seven.

This result lists all the possible situations that arise
for one, two, three or four control variables. There are
exactly seven such cases. We have seen two already, and two
more are easy to predict. These are

x 5 + ax 3 +. bx 2 + cx

and
6 4 32'

y = x + ax + bx + cx + kr

These have one state variable and three and four control
variables respectively.

The other cases involve two state variables and are more
complicated. Remarkably, there are no cases at all involving
more than two state variables.

A complete list of the seven catastrophes is given in the
table opposite. This lists the state and the control variables
for each catastrophe and then gives the function of these that
is to be minimised (or maximised). The names that follow are
used as reference labels. Finally, some of the applications or
hoped-for applications are listed.

The Theorem of the Seven was not fully proved by Thorn. In
fact the first complete proof was published as recently as 1974.
More recently still, extensions have been proved for up to 16
control variables. In the main, however, the further cases that
emerge are less important for applications.

From this, it will be seen that Catastrophe Theory is a very
new branch of mathematics. It is a very exciting one, with· wide
ranging applications and great intrinsic mathematical interest.
If pursued in its full detail, it is still a difficult subject.
However, a number of good expositions have appeared. If you
want to learn more of this subject, you could begin with
Christopher Zeeman's article Catastrophe Theory (Scientific
American, April 1976), Ian Stewart's The Seven Elementary
Ca tas tr'ophes (New Scientist, 20 November 1976) or pages 277-285
of Stewart's Pelican book Concepts of Modern Mathematics.
Stewart is currently writing a Pelican book on Catastrophe
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State Control

Variable(s) Variable(s) Function to be Minimised Name Application

x a x 3 + ax Fold All simple threshol
phenomena.

x a~ b x 4 + ax 2
+ bx Cusp Very many; see text

x a" b" c x 5 + ax~ + bx 2 + ex Swallowtail Embryology; the
psychology of drunk
driving.

x a" b" e" k x 6 + ax4 + bx3 + cx 2 + kx Butterfly Treatment of Anorex
Nervosa; internatio
dispute~.

b~
3 222 + bX

1
+ eX 2Xl" x 2 a" c x - 3x l x 2 + a(x 1 + Xl) Elliptic Speculative applica1 Umbilic in hydrodynamics an

embryology.

b"
3 3 Hyperbolic Buckling of stiffen

Xl" x 2 a" c Xl + x 2 + ax 1x 2 + bX 1 + eX 2
Umbilic panels.

b" k
2 422

Xl" x 2 a" c" xlx2~ + x 2 + aX 1 + bX 2 + eX 1 + kX 2 Parabolic Speculative applica
Umbilic in linguistics and

embryology.



GAMES AND MATHEMATICS

Most of us have played NOUGHTS AND CROSSES often enough to
realise that the centre position is a very special one, and that
if the first to play puts his mark in that position he cannot
lose unless he makes a very foolish move. This means. that the
player who makes the first move in a game of NOUGHTS AND CROSSES
has a great advantage. However he cannot generally force a win
and so more often than not the game ends in a draw.

Fortunately not all games are like this. More importantly,
there are many two person games which have simple rules and
which are quick to play (so they make good time-wasters) but
which do not have obvious strategies and which do not fade
frequently into boring draws. In this article and in later
issues of Function a number of such games will be described.
All the games we choose will have simple rules, but_ not all the
games will have simple strategies. In many games it will be
difficult to determine whether or not one player has an
advantage over the other.

A description of a winning strategy for one of the players
in a game will involve so~esort of analysis of the game. Often
such an analysis is just part of a more general piece of math
ematics and a recognition of this may have beneficial side
effects. For it can add a bit of 'life' to what might seem a
dry piece of mathematics and encourage one to look deeper into
the mathematics. This in turn might lead .to solutions to
related but more complicated problems. We shall see an excellent
illustration of this last point when, in this issue and the next,
we look closely at a game called SLITHER.

If you feel you need more motivation for thinking about
puzzles than perhaps just the satisfaction of working out a
strategy for a game and understanding why it works then the
following quotation from George Polya may tempt you to try your
hand. Polya, who is well known both as a mathematician and as
the author of several books about ways of methodically tackling
problems, writes in Mathematical Discovery Volume 1:

"Solving problems is a practical art, like
swimming, or playing the piano: you can learn
it only by imitation and practice ... Our know
ledge about any subject consists of information
and know-how ... and in mathematics know-how is
much more important than mere possession of in
formation ... What is know-how in mathematics?
The ability to solve problems - not merely
routine problems but problems requiring some
degree of independence, judgement, originality,
creativity."

Finally, before going on to present a couple of games for
your amusement, a request. As you will read elsewhere in this

1 I)
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magazine we want contributions from our readers. If you know
of a game that could be discussed here please write and tell
us about it (whether or not you know how to solve it yourself) 0

Nonagon

A two cent coin is placed on each corner of a regular
nonagon ..

