
The Petr-Douglas-Neumann Theorem [1, 2, 3]. For any
closed planar n-sided polygon P0, define a sequence of closed n-
gons P1, . . . , Pn−2, such that the vertices of the jth polygon Pj are
the apices of the isosceles triangles placed on the exterior sides of
the previous one Pj−1, with apex angles ασj

chosen to be a multiple,
2πσj

n , of 2π
n , where {σj}j=1,...,n−2 is any permutation of the numbers

(1, . . . , n−2). Then Pn−2 is a convex regular n-gon, whose centroid
coincides with that of P0 and all the other polygons P1, . . . , Pn−3
in the sequence.

The diagram below is for n = 5, and illustrates the theorem for pentagons, with σ

chosen as the identity permutation: {σj = j}j=1,2,3. (See ref. [4].)

The initial pentagon P0 is ABCDE. P1 = FGHIJ is constructed by adding five

isosceles triangles with apex angles 2π
5
= 72◦ onto the sides of P0. P2, is then constructed

from P1 by adding isosceles triangles with apex angles 4π
5
= 144◦ onto the sides of P1 and

P3 = PQRST by adding isosceles triangles with apex angles 6π
5
= 216◦ onto the sides of

P2, resulting in a regular pentagon.

1



The case n = 3, where P0 is a triangle, reduces to Napoleon’s theorem, which

says that: The centroids of the external equilateral triangles erected on an

arbitrary triangle are the vertices of an equilateral triangle. This is illustrated

in the following diagram, where P0 = ABC is the original triangle and P1 = PQR is the

triangle formed from the centroids P,Q,R of the external equilateral triangles on each of

its sides.
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The isosceles triangles of the Petr-Douglas-Theorem join the pair of vertices bounding

each side of ABC to the corresponding centroid, and the apex angles are 2π
3
= 120◦.
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The general case is illustrated in the next figure, which shows four of the eight sides of

an octagon, and the isosceles triangles placed on them have apex angles 2π
8
= π/4. (The

indices σj on the apex angles ασj
and base angles βσj

have been omitted for simplicity.)

The perpendicular bisectors of each of the sides is joined to the apices of the triangles,

dividing them into a pair of oppositely oriented congruent right triangles whose angles

(restoring the indices) (
ασj

2
, βσj

, π
2
) add up to π, so

βσj
=

π − ασj

2
.
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Proof: We proceed by first identifying the plane as the complex plane, relative to an

arbitrarily chosen origin and Cartesian coordinate system, in which (x, y) denote the real

and imaginary parts of complex numbers z = x + iy. The vertices of P0 are identified

as a cyclic sequence of complex numbers (z1, . . . , zn, zn+1 := z1) , in which all successive

triplets (zi, zi+1, zi+2) are distinct, and the orientation corresponds to increasing indices.

We similarly identify the successive vertices of the n-gon Pj, for j = 1, . . . , n − 2, with

a cyclic sequence of complex numbers (zj1, . . . , z
j
n, z

j
n+1 := zj1) and set (z01 , . . . , z

0
n, z

0
n+1)

:=(z1, . . . , zn, zn+1) for P0. By convention, we define the “exterior” side of each oriented

edge (zji , z
j
i+1) to be on its left. (If the apex angle ασj

is a reflex angle however, this places
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the apex vertex zj+1
i on the opposite side.) The isosceles triangle whose base is (zji , z

j
i+1)

thus has vertices (zj+1
i , zji , z

j
i+1). For j = 1, . . . , n, let

αj :=
2πj

n
, eiαj := ωj, ω := e2πi/n,

where ω is the primitive nth root of unity and {ωj}j=1,...,n is the complete set of nth roots

of unity. The apex angle of the triangle (zj+1
i , zji , z

j
i+1) is thus ασj

=
2πσj

n
.
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The apex vertex zj+1
i is obtained from the pair (zji , z

j
i+1) of base vertices by rotat-

ing the difference zji+1 − zji , viewed as a 2-dimensional vector, by the angle βσj
in the

counterclockwise direction, keeping the point zji fixed. This means: multiplying zji+1 − zji
by the unit length complex number eiβσj , dividing by the factor 2 cos βσj

to obtain the

correct length |zj+1
i − zji | for the hypotenuse of the right triangle formed from the vertices

(zj+1
i , zji ) and the midpoint of the side (zji , z

j
i+1), and adding this to zji , to give

zj+1
i = zji +

eiβσj (zji+1 − zji )

2 cos βσj

=
1

1− ωσj
zji+1 −

ωσj

1− ωσj
zji . (∗)

The second equality follows from

cos βσj
=

eiβσj + e−iβσj

2

and

e−2iβσj = −eiασj = −ωσj .
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The equation

zj+1
i =

1

1− ωσj
zji+1 −

ωσj

1− ωσj
zji , (∗)

can be more simply expressed as a single n-component vector equation as follows. For

j = 1, . . . , n− 2, let zj ∈ Cn be the complex n-component column vector

zj :=

zj1
...
zjn

 , z0 :=

z1
...
zn

 =: z,

and

Λ :=


0 1 0 . . . . . . 0
0 0 1 0 . . . 0
...