Two players then take turns removing either one coin or
two coins from adjacent corners of the nonagon. (For example
if, in his first move, the first player removes the top coin
leaving

then the second player in his first move cannot remove, say,
the pair (A~ H) or the pair (A~ C) of coins. (A~ B) is
allowed as is also (B~ C).)

The player who picks up the last coin <wins.

This game isn't fair because the second player can always
win. Can you describe a winning strategy for the second player?
(A solution is outlined on page 29 of this issue.)

Suppose the game were played on a regular polygon with an
even number of corners. Would this make any difference?

Slither
In the June 1972 issue of Scientific Am~rican

Martin Gardner described the following game called SLITHER.
This is a game for two players played on a 5 x 6 point lattice
(see Figure 1). The rules are simple. Opponents take turns
marking a horizontal or vertical segment of unit length. (For
example, the move shown in Figure 2 is permitted but the move
shown in Figure 3 is not.)
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Figure 1 Figure 2 Figure 3

The segments must form a continuous path but at each move
a player may add to either end of the preceding path. The
player forced to close the path is the Zoser. (Figure 4
shows a position in which the next play must be "a losing one.)

• •• 4& ...

Figure 4

At the time Gardner wrote his article no winning strategy
for either player was known. In a tabulation of several
hundred games the wins were about equally divided between the
first and the second player so there was no indication of
whether one player has an advantage. Soon after publication
of his article Gardner received a flood of correspondence
containing strategies of steadily mounting generality until
finally Ronald C. Read, a graph theorist at the University of
Waterloo in Ontario, Canada, reduced the standard game to a
monumental triviality.

Try to find a winning strategy for one of the players
in the game of SLITHER just described. (One solution is given
on page 30 of this issue). You might also try to formulate a
general strategy for the game played on·a 'field' of m x n
dots for any numbers m and n. (A solution will be discussed
in a later issue of Function.) Finally perhaps think about
different shaped 'fields' on which the game might be played.

00 00000000000000 00 ooqo 00

That flower of modern mathematical thought 
the notion of a function.

Thomas J. McCormack, 1899



CYCLONES

WHICH WAY

AND BATHTUBS

DO THINGS SW·IRL?

by K. G. Smith,. University of Queensland

A perennial discussion point at parties is "Which way
does the water swirl as it goes down the plug-holes of a bath?"
In many instances the discussion becomes more or less heated,
until someone suggests an experiment, and the group adjourns
to the bathroom. The appropriate experiment is performed,
and half the group have their claim verified. The other half
of the group insist on a repetition of the experiment, and,
to the surprise of the first half, and the delight of the
second half, the direction of swirl is reversed. A series
of experiments follow, using both the hot and cold taps, and
all are mystified when no systematic pattern is found: the
direction of swirl appears to vary in a random fashion.

At this point the group probably returns to the bar, and
continues discussion of some other topic, such as the weather.
Someone mentions that winds blow clockwise around the centre
of a cyclone. A recent arrival from the U.S.A. takes excep
tion to this statement and claims that winds blow anticlock
wise around hurricanes,using his terminology. This argument
is quic~ly settled by referring to the newspaper: -the weather
map shows winds blowing clockwise around low-pressure centres
(cyclones) and anticlockwise. around high-pressure centres
(anticyclones). The U.S.A. visitor is unconvinced; he is
sure his memory is not at fault. Then someone remembers
reading that winds around cyclones blow in opposite directions
in the northern and southern hemispheres. Honour is satis
fied, and the party proceeds peacefully.

Mathematicians at the party may feel somewhat uneasy,
however. The force on the air near a cyclone is towards the
low pressure area in the centre. With a vague recollection
of Newton's laws of motion, there arises the awkward thought:
"The winds should blow towards the low pressure area, not
around it". The following notes provide a brief explanation
of the behaviour of bathtubs and cyclones, and will enable
you to pose as an expert at any future party arguments.

Newton's laws of Motion
In 1687, Isaac Newton published his most famous work.

"The Mathematical Principles of Natural Philosophy"t. In it
he enunciated the laws governing motion of bodies. Only the
first two are needed here; translated into modern terminology

t PhiZosophiae NaturaZis Principia Mathematica 3 bri~fly the Principia.
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they may be given as follows:

(i) Any body will remain in a state of rest, or uniform
motion in a straight line, unless acted on by an
external force.

(ii) The rate of change of velocity is proportional to,
and in the same direction as the applied foTce.

These laws are quite straightforward but have some subtleties
associated with them. The significant one here is "straight
line": straight line relative to What? If I am sitting in a
car travelling along an unsurfaced road, and, with the aid of
a straight-edge, draw a straight line on apiece of paper,
the point of the pencil will trace out a straight line relat
ive to the paper. It is unlikely to trace out a straight
line relative to the car, and its path relative to the sur
face of the earth will be nothing like straight.

For many applications sufficient accuracy may be attained
by considering motion relative to the earth. However, there
are limitations: the stirface of the earth is curved, and it
may be suspected that if motion over large distances is con
sidered, some corrections are needed. Generally speaking, ~

motion over large distances will involve large time intervals,
and a further complication is possible. The earth is
rotating, even though very slowly, and after a large elapsed
time things are in a different place. How do we modify the
laws of motion to cope with these problems? Newton's laws
of motion are valid provided the frame of reference is taken
to be fixed (or moving at a uniform speed and not rotating)
with respect to the distant parts of the universe. It is
possible to derive the modifications needed to treat motion
rel~tive to a frame of reference fixed to the surface of the
earth. This frame of reference will rotate slowly (once in
24 hours) and will have various small accelerations due to
the motion of the earth- through space. It is even possible
to use a frame of reference fixed to a car moving along a
bumpy road, though this becomes extremely complicated. The
modifications to Newton's. laws, however, are all somewhat
complicated, and it is easier to consider ourselves viewing
the rotating earth from somewhere in space, and using Newton's
laws as he gave them.

Cyclones
A complete description of the motion of air around

cyclones involves some quite advanced mathematical techniques.
It is, however, possible to give a simple explanation of the
origin of the clockwise airflow; all that is needed is
Newton's first two laws of motion.

Consider a stationary low pressure area over Brisbane,
as shown in the picture. Let us assume that initially the
air is not moving relative to the earth. Then due to the
pressure difference a particle of air at point A, directly
north of Brisbane, will start moving' south. Now the force
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Paths of Particles of Air

is directly sduth. However, from our viewpoint in space,
both Brisbane and point A are moving east, due to the rota
tion of the ea~th. The essential part of the explanation ~s

that since A is further from the axis of the earth than
Briabane is (si~ce A is closer to the equator), then A is
moving eastwards faster than Brisbane. Thus, to look at
matters very simply, by the time the particle reaches point
B at the latitude of Brisbanei it will have moved further
east than Brisbane; it will not continue in the direction of
the dotted path since pressure forces will oppose it; more
complicated reasoning shows that ~t will move around Brisbane.
Similarly, a particle o~ air at C 4ue south of Brisbane will
have a smaller easterly speed than Brisbane. Thus, by the
time it reaches D at the latitude of Brisbane it will not
have moved as far 'to the east, or, relative to Brisbane, it
will have moved west. The reason for the clockwise motion
of air around the cyclone is now obvious. It can now be
seen why cyclones do not arise in the vicinity of the equator:
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all points have virtually the same easterly speed. It is
clear now why air swirls anticlockwise around cyclones in the
northern hemisphere.'

Bathtubs and naval battles'

The flow of water out of a bathtub can be treated by ana
logy with cyclones; the plug hole takes the place of the low
pre~sure area, since water tends to flow towards it. We
therefore conclude that water should swirl clockwise around
the plug hole; why then do experiments give unpredictable
results?

The answer lies in the magnitude of the effect we are
looking at. The surface of the water is horizontal. so we
need the component of the earth's spin about the vertical.
The latitude of Brisbane is about 27~o, so that rate of rota
tion is (sin 27~O)th of a revolution per day, or about 1 revo
lution in 52 hours. Thus, if any residual motion in the bath
water is larger than about this rate it will completely swamp
the effect of the earth's rotation. The disturbance caused
by pulling out the plug, to say nothing of getting out of the
bath, will be much larger than this.

Precise experiments were not made on this problem until
1961; full det,ails may be obtained from the article "A note
on the bathtulJ vortex" in the Journal of Fluid Mechanics,
vol. 14, pages 21-24,1961. A circular tank, 30 cm in dia
meter, was used, with a centrally located plug which could be
removed from below. The results are best left in the author's
own words; remember that these experiments were carried out
in the U.S.A.

"Observations using powder and dye techniques quickly
showed that for settling periods of a few hours or less
(i) the direction of rotation of the vortex coincided with the
direction in which the tub was filled, and (ii) the strength
of the vortex decreased as the settling period increased,
that is, 'as the residual circulation decreased. While these
results were being obtained, the author learned that Shapiro
using a six-foot-diameter tub and settling periods of several
days had obtained a consistently counter-clockwise direction
of rotation independent of the direction in which the tub was
filled, a result attributable to the action of the Coriolis
force in the northern hemisphere."

The conclusion to be drawn is that if you wish to demon
strate this effect to your friends you should acquire a large
circular tank, with a centrally located plug which can be
removed from below, and wait a week after filling the tank.

An interesting story is recorded on page 51 of the book
"A Mathematician's Miscellany", by J.E. Littlewood (Methuen,
1953) .