. . .
...

0 . . . . . . . . . . . . 1
1 0 . . . . . . . . . 0


the cyclic permutation matrix, which satisfies

Λn = I,

where I is the identity matrix. Then the equation (*) can be written in n-component

vector form as

zj+1 =
1

1− ωσj
(Λ− ωσjI) zj. (∗)

Composing these successively for j = 0, . . . , n− 3 gives

zn−2 =
n−2∏
j=1

(
1

1− ωσj

)
(Λ− ωσjI) z.

Whatever the permutation σ: (1, . . . , n − 2)→ (σ1, . . . , σn−2) chosen, this can be written

simply as

zn−2 =
n−2∏
j=1

(
1

1− ωj

) n−2∏
j=1

(Λ− ωjI) z, (∗∗)

since all the factors commute.
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We now proceed to proving the regularity of the last polygon Pn−2. Let

w := zn−2 =

w1

...
wn


denote the vector with components equal to the vertices of Pn−2.

wi

wi+1

wi+2
α

As illustrated in the figure, the condition, for all i = 1, . . . n, that (wi, wi+1, wi+2) be

the successive vertices of a regular polygon is equivalent to requiring that a rotation of

the side (wi, wi+1) clockwise by the angle α := 2π/n gives the next side (wi+1, wi+2).

Rotation of (wi, wi+1) by α in the clockwise direction is equivalent to multiplying the

complex number wi+1 − wi by ω−1 = e−iα , so the property of regularity is expressed by

the equations

wi+2 − wi+1 = ω−1(wi+1 − wi), i = 1, . . . n, (with wn+1 := w1, wn+2 := w2).

In terms of the vector of vertices w and the cyclic permutation matrix Λ, this means

Λ2w − Λw − ω−1Λw + ω−1w = 0,

or equivalently

(Λ− I)(Λ− ω−1I)w = 0. (∗ ∗ ∗)
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Since ωn = 1 and ωn−1 = ω−1, the condition (***) of regularity is equivalent to

(Λ− ωnI)(Λ− ωn−1I)w = 0. (∗ ∗ ∗)

To prove that the components of zn−2 are the vertices of a regular polygon, we must

therefore show that (***) holds for all w of the form

w = zn−2 =
n−2∏
j=1

(
1

1− ωj

) n−2∏
j=1

(Λ− ωjI) z. (∗∗)

Combining (***) with (**) gives

n−2∏
j=1

(
1

1− ωj

) n∏
j=1

(Λ− ωjI) z = 0,

which indeed is satisfied, because the polynomial identity

zn − 1 =
n∏

j=1

(z − ωj)

expressing zn − 1 as a product of its elementary factors also holds if z is replaced by the

matrix Λ, and 1 by the identity matrix I, giving

n∏
j=1

(Λ− ωjI) = Λn − I = 0,

since

Λn = I.

To compute the centroids (cz0 , . . . , czn−2) of the polygons P0, . . . , Pn−2, recall that, as

complex numbers, these are just the average values of the vertices. This means they are

obtained by multiplying the corresponding column vectors {zj}j=0,...,n−2 on the left by the

row vector E := 1
n
(1, . . . , 1)

czj = Ezj.

Since E is invariant under any permutation of its entries, it is a left eigenvector of the

cyclic permutation matrix Λ with eigenvalue 1

EΛ = E.

Therefore, multiplying the recursion relations

zj+1 =
1

1− ωσj
(Λ− ωσjI)zj, j = 0, . . . , n = 3 (∗)
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for the successive vectors of vertices on the left by E gives

czj+1 = Ezj+1 =
1

1− ωσj
(E − ωσjE)zj =

1− ωσj

1− ωσj
Ezj = czj ,

proving that all the centroids are equal.

Remark. A slight generalization of this result is also true, extending it beyond convex

regular n-gons, to include regular n-grams, with vertex angles 2(n − p)π/n, for p =

1, . . . , n− 1.

The generalized Petr-Douglas-Neumann Theorem [2].
For any closed planar n-sided polygon P0, define a sequence of closed
n-gons P1, . . . , Pn−2, such that the vertices of the jth polygon Pj

are the apices of the isosceles triangles placed on the exterior sides
of the previous one Pj−1, with apex angles ασj

chosen to be a

multiple, 2πσj

n , of 2π
n , where {σj}j=1,...,n−2 is any permutation of

the numbers (1, . . . , n̂− p, . . . n− 1), with n̂− p omitted, for p =
1, . . . n− 1. Then Pn−2 is a regular n-gram, with apex angles equal
to 2(n − p)π/n, whose centroid coincides with that of P0 and all
the other polygons P1, . . . , Pn−3 in the sequence.
Proof: The proof is almost exactly the same; the only change is that eq. (**) is replaced

by

w = zn−2 =
n−1∏
j=1

j ̸=n−p

(
1

1− ωj

)(
Λ− ωjI

)
z. (∗∗′)

and (***) is replaced by

(Λ− ωnI)(Λ− ωn−pI)w = 0. (∗ ∗ ∗′)
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