"I heard an account of the battle of the Falkland Islands
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Ge~man ships were d~stroyed at extreme range, but it took a
long time and salvos were continually falling 100 yards to
the left. The effect of the rotation of the earth is similar
to 'drift' and was similarly incorporated in the. gun-sights.
But this involved the tacit assumption that Naval battles
take place around about latitude 500 N. The double difference
for 50°8 and extreme range is of the order of 100 yards."

By using the appropriate complicated mathematics, it can
be shown that if a projectile is fired with a fairly flat
trajectory, the deviation due to the rotation of the earth
will be independent of the bearing of the target, and will be
of magnitude (a R2/V) sin L, where a is the angular velo
city of the earth (= 2n/86,160 radians/sec.), R is the range,
V is the muzzle velocity and L is the latitude. You may
like to check the figure of 100 yards, using some reasonable
values for R an4 V.

Remarks

The above phenomena (cyclones, bathtubs and projectiles)
can be explained by the rotation of a frame of reference fixed
to the earth. Relative to such a frame of reference the
equations of motion do not take the form expressed by Newton's
second law; an additional term appears involving the angular
velocity of the frame -of reference. This additional term is
sometimes called a "fictitious force", and is known as the
Coriolis force, after the 19th century mathematician who in
vestigated moving frames of reference in some detail. There
are other fictitious forces associated with non-uniform motion
of frames of reference. Two of the~e are familiar to all car
travellers. When the brakes are applied there appears to be
a force pushing you forward, reZative to the car; when going
round a bend there appears to be a force pushing you outwards
reZative to the car. The first of these is known as the
inertial force, the second as the centrifugal force. They
are both fictitious forces; in fact your body is trying to
move in a straight line at a constant speed, as laid down by
Newton's first law. It is only the non-uniform motion of the
frame of reference (i.e. the car) which gives the apparent
forces.

If the earth was spinning much faster, Coriolis e~fects

would be familiar to us all. However, large Coriolis effects
would bring additional problems; a quotation from Chapter 21
of "Rendezvous with Rama" , by Arthur C. Clarke, is a suitable
conclusion.

"80 there was the origin of the sound they had heard.
Descending from some hidden source in the clouds three or four
kilometres away was a waterfall, and for long minutes they
stared at it silently, almost unable to believe their eyes.
Logic told them th;;\t on this spinning world no falling object
could move in a straight line, but.there was something horribly
unnatural about a curving waterfal~ that curved sideways, to
end many kilometres away from the point directly below its
C'All ..... I"'A ' T f n.~ 1 i 1 PC) han heen horn in this world. I said
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Mercer at length, 'he'd have ,gone crazy working out the laws
of dynamics'. 'I thought I knew them,' Calvert replied,
'and I'm going crazy anyway. Doesn't it upset you, Prof?'
'Why should it?' said Sergeant Myron. 'It's a perfectly
straightforward demonstration of the Coriolis effect. I wish
I could show it to some of my students.' "

00 00 00 00 00 00 00 00 00

THE TAPE RECORDER DIFFERENCE EQUATION t

by F: J. M. Salzborn and J. van der Hoek,

University of Adelaide

When recording music on a tape recorder, the tape winds
off the "feeder" spool and passes through the machine over
the recording heads at a constant speed v (usually given in
inches per second), known as the tape speed. A counter is
attached to the "feeder" spool which counts its number of
revolutions. (On some tape recorders this counter may count
every second or every third revolution.) One will notice
t,hat when the "feeder lt spool is almost full, the counter "ticks
over" slowly, but as the." feeder" spool empties) the counter
'''ticks over" more rapidly. An interesting problem then arises:
Given a reading on the counter, how much recording time is
there remaining or how much recording time have we used? In
the analysis below we make the following assumptions.

(i) The tape has constant thickness T.

(ii) The tape has been wound uniformly onto the "feeder" spool.
(This situation is best attained by winding the tape through
and then back at fast speed.)

Let ten) minutes be the time elapsed when the counter
reads n. We assume that teO) = 0, that is, we set the counter
initially at 0000. Now make your own set of data and tabulate
as shown opposite. T(n) is the recording time left when the
counter reads n. T(n) is given by the formula

T(n) = E - ten)

where E is the' total time for running the tape at the
recording speed v. You should now pl~t ten) against n,

t Reproduced from Trigon, Volume 14, Number 2, July 1976. Trigon is the
school mathematics journal of the Mathematical Association of South
Australia. For information 'write to the Editor, Trigon, Department
of Mathematics, University of Adelaide, Adelaide, 5001.
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n ten) T(n)

0 0 T

20

40

as in Figure 1 and Figure 2. As the tape winds off the "feeder"
spool the radius of the tape left on the spool decreases. Let
pen) be this radius when the counter reads n. Then reO) = R,
the radius of the full tape spool. Using assumptions (i) and
(ii) we conclude, remembering that T is the thickness of the
tape, that

r(n) = R - nT

and as a good approximation,

v(t(n + 1) - ten»~ = 2nr(n)

· .. (1)

· .. (2)

that is, the length of the tape which passes over {he heads
during the (n + l)th rotati6n (in time ten + 1) - ten» of
the feeder spool, equals the circumference of the feeder spool
when its radius is ren). Hence

2n2n
ten + 1) - ten) = v r(n) = v (R-nT).

Now let a = TIT/V and (3 = 2nR/v; then

ten + 1) - ten) (3 - 2an. · .. (3)

We wish now to solve ( 3) for t in terms of n.
following list:

. t (n) - ten - 1) (3 2a en 1)

ten 1) ten 2) B 2a (n 2)

ten 2) ten 3) B 2a (n 3)

Consider the

t(2)

tel)

tel)

teO)

B

B

2a . 1

2a . 0

If we add up all these terms on the left we obtain ten) - teO)
= ten); and by adding up the right hand side we obtain
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But 1 + 2 + 3 + ... + (n - 1) is an arithmetic series with
common'difference 1 and with sum equal to

n(n - 1)
2

Hence
t (n) nS an(n 1)

2-an + (a + l3)n
2-an + yn; ... (4)

where y = a + 13. We must now assign values to a and y. This
can be done by timing the tape at a given recording speed for
say 400 and 800 revolutions on the counter. Then

t( 400)

t( 800)

-160 OOOa + 400y

-640 OOOa + 800y

Hence, solving the equations,

a = (2 t( 400)

y (4 t( 400)

t( 800) ) I 320 000

t(800»/800.

1200' Agfa PE3l C90 Hitachi

Reel to Reel tape DID Cassette

v 31 ips 31 ips
4 4

t(400) 25·4 minutes 23·5 minutes

t(800) 45·6 minutes 41·1 minutes

a O~OOO 016 0·000 018

Y 0·070 0·067

You should now be able to calculate your own values for a and
y, and so obtain a formula for your own tape and tape recorder.
The graphs in Figures 1 and 2 display theoretical and actual
values of ten) against n. The theoretical values in each case
are given by the curve; the actual values have been encircled.
Note that for different tape speeds and for different brands
of tapes (different thicknesses), you will need to recalculate
the values of a and y.

60

AGFA
40

t(n)

20

0
0 200 600 n 1000

Ti';n-,..yo", 1
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60

HITACHI

t (n)

Figure 2

This graph should be kept handy when you do your recording.
Of course the larger the graph· you draw the more accurately
you can read off your times!

Research problem: Can you work out a similar theory for
relating the width of a track on a record with time needed
to play it? Of course you will have to make so~e assumptions,
for example that the grooves are equally spaced.

000000000000000000000000

PROBLEM 2.1~ (Part (a) is problem B4 of the H.S.C.
examination paper in Pure Mathematics in 1975.)

·43 2(a) A curve has equation y = 3x - 4x - 6ax + 12ax,
where a is a positive constant. For what values of x does
the curve have a horizontal tangent? Determine the nature
of all stationary points if (i) ·0 < a < 1, (ii) a = 1.

Sketch the curve when a = 1. State the coordinates of
all stationary points but make no attempt to determine exactly
the x-coordinates of any points (other than the origin) at
which the curve crosses the x-axis.

(b) Extend the discussion to cover (iii) a < 0, (iv) a 0,
and (v) a > 1.

000000000000000000000000

THE WONDERS OF NAURU HOUSE

"The stone finish on the panels [of Nauru House, Melbourne]
is small white pebbles mined from the Otway Ranges. These panels
fit together in a square plan form with shaved corners which
produce a hexagonal shape (four long sides and four short)."

Norman Day's Architecture article, The Age, 20 April 1977.



HOW LONG, HOW NEAR?

THE MATHEMATICS OF DISTANCE t

by Neil Cameron, Monash University

Mathematics often abstracts some concept from a range of
familiar contexts, extends it beyond· the confines of those
contexts and in so dbing gives the concept more precision
and ourselves a better understanding of it.

This has, for example, happened wi th the me.taphor of
distance which is so much part of our thinking and language:
unsuccessful generals may believe their strategies to be
cZose to that of Napoleon,while a rumour may be a Zong way
from the truth. We will be understood if we express the
opinion that, as musicians, Mozart and Haydn are fairly close
to each other while Haydn is a long way from Rod Stewart.
We might even represent this by a geometrical diagram as in
Figure 1 and deduce that Mozart also is a long way from Rod
Stewart.

Haydn

~~~~~~~_-_~~~~~Ste~art

Mozart

Figure 1

In mathematics, the term metric space has been coined
for any non-empty set X of objects together with a concept
of metric or distance d(x~y) between objects x, y in x.
The set X can be quite exotic, for example its objects may
be vectors, matrices, functions or even operations such as
integration. It might be more unusual to come across a
metric space of generals or of musicians.

Given a set X, there may be many different yet sensible
ways of measuring distance between objects in X. Consider
continuous functions f and g as shown in the graphs. We
ask if g is close to f? Is g a good approximation to
f? In each of the three cases, in certain circumstances,
the answer may be yes.

t This is the text of a talk to fifth and sixth formers given at Monash
University on March 25, 1977.
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(a)

x

y

(b)

Figure 2

x

y

(c)

25

x

If we measure the distance d(f y) between f and g
by using the area between the graphSt this may be small in all
cases, so that according to this distance criterion each g
may approximate f suitably well. In Figure 2(a), the
values of . g are quite different from those of f on a small
section of t~e domain. If we wish to prepare tables, such as
those correct to a specified number of decimal places, in
which we guarantee that no single entry is in error by more
than a stated small amount, we might use d(f~g) =
max{!f(x)-g(x) I : 0 ~ x ~l}, and then although the error is
localised, the metric distance between f and gl may be

too large to be acceptable. By this test g2 and g3 may

be satisfactory as approximations "to f. For some purposes,
g3 ought not to be regarded as close to f. The graph of

g3 is much longer than that of f 'and the gradient patterns

are very different. A metric which reflects these factors
will identify g3 as a poor approximation to f.

Once the underlying phenomenon, here distance, is recog
nised, the mathematician grasps the opportunity to abstract
it, develop an appropriate theory and then apply the results
to the varying contexts. This results, not only in a saving
of effort, but also in a deeper understanding of the phenom
enon.

One fundamental property of distance is expressed by
our first diagram or perhaps better by the assertion that
"a journey ·cannot be shortened by breaking it." Not every
situation where the distance metaphor is used has such a geo
metrical interpretation. For example in society, it is
quite possible for Brown to be very friendly with (or close
to) both Smith and Jones, but for Smith and Jones to hate
each other (or be very far apart).

t The area between f and g is measured by the integral J:lf(XJ-g(XJ1dx.
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Smith

1
\?

Brown

, Jones

'V

Figure 3

We cannot express this (the eternal triangle) by a dia
gram in which friendship is indicated by closeness; indeed
this difficulty has bedevilled personal relationships and
international diplomacy from the beginnings of mankind.

A distance function d(x~y) defines a metric space if
it satisfies the following conditions (the defining axioms
for metric spaces):

(Ml) d(x~y) is a non~negative number,

(M2) d(x~y) 0 ~ x and y coincide,

(M3) d(x~y) d(y~x) ,

and in line with the earlier discussion, the so-called triangle
inequality

(M4) d(x~y) + d(y~z) ~ d(x~z).

The listed axioms are few and simple to understand yet
on this foundation has been built a considerable branch of
modern mathematics, whose results are useful in such varying
fields as physics and economics.

Let me explore briefly only a few ideas of the theory.
If a E X and k > 0, define the open ball centred at a
of radius k as' the set

B(a;k) = {x EX: d(x~a) < k}.

Figure 4
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If X is familiar three-dimensional space with the usual
euclidean concept of distance such balls really do look like
balls (with outer skin removed, because of the < symbol).
In general their appearance can be quite different. For
example let X be a cartesian plane and define the distance
between two points in X as the larger of the distances
between the projections o~ the points on~o the x-axis and
y-axis respectively. (This metric is sometimes called the
chess-king metric as it measures the minimum distance covered
by a king in moving from point to point on an infinite chess
board.) In this situation the open ball of radius 1 centred
at the origin is square in appearance, as in Figure 5.

x

Figure 5

A situation we are familiar with in Melbourne is the
radial rail network, in which the usual distance notion is
radically warped. Consider a simplified situation (Figure 6)
in which X consists of long spokes spaced n/6 apart,
centred at Flinders Street. Travel is restricted to this
rail network. If P is a point 5 km out on a spoke from
Flinders Street then the open ball centred at P of radius
7 km appears as on Figure '6.

p

Figure 6

Let us prove that in every metric space every pair of
distinct objects can be separated by disjoint open balls.
This is an important result in the theory and the proof
demonstrates the importance of the axioms. Let the pair be



Y of a metric space
of Y if there is some
is an open set if it is

Y. It can then be proved
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a and b. By (MI), d(a>bJ ~ O. In fact, since a f b, by
(M2) d(a,bJ > O. Write d(a 3 bJ = k. Then

I 1B(a ; 3kJ> B(b ; 3kJ will do. .

~- \ ;?; ~ \
\ aaJ ;Y//J
\ ~ . // Figure 7'\~

For, suppose these are not disjoint. Then for some w,
I Id(x 3 aJ < 3k and d(x,bJ < 3k.

. I
By (M3), d(a>xJ = d(x 3 aJ so d(a 3 xJ < 3k.

2By (M4), d(a 3 bJ ~ d(a 3 xJ +d(x3 b) < 3k.
2So d(a 3 bJ< 3k. But d(a 3 bJ = k, so we hav~ a contradiction.

Thus the balls are indeed disjoint.

Study this and see how vital the axioms are in the proof.
For yourself, relax (M3) and note where the argument breaks
down. If (M3) does not hold, redefine B(a; kJ symmetri
cally as {x EX: d(x,aJ < k & d(a,x) < k} ~nd prove that
the separation result still holds in such a space. This
sort of adaptation is at least worth noting since situations
not modelled by metric spaces may be modelled by spaces with
this weaker distance notion. Returning for a moment to the
axioms for a metric space and as an exercise for yourself,
show that one axiom ~s superfluous.

We can go on to define a subset
as a neighbourhood of an element a
ball B(a; kJ contained in Y; Y
a neighbourhood of all elements of
that

1. X and the empty set ~ are both open sets.
2. The union of any family of open sets is itself an open

set.
3. The intersection of finitely many open sets is itself

an open set.

If you can prove this (it is not too difficult), you
will have shown that every metric space is a topological space
for the more abstract concept of a topological space is
precisely a set X with a family of subsets, called open,
which satisfy the above three axioms.

From there you can go on to a study of topological spaces
in which there may be no underlying metric, but only the idea
of neighbourhood expressed using the open sets.
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Books

W.G. Chinn & N.E. Steenrod, 'First Concepts of Topology',
New Mathematical Library (Random House/Singer).

B. Mendelson, 'Introduction to Topology', Allyn & Bacon.

The next two problems will extend your knowledge of
topological spaces.

,(X) 00 00 00 00' 00 00 00 '00 00 00 00

PROBLEM 2.2. '.
I f -x is a cartes,ian plane and, for all points P, Q in X,

d(P, Q) is defined as Ix - ul + Iy - vi, where (x, y) are the
coordinates of P and (u, v) those of Q, verify that d is a
metric on X. Draw the open ball B ( (0, 0)· I) in this metric
space. . ' '

PROBLEM 2.3.
If X is a cartesian plane and, for all points P, Q in X,

d(P, Q) is defined as 0 if P = Q, and 1 if P f Q, verify that
d is a metric on X. Describe the open balls B«O, 0); 2) and
B«O, 0); !) in this metric space. Verify that every subset
of this metric space is open.

00 00 00 00 00 00

SOLUTION TO 'NONAGON'

o
o
o

Figure 2

o
o
o

'·v'·:
first player

Figure 1

The winning strategy for the second player that we out
line is based on: symmetry. Suppose that in his first move
the first player,removes two coins leaving the board as
shown in Figure i'below. The second player sh6uld then take
the coin exactly opposite so that after the second player's
move the board looks like Figure 2. .

~
second player

Notice that after these moves the coins are left in two
groups symmetrical about the dotted line. From this point on
all the second player has to do is to make moves which 'ipreserve"
the symmetry of the remaining arrangement about the dotted line.
(You can make a table of all the possible moves from this. point
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on and check that by playing as instructed player 2 will win.)

On the other hand if the first player removes only one
coin in his first move, can you describe what the second
player's first and later move$ should be in order to be sure
that he will win?

SOLUTION TO 'SLITHER' ON A 5 X 6 RECTANGULAR FIELD

On such a field the first player has an easy win by
taking the central edge and thereafter making his moves
symmetrically opposite to his opponent's moves.

In the next issue we shall describe solutions to more
complicated versions of SLITHER. You are invited to submit
your ideas about generalizations of the game (and their
solutions) to' the Editors.

PROBLEM 2.4.

THE. GUY IN
/H~ M/ODL.c.

/$ TOM

Three golfers named Tom, Dick, and Harry are walking
to the clubhouse. Tom, the best golfer of the three always
tells the truth. Dick sometimes tells the truth, while
Harry, the worst golfer, never does.

Figure out who is who.

(Hint: First figure out which one is Tom.)

PROBLEM 2.50 (This is Problem 1.4, modified. See
solution below.)

(i) The right hand digit of a natural number is to be
removed and replaced at the left hand end, so increasing the
original number by fifty per cent. Prove that this is impossible.
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(ii) Repeat part (i) with fifty replaced by seventy five.
Find all solutions. (Solutions invited.)

PROBLEM 2.6.
A person A is told the product xy and a person B is told

the sum x + y of two int~gers x, y, where 2 ~ x, Y ~ 200. A
knows that B knows the sum, and B knows that A knows the product.
The following dialogue develops:

A . I do not know {x, y}.
B: I could have told yoU so!
A: Now I know {x, y}.
B: - So do I.

What is {x, y}? (Solutions invited.)

PROBLEM 2.7.
A very good approximate method of calculating sin x for x

between 0 and TI/2 is·by means of the formula

sin x ~ x[l - 0-16605 x 2 + 0·00761 x 4 ]

Use a calculator or a computer to make your own table of sin x,
and compare it with published tables.

SOLUTION TO PROBLEM 1.4.

2
aiiO + aOlO + an)

n n-l
3(an lO + an_110 + ... + allO + a O)

n-l. n-2 n
that is, 17(10 a

n
_

l
+ 10 a

n
_

2
+ ... + 10a

l
+ a

O
) = (3·10- 2)a

n
.

Hence 17 divides 3.10n - 2 (it can't divide the digit an)' The
lowest n for which this is true is n = 15, when

14 1310 a
14

+ 10 a
13

+ ... + 10a
l

+ a
O

= 176 470 588 235 294 a
15

"

Write the number using the digits

x ana n _ 1 ·· '~2alaO = anIOn + an_IlO
n

-
l +.~.+ a 2 l0

2
+ aiiO + a O·

Removing the left digit and placing it at the right yields the
new number

n n-l 3 2 .
an_IlO + a n _

2
lO + ... + a 2 lO + aiiO + aOlO + an'

For this to be fifty per cent greater than the original number
we require

2(a
n

_
I

IO n + a
n

_
2
l0n - 1 +- .. +

Taking a
15

= 1 (2, 3, 4 or 5 could also be chosen) we get

x = 1 176 470 588 235 294.

Another possible n is n = 30, and of course still higher values
are possible.

(Solutions were received from Mark Michell and
Ms E. O'Gallagher.)
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I was at the Mathematical School, where the Master

taught his Pupils after a Method scarce im~ginable to us

in Europe. The Proposition and Demonstration were fairly

written on a thin Wafer, with Ink composed of a Cephalick

Tincture. This the Student was to swallow upon a fasting

Stomack, and for three Days following eat nothing but Bread

and Water. As the Wafer digested, the Tincture mounted to

his Brain, bearing the Proposition along with it.

Jonathan Swift: Gulliver's Travels:

A Voyaqe to Lapu ta, 172f'

00000000000000000000000000

Three hundred men are arranged in 30 rows and 10 .columns.

The tallest man is chosen from each row and then the shortest

man is chosen from these 30 men. On another occasion, the

shortest man is chosen from each column and then the tallest

man is chosen from these 10 men. Who is the taller, the

tallest of the short men or the shortest of the tall men?

000000000000000000

I had a feeling once about mathematics, that I saw it

all - Depth beyond depth was revealed to me - the Byss and

the Abyss ... I saw ... a quantity passing through infinity

and changing its sign from plus to minus. I saw exactly how

it happened and why the tergiversation was inevitable: and

how one step involved all the others ...

Winston S. Churchill:
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at .

the Rotunda Lecture·TheatreRl
). The remaininglectures·a.r~:

with deIll()l1str~ti()Jl.
nrC.F. Moppert

Mathematics·of Winds and Currents.
Dr· C.B. Fandry

Number·Theory.
DrR.T.Wc>rley

S~OIlehengeandAncient Egypt·; tbe mathematics of
radiocarbon.

Dr R.M. Clark

Computing.Orbits.
Dr J.O. Murphy

Allgust 5 How Things Begin; the development of some
mathematical con~epts.

Professor J.N. Crossley

ROYAL .. r4E'-EOROLOGICAL· SOCI·ETY ·L.ECTlJRE FOR SCHOOLS

TI'leSocietyannounces its third annual sixth form. lecture,
to.beb.el<ith~s;yearon friday 24 June in the Fritz-Loewe.Lecture
Theatre,IJIliversityof .Melbourneat 8.0(Jp.m. The speaker will
be Professor ·.P. Schwerdtfeger fr()rnFlin~ers Un~versity, South
A.ustralia. The ti tIe of his talk w~iTl be

'!What's the use Qf ..··meteor()logy"

The l~cttlre.isaimed.prilIla:rilytow~rdssenio'r students· of
physics, m~t:heIllat ics,<~eograpby ···.lind·re1a.te<:l .dfs¢lIJTillefS, . and
th~i.rtea~tlers...Thelecturewill1a~~for.ab6uton7hour with
t~rne •... fol1Qw~ing·for. qu~stionsand discussion. Supper will be
s'ervedafterwargswlthout charge.

Tickets (which are·· frC3e).and fllrther<<:letailsIDaybe obta.in7d
from .. Dr .R.K. Smith, Department'of M:a,thematics , .•• Monas-bUniversity,
telephone 541-2556, 541-2595 or, after hours', 754....5492.
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